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Abstract—We propose speaker separation using speaker inven-
tories and estimated speech (SSUSIES), a framework leveraging
speaker profiles and estimated speech for speaker separation.
SSUSIES contains two methods, speaker separation using speaker
inventories (SSUSI) and speaker separation using estimated
speech (SSUES). SSUSI performs speaker separation with the
help of speaker inventory. By combining the advantages of
permutation invariant training (PIT) and speech extraction,
SSUSI significantly outperforms conventional approaches. SSUES
is a widely applicable technique that can substantially improve
speaker separation performance using the output of first-pass
separation. We evaluate the models on both speaker separation
and speech recognition metrics.

Index Terms—speaker separation, speech recognition, speaker
inventory, estimated speech

I. INTRODUCTION

SPEECH overlaps occur commonly in daily conversa-
tions. They make automatic speech recognition (ASR)

and speaker diarization in conversations difficult. The task
of separating overlapped speech is referred to as speaker (or
speech) separation and has long been an active research area.

A key challenge in speaker separation is the so-called
permutation problem as defined in [8]. When multiple speakers
are involved in a speech mixture, different orders of out-
put signals may lead to conflicting gradients across train-
ing utterances. Two kinds of algorithms were proposed to
handle the permutation problem, namely speaker separation
and speech extraction. Speaker separation uses specifically
designed training objectives that are invariant to the order of
the outputs. Deep clustering [8], [10] and permutation invariant
training (PIT) [11], [37] are two representative approaches.
Many studies have been conducted to improve these two
approaches, including new objective functions [2], [18], [29],
end-to-end training [1], [14], [15], [17], [34], new model
architectures [13], [16], [35], and different input features
[7], [19], [24], [30], [32], [36]. Speech extraction avoids the
permutation problem by extracting only one output signal
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using the bias information distinguishing the target speaker
from others. The bias information can be in the form of
visual signals [5], [32], [38], speaker locations [3], [22], [39],
and speaker identities (SIDs) [4], [20], [25], [27], [33], [40].
Among these three types of bias information, SIDs are easier
to acquire since they do not need extra hardware such as
cameras and microphone arrays. Speaker identities are readily
available in many scenarios such as meetings. For SID based
speech extraction, Delcroix et al. proposed a method called
SpeakerBeam to adapt sub-layers in a context-adaptive deep
neural network to a target speaker [4], [40]. The VoiceFilter
proposed by Wang et al. [27] concatenates spectral features
with a d-vector generated by an SID model to extract the
speech of the target speaker. Wang et al. performed speech
extraction using a deep extractor network (DENet) [25] formed
by stacking two deep attractor networks (DANets) [2]. The
output of an “anchor” (i.e. speaker profile) based DANet is
used as input features to another DANet. Xiao et al. proposed
an attention based speech extraction model [33], which uses an
attention mechanism to generate context-dependent biases for
speech extraction. Recently, Ochiai et al. proposed ASENet, a
unified framework for speaker separation and extraction [20].
They use an attention mechanism to combine the internal
embedding vectors of overlapped speech and the embedding of
the target speaker profile. Both speaker separation and speech
extraction have limitations. Although speaker separation can
be used in cases when speaker profiles are not available, they
cannot obtain very high separation performance due to the
lack of ability to leverage speaker information. Since speech
extraction can only generate one output signal, its computation
cost would be proportional to the total number of speakers in a
meeting; even if a speaker does not say anything in the whole
meeting, one would need to launch a speech extraction model
for the speaker. Also, speech extraction is performed without
the awareness of competing speakers, which may result in
insufficient discrimination between some speaker pairs.

We thus propose SSUSI to deal with the issues in both
speaker separation and speech extraction. SSUSI leverages
bias information to improve separation performance and gener-
ates all separated signals in overlapped speech simultaneously.
It works equally well or better than speaker separation when
some speaker profiles are missing; in such cases, speech
extraction is not able to function.

