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Abstract
Recent studies suggest that it may now be possible to con-

struct end-to-end Neural Network (NN) models that perform
on-par with, or even outperform, hybrid models in speech
recognition. These models differ in their designs, and as such,
may exhibit diverse and complementary error patterns. A com-
bination between the predictions of these models may there-
fore yield significant gains. This paper studies the feasibility of
performing hypothesis-level combination between hybrid and
end-to-end NN models. The end-to-end NN models often ex-
hibit a bias in their posteriors toward short hypotheses, and this
may adversely affect Minimum Bayes’ Risk (MBR) combina-
tion methods. MBR training and length normalisation can be
used to reduce this bias. Models are trained on Microsoft’s 75
thousand hours of anonymised data and evaluated on test sets
with 1.8 million words. The results show that significant gains
can be obtained by combining the hypotheses of hybrid and end-
to-end NN models together.
Index Terms: Combination, end-to-end, hybrid, minimum
Bayes’ risk, speech recognition

1. Introduction
The hybrid Neural Network (NN)-Hidden Markov Model
(HMM) architecture [1] has, up till recently, maintained its
reputation as being the architecture of choice for state-of-
the-art performance in Automatic Speech Recognition (ASR)
[2, 3, 4, 5]. However, with the ever increasing quantity of di-
verse training data and the development of novel NN topologies,
it may now be possible to construct ASR models based on end-
to-end NN architectures [6, 7] that perform on-par with, or even
outperform, hybrid models [8].

Two common end-to-end NN architectures are the Listen,
Attend, and Spell (LAS) [6, 9] and the Recurrent Neural Net-
work Transducer (RNN-T) [7, 10, 11]. There are several dif-
ferences between hybrid and end-to-end NN models, such as
in the conditional independence assumptions that they make,
and in the availability of an externally defined pronunciation
lexicon and language model. Between end-to-end NN models,
one major difference between LAS and RNN-T is that RNN-T
is frame-synchronous, as it produces a blank output for every
input frame, while LAS is not frame-synchronous. These dif-
ferences may result in significant diversity between the error
patterns that the models make when performing recognition. A
combination between the models may be able to take advantage
of any complementary diversity.

Hypothesis-level combination methods, such as Recogniser
Output Voting Error Reduction (ROVER) [12] and Minimum
Bayes’ Risk (MBR)-based combination methods [13, 14, 15]
were originally proposed in the context of a combination be-
tween HMM-based models. However, many of these ap-
proaches are also usable with end-to-end NN models. This
paper investigates the use of these hypothesis-level combina-

tion methods, to combine the predictions of hybrid and end-
to-end NN models together. To the best knowledge of the au-
thors, this is the first report on a combination between hybrid
and end-to-end NN models. MBR combination relies on the
accuracy of each model’s hypothesis posteriors. However, the
posteriors from end-to-end NN models tend to exhibit a bias to-
ward shorter hypotheses [7, 6]. This paper investigates whether
length normalisation and MBR training can alleviate this bias,
and thereby improve the compatibility between end-to-end NN
models and MBR combination.

There have been prior works investigating combination be-
tween multiple HMM-based models [12, 13, 14, 15], and also
between multiple end-to-end NN models [16, 17, 18]. The au-
thors in [16, 17] propose to combine the RNN-T and LAS to-
gether, by using a two-pass decoding strategy with a two-headed
encoder-decoder style architecture. A shared encoder is used for
both the RNN-T and LAS, while each of the RNN-T and LAS
has its own separate decoder. The RNN-T decoder is used to
perform a first-pass decoding in streaming mode, then the LAS
decoder is used in offline mode to either re-score an N -best list
of hypotheses from the RNN-T or to perform a fresh recognition
pass, when given information about the RNN-T’s hypotheses.
The re-scoring or second-pass recognition can be interpreted as
a combination between the RNN-T and LAS decoders. In [18],
time alignments from a first pass connectionist temporal classi-
fication decoding run of the shared encoder are used to guide an
LAS decoder. However, since these methods use a shared en-
coder, the diversity between the model behaviours may be lim-
ited. In this paper, hypothesis-level combination is performed
between completely separate models, in the hope of taking full
advantage of the diversity between their behaviours.

