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ABSTRACT
For many kinds of interventions, such as a new advertisement,
marketing intervention, or feature recommendation, it is important
to target a specific subset of people for maximizing its benefits at
minimum cost or potential harm. However, a key challenge is that
no data is available about the effect of such a prospective interven-
tion since it has not been deployed yet. In this work, we propose
a split-treatment analysis that ranks the individuals most likely
to be positively affected by a prospective intervention using past
observational data. Unlike standard causal inference methods, the
split-treatment method does not need any observations of the target
treatments themselves. Instead it relies on observations of a proxy
treatment that is caused by the target treatment. Under reasonable
assumptions, we show that the ranking of heterogeneous causal
effect based on the proxy treatment is the same as the ranking based
on the target treatment’s effect. In the absence of any interventional
data for cross-validation, Split-Treatment uses sensitivity anal-
yses for unobserved confounding to eliminate unreliable models.
We apply Split-Treatment to simulated data and a large-scale,
real-world targeting task and validate our discovered rankings via
a randomized experiment for the latter.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics.
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1 INTRODUCTION
Identifying individuals who will benefit from an intervention or
treatment is an important challenge in many domains. We focus
on this problem in the context of computing applications. For in-
stance, many modern applications and devices display educational
messages or other recommendations to users, telling them about
undiscovered features, advertising related products, or providing
other tips that may aid them. In complex software and scenarios,
not all such messaging interventions are useful for every individ-
ual, and some may even be detrimental. For example, a message
recommending an advanced feature may provide significant help
to some advanced users, but also confuse and thus harm others.

There are several practical approaches for identifying individuals
who will benefit from a specific messaging intervention based on re-
inforcement learning, such as contextual bandits [15] and off-policy
learning [8, 33]. However, these approaches face limitations when
applied to targeting prospective interventions where the potential
harms or other costs of the intervention limit our ability to run
experiments. Contextual bandits require active experimentation
for every new message or intervention to select the individuals to
assign treatment. That is, they may require exposing individual
users to detrimental messages and causing negative effects at scale,
including negative effects of irrelevant ads like ad blindness [21]
and annoyance; and negative effects of users taking action on mis-
matched recommendations like user confusion and frustration. In
addition, they depend on feedback (reward) signals in relatively
shorter time-frames, such as click signals for online ads. However
in many setting, the outcome of interest is longer-term such as
sustained usage of a product or a feature. While off-policy learn-
ing does not require experimentation, it assumes that the target
treatment has been deployed and therefore observed data for the
intervention is available. Therefore, existing approaches either re-
quire active experimentation or assume that a new intervention’s
effects can be estimated based on the effects of past interventions.

We present and evaluate an alternative approach that uses obser-
vational (non-experimental) data for identifying individuals who
are likely to benefit from a prospective, novel intervention (Fig. 1).
To do so, we realize that it is often possible to split the effect of a
messaging treatment into two parts: (1) how persuasive a treatment
is in encouraging an individual to take a short-term action (e.g.,
click-through rate); and (2) the long-term effect of the action (e.g.,
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sustained usage of the product).While we cannot know the first part
of our split-effect without performing the prospective intervention,
we can identify the second part of our split-effect when the action
we are encouraging people to take has been performed by others
in our non-experimental data. We show that, in many situations,
this is sufficient for ranking individuals most likely to benefit from
the otherwise novel intervention. Beyond this analytical approach,
we make the additional contribution of demonstrating how chal-
lenges that commonly threaten the validity of observational studies
can be addressed in this setting through the careful application of
refutation and sensitivity analyses [29].