Although SSUSI improves speaker separation in cases when
speaker profiles are available, it has two limitations. First,
when the number of speaker profiles increases, it is more
likely for SSUSI to select wrong speaker profiles and the
performance of SSUSI degrades accordingly. Second, when
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Fig. 1. Overview of SSUSI. The features of selected speaker profiles are denoted as Xc1 and Xc2 . The arrows between the speaker separation stage and
estimated speech denote PIT.

speaker profiles are not available, SSUSI reduces to a normal
PIT-based system and its separation performance is relatively
low. We thus propose SSUES to deal with these limitations.
SSUES takes the estimated speech of first-pass separation as
the bias information for another iteration of speaker separation.
Since estimated speech is guaranteed to be from a speaker
in overlapped speech, the wrong profile selection problem is
alleviated. SSUES shows substantial improvement when used
with not only SSUSI but also PIT-based first-pass separation.
This suggests the wide applicability of SSUES. There are few
prior studies on using estimated speech to improve speaker
separation performance. Hu and Wang proposed to alleviate
the signal level mismatch problem between training and test by
adapting a Gaussian mixture model based speaker separation
model with estimated signal-to-noise ratios (SNRs) [9].

Preliminary results of this paper are presented in [26]. This
paper expands [26] in the following ways. First, we propose
SSUES, which makes SSUSI robust to increasing meeting
participants. SSUES can also improve the performance of
conventional speaker separation methods. Second, we integrate
SSUSI and SSUES into SSUSIES, a new speaker separation
approach different from existing speaker separation and speech
extraction methods in its ability to leverage bias information
in a multi-output separation framework.

The rest of this paper is organized as follows. We describe
SSUSI and SSUES in Sections II and III, respectively. Exper-
imental setup and evaluation results are presented in Section
IV and V. Concluding remarks are given in Section VI.

II. SPEAKER SEPARATION USING SPEAKER INVENTORIES

A speaker inventory consists of a list of speaker profiles
collected from the speakers that are possibly involved in
overlapped speech. We denote the speakers in the speaker
inventory as candidate speakers, and those that are actually
involved in overlapped speech as relevant speakers at a certain
time. In a scheduled business meeting scenario, for example,
speaker profiles can be the prior voice recordings from all
meeting invitees. In this paper, the number of relevant speakers

is assumed to be two and the speaker inventory only contains
voice recordings.

An overview of SSUSI is shown in Fig. 1. SSUSI performs
speaker separation in two stages. First, it selects relevant
speaker profiles from candidate profiles using an attention
mechanism measuring the correlations between overlapped
speech and speaker profiles. After that, two selected profiles
are incorporated in the speaker separation stage by a different
attention mechanism. The speaker separation stage is designed
to exploit the speaker information for separation.

A. Profile Selection Stage

This stage consists of three components, an embedding
module, a correlation module, and a profile selector. Fig. 2(a)
depicts the profile selection stage in SSUSI.

We use a learnable embedding module to extract features
for correlation. The embedding module maps input features
X ∈ RT×F to embeddings E ∈ RT×E , where T denotes the
number of frames, F refers to input feature dimension, and
E is the embedding dimension. For overlapped speech Xm ∈
RTm×F , the embedding can be denoted as Em ∈ RTm×E .
For a profile p in speaker inventory P, the embedding can
be written as Ep ∈ RTp×E . Here Tm and Tp denote the
numbers of frames in overlapped speech and speaker profile
p, respectively.

The correlation module measures the correlation between
the embedding of overlapped speech and that of each speaker
profile. We use emi to denote the vector in Em at time
frame i and epj the vector in profile embedding Ep at frame
j, with i ranging from 1 to Tm and j from 1 to Tp. We
perform correlation in three steps. First, for each profile p, we
calculate the dot product between each emi and epj . Second, we
normalize the dot products using the softmax function below.
Finally, we average the correlation values over both i and j.
These three steps are expressed as:

dpi,j = emi · e
p
j (1)

wp
i,j =

exp(dpi,j)P
p∈P

PTp

j=1 exp(d
p
i,j)

(2)
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Fig. 2. Illustrations of profile selection and speaker separation in SSUSI. The embeddings of selected profiles are denoted as Ec1 and Ec2 , and the
corresponding speaker biases are Bc1 and Bc2 .

wp =

PTm

i=1

PTp

j=1 w
p
i,j

TmTp
(3)

where symbol · denotes the dot product operation and dpi,j is
the dot product of embedding vectors emi and epj . Note that
the denominator in equation (2) is a summation over both
profile time steps j and profiles p. Symbol wp is the mean
correlation value for speaker profile p. The higher wp is, the
more likely that the speaker corresponding to p is involved in
the overlapped speech.