2. Models
2.1. Hybrid

The posterior probability of a word sequence,ω1:L, for a hybrid
model is computed as

P (ω1:L|O1:T )∝P γ(ω1:L)
∑

s1:T∈ω1:L

T∏
t=1

P (st|ot)
P (st)

P (st|st−1),

(1)
where L is the number of words, O1:T are the input features,
T is the number of frames, γ is the language scaling factor, and
s1:T are the HMM states. The HMM imposes two conditional
independence assumptions; that the probability of the current
state is independent of all observations and other states when
given the previous state, and that the probability of the current
observation is independent of all other observations and states
when given the current state. The language model is often sim-
plified to an n-gram model,

P (ω1:L) =

L∏
l=1

P (ωl|ωl−n+1:l−1) , (2)



which imposes the assumption that the probability of the cur-
rent token is only dependent on a finite context of past tokens.
It is also often trained separately from the NN acoustic model,
P (st|ot). The hybrid model incorporates a lexicon, which de-
fines the mapping between token sequences, ω1:L, and state se-
quences, s1:T . This lexicon is often manually defined, such that
the states are related to either phonemes or graphemes.

2.2. LAS

The LAS is an encoder-decoder NN model, with an attention
layer connecting the encoder with the decoder. The posterior
probability of a token sequence, τ1:J , for LAS is computed as

P (τ1:J |O1:T ) =

J∏
j=1

P (τj |τ1:j−1,O1:T ) , (3)

where J is the number of tokens. Here, there are no conditional
independence assumptions enforced upon the model. The LAS
model does not utilise information from any manually-defined
lexicon. The language and acoustic components of the LAS
model are jointly trained. The LAS decoder produces one out-
put for each token position, j.

2.3. RNN-T

Similarly to LAS, the RNN-T can also be viewed as an encoder-
decoder NN model. The token sequence posterior probability
for RNN-T is computed as

P (τ1:J |O1:T ) =
∑

s1:T+J∈B(τ1:J ,T )

T+J∏
k=1

P (sk|s1:k−1,O1:T ) . (4)

The set of states, s, is the union of blank with the set of tokens,
τ , and B (τ1:J , T ) represents the set of possible state sequences,
s1:T+J , that have T blanks interpolated within τ1:J . Similarly
to LAS, the RNN-T also does not impose any conditional in-
dependence assumptions, and the language and acoustic com-
ponents are jointly trained. However, unlike LAS, the RNN-T
produces one output for each input frame and output token, and
can therefore be considered as a frame-synchronous model. The
input frame is only incremented each time a blank is produced
at the output.

During recognition, the token sequence posteriors for both
LAS and RNN-T are mapped to word sequence posteriors as

P (ω|O1:T ) ≈ max
τ∈ω

P (τ |O1:T ) , (5)

The maximisation is only performed over token sequences ex-
plored within the beam search. A maximisation is used instead
of a summation, because the sparsity of the token sequences ex-
plored within the beam search may result in an unintended bias
toward word sequences that happen to have a larger number of
token sequences being explored, if using summation. This max-
imisation is similar to the determinisation in a Viterbi semi-ring
that is often applied to the recognition lattice of hybrid models.

3. Combination
The different model architectures may yield diverse error pat-
terns. Through combination, the correct predictions of one
model may be able to correct the wrong predictions of another
model. One common combination method in ASR is ROVER
[12]. This performs majority voting between the 1-best hy-
potheses from each model. Confidence scores can also be used.

It may be possible to use additional information by consid-
ering multiple hypotheses from each model, rather than only the
1-best, by using MBR-based combination methods [13, 14, 15].
Generalising ROVER to operate overN -best lists can be viewed
as an approximation of MBR combination [14, 15]. In MBR
combination, the combined hypothesis is computed as

ω∗=argmin
ω′

M∑
m=1

λm
∑
ω∈N

L
(
ω,ω′

) Pκm
m (ω|O1:T )∑

ω8∈N
Pκm
m (ω8|O1:T )

, (6)

where λm weighs the contributions between the models, κm is
a scaling factor that balances the dynamic ranges between the
models, and L (ω,ω′) is the minimum edit distance between
two word sequences, ω and ω′. Here, N is the union of the set
of hypotheses from theM models. If the set of hypotheses from
each model is represented as an N -best list, then the support of
the N -best lists from the separate models may be different. In
this case, it is assumed that the posterior for hypothesis ω from
model m is Pm (ω|O1:T ) = 0, if ω is not contained within the
N -best list that was generated by model m.

