
Secure Medical Image Analysis with CrypTFlow

Javier Alvarez-Valle
MSR UK

Pratik Bhatu
MSR India

Nishanth Chandran
MSR India

Divya Gupta
MSR India

Aditya Nori
MSR UK

Aseem Rastogi
MSR India

Mayank Rathee
MSR India

Rahul Sharma
MSR India

Shubham Ugare
UIUC, USA

Abstract

We present CRYPTFLOW, a system that converts TensorFlow inference code into
Secure Multi-party Computation (MPC) protocols at the push of a button. To do
this, we build two components. Our first component is an end-to-end compiler from
TensorFlow to a variety of MPC protocols. The second component is an improved
semi-honest 3-party protocol that provides significant speedups for inference. We
empirically demonstrate the power of our system by showing the secure inference of
real-world neural networks such as DENSENET121 for detection of lung diseases
from chest X-ray images and 3D-UNet for segmentation in radiotherapy planning
using CT images. In particular, this paper provides the first evaluation of secure
segmentation of 3D images, a task that requires much more powerful models than
classification and is the largest secure inference task run till date.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting parties to compute a
publicly known function on their secret inputs without revealing their inputs to each other. This is
done through the execution of a cryptographic protocol which guarantees that the protocol participants
learn only the function output on their secret inputs and nothing else. MPC has made rapid strides -
from being a theoretical concept three decades ago [13, 32], to now being on the threshold of having
real world impact. One of the most compelling use cases for MPC is machine learning (ML) - e.g.
being able to do secure ML inference when the model and the query are private inputs belonging to
different parties. There has been a flurry of recent works aimed at running inference securely with
MPC such as SecureML [21], MinioNN [18], ABY3 [20], CHET [11], SecureNN [30], Gazelle [16],
Delphi [19], and so on. Unfortunately, these techniques are not easy-to-use by ML developers and
have only been demonstrated on small deep neural networks (DNNs) on tiny datasets such as MNIST
and CIFAR. However, in order for MPC to be truly ubiquitous for secure inference tasks, it must be
both easy to use by developers with no background in cryptography and capable of scaling to the
DNNs used in practice.

In this work, we present CRYPTFLOW, a system that converts TensorFlow [4] inference code into
MPC protocols at the push of a button. By converting code in standard TensorFlow, a ubiquitous
ML framework that is used in production by various technology companies, to MPC protocols,
CRYPTFLOW significantly lower the entry barrier for ML practitioners and programmers to use
cryptographic MPC protocols in real world applications. We make the following contributions:

First, for the developer frontend, we provide a compiler, called Athos, from TensorFlow to a variety of
secure computation protocols (both 2 and 3 party) while preserving accuracy. The compiler is designed
to be modular and it provides facilities for plugging in different MPC protocols. To demonstrate
this modularity, we have integrated Athos with the following backends: ABY-based [12] 2-party
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computation (2PC), SCI-based 2PC [25], Aramis-based malicious secure 3-party computation [17],
and Porthos-based semi-honest secure 3-party computation (3PC).

Second, for the cryptographic backend, we provide a semi-honest secure 3-party computation protocol,
Porthos, that outperforms all prior protocols for secure inference and enables us to execute, for the
first time, cryptographically secure inference of ImageNet scale networks. Prior work in the area of
secure inference has been limited to small networks over tiny datasets such as MNIST or CIFAR. We
have evaluated CRYPTFLOW on secure inference over DNNs that are at least an order of magnitude
larger than the state-of-the-art [5, 7, 8, 11, 16, 18–21, 26, 27, 30]. Even on MNIST/CIFAR, Porthos
has lower communication complexity and is more efficient than prior works [20, 26, 30].

Third, we demonstrate the ease-of-use, efficiency and scalability of CRYPTFLOW by evaluating on
RESNET50 [14] for ImageNet classification, DENSENET121 [15] for detection of lung diseases
from chest X-ray images and 3D-UNet [28] for segmentation of raw 3D CT images.

Our toolchain is publicly available1. This paper reviews the original CRYPTFLOW paper [17] briefly
and its increment lies in the secure segmentation evaluation (Section 5.3).