The profile selector then selects the first and second largest
wp. We denote the selected two profiles as c1 and c2. The
profile selection functions are:

c1 = argmax
p∈P

{wp} (4)

c2 = argmax
p∈P−{c1}

{wp} (5)

B. Speaker Separation Stage

This stage has three components, an embedding module, an
attention module, and a separator. Fig. 2(b) shows the speaker
separation stage in the SSUSI framework.

Similar to the profile selection stage, the embedding module
in the speaker separation stage maps input features to embed-
dings for subsequent attention calculation. For this module, we
can re-use the one in the profile selection stage or train a new
one specifically for speaker separation, as will be discussed in
Section II-C.

The attention module in the speaker separation stage is
slightly different from the correlation module in the profile
selection stage. It is used to softly align speaker profiles so that
they have the same length as overlapped speech. We denote
the aligned speaker profiles as speaker biases since they bias
speaker separation towards selected speakers. Speaker bias bc1i
for selected profile c1 at time i is calculated by the following
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Fig. 3. Illustration of SSUSI-JT. The gray box and text indicate the joint training of the profile selection stage and the speaker separation stage.
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Fig. 4. Illustration of SSUES.

equations:
dc1i,j = emi · e

c1
j (6)

αc1
i,j =

exp(dc1i,j)PTc1
j=1 exp(d

c1
i,j)

(7)

bc1i =

Tc1X
j=1

αc1
i,je

c1
j (8)

where αc1
i,j denotes element (i, j) of the attention matrix.

Speaker bias bc2i is calculated similarly. Note that equation
(6) is the same as equation (1) for profile selection. Attention
matrix element αc1

i,j in equation (7) differs from correlation
matrix element wp

i,j in equation (2) in that αc1
i,j is normalized

over selected profile c1, whereas wp
i,j is normalized over

all the profiles in the speaker inventory. Because of this
difference, αc1

i,j is able to softly align the embeddings of
the selected profiles, whereas wp

i,j is used for comparisons
between different profiles.

The separator takes as input the original input features of
overlapped speech, the embedding of overlapped speech, and
the speaker biases generated from the attention module. The
output of the separator are time-frequency masks M1 and
M2. The training objective is to minimize a signal restoration

loss [6], [31] based on PIT. Let Y1 and Y2 be the target
clean features. An utterance-wise PIT loss can be expressed
as equations (9) and (10) below:

L(θ) = min{l1,1 + l2,2, l1,2 + l2,1} (9)

where L denotes the loss of a training sample and θ refers to
learnable parameters. lu,v means the loss between estimated
and clean speech, which is defined as:

lu,v = ||Mu ⊗Xm −Yv||2F , (10)

where || · ||F denotes matrix Frobenius norm and ⊗ is the
element-wise multiplication.

C. SSUSI-SEP, SSUSI-PSE and SSUSI-JT

There are three modules in SSUSI that contain learnable
parameters, i.e. the embedding module in the profile selection
stage, the embedding module in the speaker separation stage,
and the separator in the speaker separation stage. We can thus
design three methods to train SSUSI, namely SSUSI that only
trains the speaker separation stage (SSUSI-SEP), SSUSI with
profile selection embedding (SSUSI-PSE), and SSUSI with
joint training (SSUSI-JT).