The minimum edit distance computation in L (ω,ω′) is
non-local, making it difficult to perform efficient computation
using forward-backward operations over the set of hypothe-
ses. Computing L (ω,ω′) separately for each hypothesis can
be computationally expensive. Furthermore, the set of hypothe-
ses to minimise over is potentially infinite. As such, various ap-
proximations [13, 14, 15] have been proposed to perform MBR
decoding. The works in [14, 15] try to first find an approximate
alignment between the hypotheses, then selects the word with
the highest score from each aligned confusion set. The work in
[13] instead seeks to minimise an upper bound to (6), that can
be computed efficiently using forward-backward operations.

4. Length normalisation
The effectiveness of MBR combination in (6) is reliant on the
accuracy of the hypothesis posteriors. However, it has been em-
pirically found that the LAS and RNN-T hypothesis posteri-
ors tend to exhibit significant bias toward short token sequences
[6, 7]. In fact, (2), (3), and (4) suggest that the hybrid, LAS, and
RNN-T models may all innately exhibit biases toward shorter
token sequences, since all hypothesis posteriors take the form
of a product between posteriors of consecutive tokens or words.
Each token posterior takes a value between zero and one. The
posterior of a longer token sequence is composed of a product
of more individual token posteriors, and may thus naturally tend
to have a smaller value.

One common approach to correct for this innate bias in
LAS and RNN-T is to re-rank the hypotheses in the final de-
coding beam with scores that are computed by scaling the hy-
pothesis posteriors by a power, given by the inverse hypothe-
sis length [6, 7]. This is referred to as length normalisation,
and has been shown to yield gains when performing decoding
by choosing the top re-ranked hypothesis [6, 7]. MBR combi-
nation, or decoding of a single model, can be used with these
length-normalised scores, after re-normalising them to sum to
one, to resemble posteriors. Although this preserves the rank
order that length normalisation can yield, it may lose infor-
mation about the relative probabilities between the competing
hypotheses that a model originally produced. If a model was
confident about its prediction, then it may have produced a low-
entropy N -best list. Length normalisation does not preserve
the relative magnitude of the entropies between different utter-
ances. One possible method to preserve these entropies can be



to apply a per-utterance scaling factor to the length-normalised
scores, such that the length-normalisedN -best list has the same
entropy as the original N -best list. However, initial MBR de-
coding experiments suggest that this entropy matching may not
work well.

5. Minimum Bayes’ risk training
Another approach to reduce the bias is to modify the training
criterion. End-to-end NN models can be trained by minimising
the negative log-probability of the reference [6, 7], referred to
as the Conditional Maximum Likelihood (CML) criterion,

FCML = − logP
(
ωref
∣∣∣O1:T

)
. (7)

This aims to maximise the posterior probability of the reference
word sequence,ωref. At the same time, the criterion also implic-
itly minimises the probabilities of alternative token sequences,
including shorter token sequences, because of the softmax out-
put of the model. However, this implicit minimisation of shorter
token sequences may not be sufficiently strong, since it has been
empirically observed that using length normalisation when per-
forming recognition can still yield gains.

An alternative training criterion is to minimise the expected
minimum edit distance relative to the reference [19], referred to
as MBR training,

FMBR =
∑
ω∈N

L
(
ω,ωref

) P (ω|O1:T )∑
ω′∈N

P (ω′|O1:T )
. (8)

Unlike (7), alternative hypotheses, including shorter token se-
quences, explicitly appear in (8). Therefore, minimising (8)
explicitly minimises the probabilities of these alternative hy-
potheses. Since LAS and RNN-T tend to produce larger prob-
abilities for shorter token sequences, it is likely that these will
have greater contributions to the criterion. Thus the suppres-
sion of alternative hypotheses in (8) may have a greater impact
on shorter than longer token sequences. This may reduce the
model’s bias toward shorter token sequences.

Applying length normalisation when performing recogni-
tion often yields gains. It may be possible to also benefit from
Length Normalisation (LN) during MBR training, by replacing
the hypothesis posteriors with the length-normalised scores,

FMBR-LN =
∑
ω∈N

L
(
ω,ωref

) P
1

|ω| (ω|O1:T )∑
ω′∈N

P
1
|ω′| (ω′|O1:T )

. (9)

However, this criterion already explicitly reduces the bias of the
model toward shorter token sequences, and therefore places less
responsibility on the model to learn to reduce its own bias.