2 Athos

Athos compiles TensorFlow inference code to secure computation protocols. The transformations
implemented in Athos are sensitive to the performance of MPC protocols. For performance reasons
all efficient secure computation protocols perform computation over fixed-point arithmetic - i.e.,
arithmetic over integers or arithmetic with fixed precision. Athos automatically converts TensorFlow
code over floating-point values into code that computes the same function over fixed-point values.
This compilation is done while matching the inference accuracy of floating-point code. Prior works
([16, 18–21, 30]) in the area of running ML securely have performed this task by hand with significant
losses in accuracy over floating-point code.

Athos represents a 32-bit floating-point number r by a 64-bit integer br.2sc for a precision or scale s.
Then operations on 32-bit floating-point numbers are simulated by operations on 64-bit integers. For
example r1×r2 is simulated as br1.2

sc×br1.2sc
2s . A large s causes integer overflows and a small s leads

to accuracy loss. To obtain a suitable scale s (all variables have the same precision in Athos output),
Athos works by “sweeping through” various precision levels to estimate the best precision [17].

3 Porthos

Porthos is an improved semi-honest 3-party secure computation protocol (tolerating one corruption)
that builds upon SecureNN [30]. Porthos makes two crucial modifications to SecureNN. First,
SecureNN reduces convolutions to matrix multiplications and invokes the Beaver triples [6] based
matrix multiplication protocol. When performing a convolution with filter size f × f on a matrix
of size m×m, the communication is roughly 2q2f2 + 2f2 + q2 elements in the ring Z264 , where
q = m− f + 1. Porthos computes these Beaver triples by appropriately reshaping m×m and f × f
matrices. This reduces the communication to roughly 2m2 + 2f2 + q2 ring elements. Typically
the filter size, f , is between 1 and 11 and the communication of Porthos can be up to two orders of
magnitudes less than SecureNN. Additionally, in SecureNN, the protocols for non-linear layers (such
as ReLU and MaxPool) require the third party to send secret shares to the first two parties. In Porthos,
we cut this communication to half by eliminating the communication of one of these shares [17].
This reduces the communication in the overall ReLU and MaxPool protocols by 25%.

4 Motivating Example

In this section, we describe the end-to-end working of CRYPTFLOW through an example of logistic
regression. The toolchain is shown in Figure 1.

CRYPTFLOW takes as input a pre-trained floating-point TensorFlow model. For example, consider
the code snippet for logistic regression over MNIST dataset in TensorFlow as shown in Figure 2. Our
compiler first generates the TensorFlow graph dump as well as metadata containing the dimensions

1https://github.com/mpc-msri/EzPC
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Figure 1: CRYPTFLOW: End-to-end toolchain

# x is (1,784) MNIST image.
# W and b are model parameters.

print(tf.argmax(tf.matmul(x, W) + b, 1))

Figure 2: Logistic Regression:
TensorFlow snippet

xW = MatMul(x, W);
xWb = MatAdd(xW, b);
output(ArgMax(xWb));

(a)

xW = MatMul(x, W);
ScaleDown(xW, 15); //15 bit precision
xWb = MatAdd(xW, b);
output(ArgMax(xWb));

(b)

Figure 3: Logistic Regression in (a) floating-point: HLIL syntax (b) fixed-point: LLIL syntax

of all the tensors. Next, the TensorFlow graph dump is compiled into a high-level intermediate
language HLIL. The code snippet for logistic regression in HLIL is shown in Figure 3a. Next, Athos’
float-to-fixed converter translates the floating-point HLIL code to fixed-point code in a low-level
intermediate language LLIL. This step requires Athos to compute the right precision to be used for
maximum accuracy Figure 3b shows the LLIL code snippet for logistic regression. The operation
ScaleDown(X, s) divides each 64-bit integer entry of tensor X by 2s. The function calls in the LLIL
code can be implemented with a variety of secure computation backends - e.g. ABY [12] for the case
of 2-party secure computation, Porthos for the case of semi-honest 3-party secure computation, and
Aramis [17] for the malicious secure variant. Different backends provide different security guarantees
and hence vary in their performance. For this example, the three backends take 227ms, 6.5ms, and
10.2ms respectively.

5 Experiments

Overview. First, in Section 5.1, we use CRYPTFLOW for secure classification on ImageNet using
the following pre-trained TensorFlow models: RESNET502 and DENSENET1213. We show that
the fixed-point MPC protocols generated by Athos matches the accuracy of cleartext floating-point
RESNET50 and DENSENET121. We also show how the optimizations in Porthos help it outperform
prior works in terms of communication complexity and overall execution time. Finally, we discuss
two case-studies of running CRYPTFLOW on DNNs for medical image analysis. The compilation
time of CRYPTFLOW is around 5 sec for RESNET50, 35 sec for DENSENET121 and 2 minutes for
3D UNet.