SSUSI-SEP only trains the speaker separation stage and re-
uses the embedding module for profile selection. The rationale
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Fig. 5. Illustration of SSUES-JT.

behind this method is that both embedding modules are
used for the subsequent correlation calculation, as given in
equations (1) and (6). To train the speaker separation stage,
oracle relevant profiles are used as Xc1 and Xc2 . By sharing
the embedding module, the size of the whole model is also
reduced.

SSUSI-PSE encourages the correct selection of relevant
profiles. In addition to the speaker separation stage, we train
the embedding module in the profile selection stage using a
specifically designed training objective. The speaker separation
stage and the profile selection stage are trained separately. The
loss function to train the embedding module in the profile
selection stage is as follows:

L(θ) = (1− wo1 − wo2)2 +
X

ok∈P−{o1,o2}

(wok)2 (11)

where o1 and o2 are the oracle relevant profiles, and wo1

and wo2 are the corresponding correlation values calculated
by equation (3). Speaker inventory P is divided into two
subsets, oracle relevant profiles {o1, o2} and irrelevant profiles
P−{o1, o2}. For relevant profiles, the training objective is to
make their summation equal one, whereas for each irrelevant
profile ok ∈ P− {o1, o2}, the objective is to set its weight to
zero.

Different from SSUSI-SEP and SSUSI-PSE, which train
the speaker separation stage and the profile selection stage
separately, SSUSI-JT jointly optimizes the whole SSUSI
framework using a single PIT objective. This way, the speaker
separation stage may be more robust to wrong profile selec-
tions of the profile selection stage. Note that there is an argmax
function in the profile selection stage, as shown in equations
(4) and (5). During back-propagation, although the gradients
with respect to the indices selected by argmax are hard to
derive, we can still calculate the gradients with respect to the
selected profiles. Fig. 3 shows a diagram illustrating SSUSI-
JT.

III. SPEAKER SEPARATION USING ESTIMATED SPEECH

Although SSUSI can substantially improve separation per-
formance and efficacy, it has two limitations. First, when the

number of candidate speakers is large, the profile selection
stage in SSUSI tends to select a wrong profile. Second,
SSUSI may downgrade to a simple PIT-based separation stage
when speaker inventories are not available. The separation
performance in such cases would be relatively low.

SSUES solves SSUSI’s problems by treating estimated
speech (i.e. speaker separation output) Xe1 and Xe2 as speaker
profiles. SSUES can be performed iteratively by feeding the
estimated speech from a previous iteration to a subsequent
separation iteration. Since estimated speech is part of over-
lapped speech, it is guaranteed to be from a relevant speaker.
The negative influence of wrong profile selection can thus be
alleviated. Moreover, SSUES provides a feedback loop for
both SSUSI and speaker separation, which is able to improve
separation performance after each iteration. An illustration of
SSUES is presented in Fig. 4.

A. SSUES

SSUES requires first-pass separation to get initial estimated
speech. As mentioned above, the first-pass separation can be
SSUSI when a speaker inventory is available, or a speaker
separation approach such as PIT when there is no speaker
inventory.

After obtaining initial estimated masks M1 and M2, we
calculate estimated speech as:

Xek = Mk ⊗Xm (12)

where ek indicates estimated speech and k ∈ {1, 2} is the
speaker index.

Note that for notational simplicity, we only present the spec-
tral magnitude representation of estimated speech in equation
(12). In implementation, the input to SSUES may be other
types of feature and equation (12) may change accordingly.

B. SSUES-NT and SSUES-JT

SSUES can be performed by re-using the speaker separation
stage in SSUSI. We denote this no-training method as SSUES-
NT. This method, however, may cause an input data mismatch
problem between training and test. During training, speaker
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profiles can be viewed as “clean” speech, whereas at test
time, estimated speech may contain distortions. To handle this
problem, we design SSUES with joint training (SSUES-JT),
which jointly optimizes SSUSI and SSUES by a single PIT
objective on the output of SSUES. Fig. 5 depicts SSUES-JT.