6. Experiments
Hybrid, LAS, and RNN-T models were each trained on 75
thousand hours of transcribed data from a variety of Microsoft
applications. The models were evaluated on a variety of test
sets, covering 13 application scenarios such as Cortana and far-
field speech, using a total of 1.8 million words. All data was
anonymised, with personally identifiable information removed.
The results presented are the average Word Error Rates (WER)
over all test scenarios.

The hybrid acoustic model was an ensemble of two layer-
trajectory bi-directional Long Short-Term Memory (LSTM)

networks [3], with 6 layers of 1024 and 832 nodes, and trained
toward the FMBR criterion. A 5-gram language model was used
for recognition. The LAS comprised an encoder with 6 layers
of 1024 bi-directional Gated Recurrent Unit (GRU) nodes, a de-
coder with 2 layers of 1024 GRU nodes, and an attention layer
between the encoder and decoder. This LAS was first trained to-
ward theFCML criterion, then fine-tuned toward either theFMBR

or FMBR-LN criterion. The RNN-T encoder network had 6 lay-
ers of 832 bi-directional LSTM nodes, each projected down to
400 dimensions [20]. The RNN-T prediction network had 2
layers of 1280 LSTM nodes, each projected down to 640 di-
mensions. The outputs of the encoder and prediction networks
were combined through a single feed-forward layer with a soft-
max output. The RNN-T was trained toward theFCML criterion,
as work in [17] suggests that MBR training of the RNN-T may
not yield significant gains. The LAS and RNN-T each used a
different set of 4000 sub-word units as outputs.

MBR decoding and combination were performed using the
Kaldi toolkit [21, 13]. N -best lists of size 16 were generated
from each model. These were converted to the Kaldi lattice for-
mat, determinised, scaled, and normalised to sum to one. Sep-
arate posteriors were available for each hypothesis, but not for
each word. MBR decoding or combination was performed on
these lattices. Scaling factors, tuned on held out data, were ap-
plied to the hypothesis posteriors of each model.

6.1. MBR decoding of a single end-to-end NN model

MBR combination and decoding rely on the accuracy of the hy-
pothesis posteriors. However, the posteriors of end-to-end NN
models may be biased toward short token sequences. This may
degrade the effectiveness of MBR decoding. Length normal-
isation and MBR training may reduce this bias. Table 1 as-
sesses the interactions between MBR decoding, MBR training,
and length normalisation, for LAS. The MBR decoding per-
formance is compared against a baseline decoding method of
choosing the hypothesis with the top score from the N -best list
[6, 7], referred to as 1-best decoding. This is similar to Viterbi
decoding [22] of a hybrid model.

Table 1: Impact of MBR training and length normalisation on
MBR decoding for LAS

Decoding WER (%)
Training length norm 1-best MBR

FCML
no 10.40 9.15
yes 7.90 8.42

FMBR
no 8.95 8.82
yes 7.92 8.53

FMBR-LN
no 9.29 8.76
yes 7.85 8.42

WithFCML training, the performance of choosing the 1-best
from the N -best list significantly improves when the list is re-
ranked using the length-normalised scores. The insertion and
deletion rates without length normalisation are 0.79 and 4.82%,
and with length normalisation are 1.32 and 1.38%. This sup-
ports the observation in [6] that LAS tends to give posteriors
that are biased toward short token sequences. When LAS is
trained using either FMBR or FMBR-LN, the gap between the 1-
best decoding performances with and without applying length
normalisation during decoding decreases, primarily accounted
for by a decrease in the deletion rate. This decrease in the gap is



most significant for FMBR training, which places more respon-
sibility on the model to correct for its own bias.

MBR decoding yields gains compared to 1-best decoding
when length normalisation is not used during decoding. One
approach for MBR decoding to benefit from the re-ranking of
length normalisation is to apply length normalisation to the hy-
pothesis posteriors, re-normalise the resulting scores to sum to
one over the N -best list, then perform MBR decoding using
these new scores. This improves the MBR decoding perfor-
mance over using MBR decoding without length normalisation.
However, the standard 1-best decoding with length normalisa-
tion still performs the best. It is difficult to predict the behaviour
of performing MBR decoding with length normalised scores,
since the entropy of the length-normalised scores is not easily
interpretable. Although MBR training may not yield signifi-
cantly better performance than FCML, MBR training does re-
duce the model’s bias toward short token sequences.