5.1 Secure Inference on ImageNet

These experiments are in a LAN setting on 3.7GHz machines, each with 4 cores and with 16 GB
of RAM. The measured bandwidth between each of the machines was at most 377 MBps and the
latency was sub-millisecond.

RESNET50 takes 25.9 seconds and 6.9 GB of communication; DENSENET121 takes 36 seconds and
10.5 GB of communication. We measure communication as total communication between all 3 parties

2https://github.com/tensorflow/models/tree/master/official/r1/resnet
3https://github.com/pudae/tensorflow-densenet
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Benchmark Float Fixed Float Fixed
Top 1 Top 1 Top 5 Top 5

RESNET50 76.47 76.45 93.21 93.23
DENSENET121 74.25 74.33 91.88 91.90

Table 1: Accuracy of fixed- vs floating-point.

SecureNN Porthos SecureNN Porthos
(s) (s) Comm. (GB) Comm. (GB)

38.36 25.87 8.54 6.87
53.99 36.00 13.53 10.54

Table 2: Porthos vs SecureNN.

- each party roughly communicates a third of this value. We show that Athos generated fixed-point
code matches the accuracy of floating-code on RESNET50 and DENSENET121 in Table 1.

Detailed comparisons of CRYPTFLOW with prior works on secure inference can be found in [17].
However, since Porthos builds on SecureNN, we compare them on ImageNet scale benchmarks
in Table 2. For this purpose, we add the code of SecureNN available at [3] as another backend to
CRYPTFLOW. These results show that Porthos improves upon the communication of SecureNN by a
factor of roughly 1.2X–1.5X and the runtime by a factor of roughly 1.4X–1.5X.

5.2 Lung diseases from 2D chest X-Ray images

In [33], the authors train a DENSENET121 to predict lung diseases from chest X-ray images. They
use the publicly available NIH dataset of chest X-ray images and end up achieving an average AUROC
score of 0.845 across 14 possible disease labels. These DNNs are available as pre-trained Keras
models. We converted them into TensorFlow using [2] and compiled the automatically generated
TensorFlow code with CRYPTFLOW. During secure inference, we observed no loss in classification
accuracy and the latency is similar to the runtime of DENSENET121 for ImageNet.

5.3 Segmenting tumors and organs at risk from 3D CT images

Half a million cancer patients receive radiotherapy each year [24]. Personalized radiation treatments
require segmenting tumors and organs at risk from 3D volumetric images. Currently, this segmentation
is a manual process where an oncologist draws contours along regions of interest slice-by-slice
across the whole volume. This process often takes several hours per image which ML provided
automation [22, 31] can reduce to minutes. We consider a 3D-UNet model [28] that takes as input a
raw 3D image obtained via Computed Tomography (CT) scans of the pelvic region and delineates
tumor volumes and organs at risk. This model’s accuracy is within the inter-observer variability seen
among clinical experts [23] and requires 1.87 Teraflops per inference.

Since this model is implemented in PyTorch, we first export it to ONNX and then use CRYPTFLOW’s
ONNX frontend. For our secure inference setup, each party has 32 cores running at 2.4GHz, no GPUs,
and 128GB RAM. The parties are connected on a network with ping latency 0.2s and 625MBps
bandwidth. On this set up, secure inference incurs a latency of 1 hour and 57 minutes and 557GB of
communication. The most expensive operators in this computation are 3D transposed convolutions
(or deconvolutions) and, to the best of our knowledge, CRYPTFLOW is the only secure inference tool
that supports these operations. In our experience, it takes a couple of days for a scan to reach the
oncologist for review and hence this latency overhead can be acceptable.

6 Related work and conclusion

Other related systems for converting PyTorch/Tensorflow to MPC protocols [1, 9, 10, 29] only
support 3PC. Whereas, CRYPTFLOW additionally supports 2PC backends. CRYPTFLOW provides
the first implementation and evaluation of a system for secure segmentation. With CRYPTFLOW,
data scientists, with no background in cryptography, can obtain secure inference implementations for
their trained models at the push of a button.
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