C. Speaker Separation Using Speaker Inventory and Esti-
mated Speech

SSUSI and SSUES are closely related. The speaker separa-
tion stage in SSUSI makes it possible for SSUES to use esti-
mated speech, and SSUES expands the application scenarios of
SSUSI to cases when the number of candidate speakers is large
or a speaker inventory is missing. We thus integrate SSUSI
and SSUES into SSUSIES. The key component in SSUSIES
is the speaker separation stage that leverages bias information
such as speaker profiles and estimated speech. When a speaker
inventory is available, SSUSIES performs SSUSI for first-
pass separation and uses SSUES to leverage the information
in estimated speech. In speaker separation tasks, conventional
speaker separation is performed for first-pass separation and
the SSUES method in SSUSIES can be used to further improve
the separation result.

IV. EXPERIMENTAL SETUP

A. Dataset

Our experiments are conducted on the LibriSpeech corpus
[21] following the same recipe as [33]. The training set is
generated using both train-clean-100 and train-clean-360. At
test time, overlapped speech is generated using the test-clean
set. There are 1172 speakers in the training set and 40 other
speakers in the test set.

We use globally mean-variance normalized log spectral
magnitude features as input. The length of each frame is 32
ms (i.e. 512 samples with a sampling rate of 16 kHz) and
the shift between frames is 16 ms. The waveform signals
are transformed using 512 dimensional short-time Fourier
transformation. For training targets Ms, we use the spectral
magnitude mask [28].

B. Baseline Systems

There are two baseline systems in this study, an utterance-
wise PIT-based speaker separation model [12] and Xiao et al.’s
speech extraction system [33]. The PIT-based model consists
of six bidirectional long short-term memory (BLSTM) layers,
each of which has 512 nodes. The speech extraction system
has the same number of learnable parameters as the PIT-based
model. For both the PIT-based model and speech extraction
system, the optimizer is Adam and the learning rate is 10−4.

C. SSUSI

As mentioned in Section II-C, there are three learnable
modules in SSUSI, i.e. two embedding modules and the
separator in the speaker separation stage. The two embedding
modules have the same architecture, which consists of three
BLSTM layers. The separator also has three BLSTM layers.
All the BLSTM layers contain 512 nodes. SSUSI-SEP and

SSUSI-JT have the same number of learnable parameters as
those in the baselines, whereas SSUSI-PSE has an additional
three-layer embedding module for profile selection.

The SSUSI-SEP is trained using oracle relevant profiles. For
SSUSI-PSE and SSUSI-JT, four speaker profiles, two relevant
and two irrelevant, are used as the speaker inventory during
training. The embedding module in the profile selection stage
of SSUSI-PSE is initialized with the well-trained embedding
module in SSUSI-SEP. For SSUSI-JT, the whole model is
initialized with SSUSI-SEP. At the speaker separation stage,
speaker biases are concatenated with the embeddings and
the original features of overlapped speech along the feature
dimension. The learning rate for SSUSI-SEP, SSUSI-PSE, and
SSUSI-JT are 10−4, 10−6, and 10−5, respectively. All the
other hyper-parameters are the same as the baselines. To avoid
over-fitting, we apply online simulation, which generates the
overlapped speech during model training. The model check-
point used for evaluation is thus selected based on training
loss.

Note that during training, we shuffle the order of speaker
profiles. This makes the separation performance of SSUSI
uninfluenced by the order of speaker profiles in the speaker
inventory.

D. SSUES

SSUES has the same number of learnable parameters as
the separator in SSUSI. It contains 3 BLSTM layers, each of
which consists of 512 nodes.

As mentioned in Section IV-A, we use globally normalized
log spectrum magnitude features in this study. Therefore,
during SSUES-JT training, we perform logarithm and mean-
variance normalization in addition to the spectral magnitude
masking shown in equation (12).

E. ASR Backend

Our ASR backend is a DNN-HMM hybrid model trained
on the clean training set of LibriSpeech. The model has
three BLSTM layers, each of which contains 512 nodes.
We generate forced aligned senone labels using Kaldi [23]
and train the model under the maximum mutual information
(MMI) criterion using PyTorch. The word error rate (WER)
of this model on non-overlapped LibriSpeech test set is 5.7%.