Table 2: MBR decoding of different models

WER (%)
Model 1-best MBR
Hybrid 8.03 8.01
LAS 9.29 8.76
+ length norm 7.85 8.42
RNN-T 8.68 8.75
+ length norm 8.16 8.16

Table 2 assesses MBR decoding and length normalisation
applied to theN -best lists for all three model architectures. The
hybrid, LAS, and RNN-T models were trained with the FMBR,
FMBR-LN, and FCML criteria respectively. MBR decoding, with-
out length normalisation, of the hybrid and RNN-T models does
not yield significant gains over 1-best decoding. This may be
due to the small N -best list size of 16. It may also be possible
that the hybrid model may not benefit much from MBR decod-
ing when it has been trained using a large quantity of data. The
gap between the RNN-T 1-best decoding performances with
and without length normalisation is smaller than that for LAS.
This suggests that RNN-T may exhibit less bias toward short
token sequences that LAS, even when RNN-T has only been
trained with the FCML criterion. Although MBR decoding may
not yield gains over 1-best decoding, it is still important to as-
sess its interaction with the LAS and RNN-T models, as MBR
combination is likely to have a similar behaviour.

6.2. Combination

This section assesses combination between the hybrid, LAS,
and RNN-T models. The 1-best decoding performances of each
of the three models are shown in Table 3. The LAS here was
trained with the FMBR-LN criterion.

Table 3: Single model performance

Model WER (%)
hybrid 8.03
LAS 7.85
RNN-T 8.16

MBR combinations between these models are shown in Ta-
ble 4. Length normalisation was applied to both the LAS and
RNN-T N -best lists before combination. Equal combination

weights were used. The right most column shows the relative
WER Reduction (WERR) against the best single model within
each respective combination. Combinations between any two
of the models yield gains. However, comparing the relative
WERRs between the combinations may not reliably indicate the
diversity between any two models, as the gain may be affected
by the interactions between length normalisation, posterior scal-
ing, and MBR decoding. Combining three models yields more
gain than combining any two models, suggesting that the third
model still contributes additional complementary diversity.

Table 4: MBR combinations

Combination WER (%) Relative WERR (%)
hybrid + LAS 7.32 6.8
hybrid + RNN-T 7.26 9.6
LAS + RNN-T 7.62 2.9
hybrid + LAS + RNN-T 6.89 12.2

The final experiment compares MBR combination with two
other combination methods. ROVER combination here used
only the 1-best hypotheses from each model. Only majority
voting was used, without any confidence scores, because it is
not straight forward to obtain per-token confidence scores from
LAS and RNN-T. An un-tuned null confidence of 0.5 was used.
Another combination approach is to form a union of the N -
best lists from each model, then choose the top hypothesis from
the merged N -best list. Length normalisation was applied to
the posteriors from LAS and RNN-T. These scores were scaled,
and then normalised to sum to one over each N -best list. The
scores were then treated as posteriors, and merged across the
multiple N -best lists as a sum.

Table 5: Method of combining hybrid, LAS, and RNN-T models

Combination method WER (%)
1-best of merged N -best 7.59
ROVER 7.33
MBR 6.89

Initial experiments were performed to compare Kaldi MBR
decoding with the SRILM N -best ROVER implementation
[23, 14], and suggested that the former performed better. N -
best ROVER and the Kaldi implementation of MBR decod-
ing are different approximations to MBR decoding. Another
approximation to MBR decoding is HTK confusion network
decoding [24, 15]. However, it is not straight forward to use
HTK confusion network decoding and combination with LAS
hypotheses, because time alignments are not available. Out of
these MBR decoding and combination approximations, only the
results of the Kaldi implementation [13] are shown in this pa-
per. The results of combining three models in Table 5 suggest
that MBR combination yields a larger gain than both ROVER
and choosing the top hypothesis from the merged N -best list.

7. Conclusion
This paper has studied combination between hybrid and end-
to-end NN models. Combination yielded significant gains, sug-
gesting that the models are complementary. MBR combination
relies on the accuracy of the hypothesis posteriors. MBR train-
ing and length normalisation can reduce the bias of the hypoth-
esis posteriors toward short token sequences.
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