V. EVALUATION RESULTS

We first present the results of SSUSI and then show how
SSUES improves both PIT and SSUSI.

A. SSUSI

Table I contains the signal to distortion ratios (SDRs) of
the three training approaches, SSUSI-SEP, SSUSI-PSE, and
SSUSI-JT. We also list correct profile selection rates, which
measure the performance of the profile selection stage. The
SDR of unprocessed mixtures is 0.0 dB. SSUSI-SEP gets an
SDR of 12.1 dB when both relevant profiles are correctly se-
lected. With the increase of irrelevant profiles, all three metrics
decrease. From 0 to 6 irrelevant profiles, the correct profile



7

method # ir-profiles ≥1 (%) 2 (%) SDR (dB)

SSUSI-SEP

0 100 100 12.1
1 100 82.1 11.8
2 99.9 71.6 11.6
3 99.8 64.1 11.4
4 99.5 58.2 11.2
5 99.2 54.9 11.1
6 99.0 51.4 11.0

SSUSI-PSE

0 100 100 12.1
1 100 86.7 11.9
2 100 78.5 11.7
3 99.8 72.5 11.6
4 99.7 67.8 11.5
5 99.4 63.8 11.3
6 99.3 61.1 11.3

SSUSI-JT

0 100 100 12.2
1 100 81.0 12.0
2 99.8 69.6 11.9
3 99.6 61.9 11.8
4 99.4 56.5 11.6
5 99.0 52.8 11.6
6 98.7 49.7 11.5

TABLE I
SDRS AND CORRECT PROFILE SELECTION RATES OF SSUSI-SEP,

SSUSI-PSE, AND SSUSI-JT. THE NUMBER OF PROFILES
CORRESPONDING TO IRRELEVANT SPEAKERS IS DENOTED AS # ir-profiles.

THE TOTAL NUMBER OF PROFILES IN THE SPEAKER INVENTORY IS #
ir-profiles PLUS 2. THE CORRECT SELECTION OF AT LEAST ONE RELEVANT

PROFILE IS DENOTED AS ≥1 AND THE CORRECT SELECTION OF BOTH
RELEVANT PROFILES IS 2.

selection rate of at lease one relevant profile drops slightly
from 100% to 99.0%, whereas the correct selection rate of both
relevant profiles decreases significantly from 100% to 51.4%.
SDRs are degraded by wrong profile selections. The SDR on
6 irrelevant profiles drops to 11.0 dB. SSUSI-PSE improves
correct profile selection rates substantially by using the addi-
tional profile selection embedding module. The improvement
gets larger as the number of irrelevant profiles increases. SDRs
benefit from better profile selection. Compared with that of
SSUSI-SEP, the SDR of SSUSI-PSE on 6 irrelevant profiles
increases by 0.3 dB. SSUSI-JT is able to achieve substantial
SDR improvement over SSUSI-SEP without increasing the
model size. Its SDR with 6 irrelevant profiles is 11.5 dB,
outperforming both SSUSI-SEP and SSUSI-PSE. The SDR of
SSUSI-JT on 0 irrelevant profile is slightly better than those
of SSUSI-SEP and SSUSI-PSE. Note that the correct profile
selection rates of SSUSI-JT are worse than those of SSUSI-
PSE and even those of SSUSI-SEP. This shows that SSUSI-JT
is robust to wrong profile selections. Since SSUSI-JT yields
the best SDR results without using extra learnable parameters,
we denote it as SSUSI in the remainder of this paper.

Table II shows the SDR and WER comparisons between
SSUSI and PIT. Because of the ability to leverage speaker
information, SSUSI performs significantly better than PIT in
both SDR and WER. In the case of 30 irrelevant profiles (i.e.
32 candidate profiles in the speaker inventory), SSUSI still
yields an SDR of 10.8 dB, which is substantially better than
the 8.7 dB SDR of PIT. Note that SSUSI is trained using only
2 irrelevant profiles. The results with 6, 22, and 30 irrelevant
profiles demonstrate the robustness of SSUSI. In terms of

method # ir-profiles SDR (dB) WER (%)

PIT - 8.7 36.5

SSUSI

0 12.2 19.1
6 11.5 21.8

22 11.0 23.4
30 10.8 24.1

TABLE II
SDR AND WER COMPARISONS BETWEEN SSUSI AND PIT. SEE TABLE I

CAPTION FOR ACRONYMS.

WERs, SSUSI outperforms PIT by 48% relatively in the case
of 0 irrelevant profile. When there are 30 irrelevant profiles,
the relative improvement is still 34%. Note that all the WERs
in Table II are relatively high for the LibriSpeech corpus. This
is due to the distortions in estimated speech.

method # ir-profiles SDR (dB) WER (%)

Speech Extraction [33]
0 11.5 21.9
1 11.1 23.3
2 10.9 24.4

SSUSI
0 12.2 19.1
1 12.0 19.9
2 11.9 20.4

TABLE III
SDR AND WER COMPARISONS BETWEEN SSUSI AND A SPEECH
EXTRACTION SYSTEM. SEE TABLE I CAPTION FOR ACRONYMS.

Table III presents the SDR and WER comparisons between
SSUSI and the speech extraction system [33]. SSUSI substan-
tially outperforms the speech extraction baseline. In terms of
SDR, an improvement of more than 0.7 dB is yielded. For
WER, the overall relative improvement is over 13%. This
suggests that SSUSI is better at discriminating speaker pairs
by the awareness of a competing speaker. In addition to the im-
provement in separation performance, SSUSI is significantly
more efficient than the speech extraction system. In the case of
0 irrelevant profile, the computation time reduction during test
is about 40% relatively. When there are 30 irrelevant profiles,
the computation time reduction is about 70% relatively. The
reason of this efficiency improvement is that speech extraction
needs to launch one model instance for each candidate speaker,
whereas SSUSI filters out all but one pair of speaker profiles
for speaker separation.

method # ir-profiles standard m1 m2

SSUSI

0 12.2 - -
1 12.0 10.0 -
2 11.9 10.2 8.6
3 11.8 10.2 8.6
4 11.6 10.1 8.5
5 11.6 10.1 8.5
6 11.5 10.1 8.3

TABLE IV
SDRS OF SSUSI IN CASES WHEN ONE OR BOTH RELEVANT PROFILES ARE

NOT IN THE SPEAKER INVENTORY. standard DENOTES BOTH RELEVANT
PROFILES ARE IN THE SPEAKER INVENTORY, m1 REFERS TO THE CASE

WHEN ONE RELEVANT PROFILE IS MISSING, AND m2 MEANS BOTH
RELEVANT PROFILES ARE MISSING.
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Table IV provides the SDRs of SSUSI in cases when one or
both relevant profiles are missing from the speaker inventory.
This corresponds to the real-world scenario when one or more
unregistered speakers attend the meeting and some of them are
involved in overlapped speech. In the case when one relevant
profile is missing, the SDRs of SSUSI drop to values close
to 10.1 dB, which is still substantially better than the 8.7 dB
result of PIT. This suggests that SSUSI is able to leverage the
information in the remaining relevant profile even when the
other one is missing. When both relevant profiles are missing,
the SDRs of SSUSI are around 8.5 dB, which is similar to
the SDR of PIT. This indicates that when both speakers in the
overlapped speech are unregistered speakers, SSUSI performs
similarly to PIT. Note that speech extraction cannot work in
above cases when there are unregistered speakers.

B. SSUES

method # ir-profiles no-iter iter1 iter2 iter3

SSUES-NT

0 12.2 12.4 12.4 12.4
1 12.0 12.3 12.3 12.3
2 11.9 12.2 12.2 12.2
3 11.8 12.1 12.2 12.2
4 11.6 12.0 12.1 12.1
5 11.6 12.0 12.1 12.1
6 11.5 11.9 12.0 12.0
22 11.0 11.5 11.7 11.7
30 10.8 11.4 11.6 11.7

SSUES-JT

0 12.2 12.3 12.3 12.4
1 12.0 12.2 12.3 12.3
2 11.9 12.1 12.2 12.3
3 11.8 12.1 12.2 12.2
4 11.6 12.0 12.1 12.2
5 11.6 12.0 12.1 12.1
6 11.5 11.9 12.0 12.1
22 11.0 11.6 11.8 11.8
30 10.8 11.5 11.7 11.8

TABLE V
SDRS OF SSUES-NT AND SSUES-JT USING SSUSI AS FIRST-PASS

SEPARATION. no-iter REFERS TO FIRST-PASS SEPARATION. iter1, iter2, AND
iter3 DENOTE THE FIRST, SECOND, AND THIRD SSUES BASED

SEPARATION ITERATION, RESPECTIVELY.

Table V shows the comparison between SSUES-NT and
SSUES-JT. Both of them use SSUSI as first-pass separation.
For SSUES-NT, the improvement over SSUSI is substantial,
especially when the number of irrelevant profiles is large. With
30 irrelevant profiles, the improvement after three iterations
is about 1 dB. More specifically, the SDR of SSUES-NT
with 30 irrelevant profiles is comparable to that of SSUSI
with 3 irrelevant profiles. These results show that SSUES-
NT is able to alleviate the wrong profile selection problem of
SSUSI and consistently improve the separation performance.
Note that the performance of SSUES-NT with 0 irrelevant
profile is also better than that of SSUSI. The reason is that,
in addition to speaker information, SSUES-NT can leverage
the contextual information in estimated speech. SSUES-NT
performs similarly to SSUES-JT even without joint training.
This shows that trained with a large number of speaker
profiles, SSUES-NT is able to generalize to estimated speech.
Considering the fact that SSUES-JT is better than SSUES-NT

by at most 0.1 dB and that SSUES is designed to work with
various first-pass separation approaches, we use SSUES-NT
as SSUES in the remainder of this paper.

method # iter SDR (dB) WER (%)

PIT - 8.7 36.5

+ SSUES
1 10.5 24.8
2 10.8 23.2
3 10.9 22.9

TABLE VI
SDR AND WER COMPARISONS BETWEEN PIT AND PIT + SSUES. # iter

DENOTES THE NUMBER OF SSUES BASED SEPARATION ITERATIONS.

Table VI presents the SDR and WER comparisons be-
tween PIT and PIT + SSUES. With only one iteration of
SSUES, the SDR improvement is already 1.8 dB and the
WER improvement is 31% relatively. After three iterations,
the WER improvement is increased to 37% relatively. These
comparisons clearly show the efficacy of SSUES in improving
the performance of PIT.

method # iter SDR (dB) WER (%)

SSUSI - 10.8 24.1

+ SSUES
1 11.4 21.1
2 11.6 20.4
3 11.7 20.3

TABLE VII
SDR AND WER COMPARISONS BETWEEN SSUSI AND SSUSI + SSUES

WITH 30 IRRELEVANT PROFILES.

Table VII shows the SDR and WER comparisons between
SSUSI and SSUSI + SSUES with 30 irrelevant profiles. With
three iterations of SSUES, the SDR improvement is 0.9 dB
and the WER reduction is 16% relatively. Note that the SDR
and WER results of SSUSI with 2 irrelevant profiles are 11.9
dB and 20.4%, as shown in Table III. The similar results of
SSUSI with 2 irrelevant profiles and SSUSI + SSUES with 30
irrelevant profiles show that SSUES can substantially improve
the performance of SSUSI.

VI. CONCLUDING REMARKS

We have proposed SSUSIES, a speaker separation frame-
work that is capable of leveraging external information such
as speaker profiles and estimated speech. Compared with
speech extraction, SSUSIES achieves more than 13% relative
improvement in WER and up to 70% relative improvement in
computational efficiency. In addition, SSUSIES outperforms
PIT by 13% relatively in WER. Future research will extend
SSUSIES to multi-channel conditions and evaluate SSUSIES
in real conversations.
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