We apply Split-Treatment to estimate the heterogeneous causal
effect of a novel messaging intervention in a large application suite.
Each messaging intervention, Z , is a recommendation for a feature,
A. The outcome of interest is the feature’s long-term adoption, Y .
Our method enables ranking of individuals based on the estimated
effect of the intervention. We implement methods for causal effect
estimation based on inverse propensity weighting and machine
learning models like random forests and CNN, and use sensitiv-
ity analysis to arrive at robust models. Finally, we validate these
models based on a randomized experiment and demonstrate that
our methods and sensitivity analyses correctly identify, a priori the
most accurate of the ranking models. We make 3 contributions:

(1) Split-Treatment: We propose an identification technique
for ranking the effect of a prospective treatment without
any access to the data with the treatment. We contrast our
approach with instrumental variable and front-door analyses
that require observed data for the treated population.

(2) Sensitivity Analysis: How can we practically check the
assumptions and ensure reliable conclusions from our obser-
vational data? We show how to adapt sensitivity methods for
this problem and demonstrate that their violations correlate
with empirical errors.

(3) Validation through Active Experiments : We validate
our conclusions using an A/B experiment of recommenda-
tion efficacy for a feature on over 1M users. Our findings
show that Split-Treatment rankings of the individuals that
are most likely to benefit from the recommended message
match the results from A/B experiments.

2 BACKGROUND AND RELATEDWORK
2.1 Causal analysis
Conventionally, the problem of showing recommended items to
people is considered an outcome prediction problem: what would
be the predicted outcome (e.g., rating) for an item by an individual?
Based on this prediction, a ranked list of recommended items is
shown to the individual [31]. However, recent work [26, 28] frames
recommendation as a causal inference problem: what is the effect on
the outcome (e.g., usage metrics) of showing a recommended item
to an individual? Rather than simply verifying if a person achieves
the predicted outcomemetric, it is important to understand if the de-
sired outcome was achieved because of the recommendation. If the
outcome would have been the same without the recommendation,
then it does not have a causal effect on the outcome.

One of the fundamental challenges in causal analysis is we only
observe one of the outcomes: either an intervention was shown,
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(expensive)
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Figure 1: The goal is to estimate the effect of a prospective
treatment that is never observed. Split-Treatment uses a
proxy treatment A that lies on the causal path between Z
and Y . Observed variables (X ) confound the effect of A on Y
(and possibly also Z ’s effect). Under proper assumptions, in-
dividuals for which the proxy treatment has a positive effect
will also have a positive effect to the target treatment.

or not. Following the Structural Causal Model (SCM) described
in [17, 18], we can define the interventions and counterfactuals
through a mathematical operator called do(z): Y |do(z = 1) refers
to the outcome measure had intervention (or treatment) Z been
enforced, and Y |do(z = 0) refers to the outcome had there been no
treatment. The causal effect of treatment Z is:

Causal Effect = E[Y |do(z = 1)] − E[Y |do(z = 0)].

To address the causal question, one needs to account for confounding
in the observed data. Formally, confounding is due to the interven-
tion (recommendation) and outcome having common causes. In
addition, we expect a treatment to have varying effects across indi-
viduals. There is recent research [6, 11, 16, 35] on how to estimate
heterogeneous causal effect for different subgroups, known as the
Conditional Average Treatment Effect (CATE). In the limit, we may
consider the causal effect for each individual, known as the Indi-
vidual Treatment Effect (ITE) [27]. We extend this line of work by
proposing a method to rank causal effect for prospective treatments,
for which we have no data as yet.

That said, since counterfactual outcomes are never observed
simultaneously, evaluating a causal estimate is non-trivial. Unlike
prediction, it is not possible to validate a causal effect estimate
based only on observed outcomes. Typically, any causal estimation
method makes certain assumptions on the counterfactuals and their
robustness depends on how plausible those assumptions are. There
is past work on validating assumptions of causal models to the
extent possible, often by exploring the sensitivity of the obtained
estimate to unobserved variables [7, 24, 25]. We utilize sensitivity
analyses to rank different candidate methods for causal estimation.

2.2 Effects of Ads or Recommendations
Previous work for identifying individuals who will benefit from
messages, ads, or recommendations mainly fall into two groups.
The first group of work [13, 22, 32, 37] rely on campaign stud-
ies to analyze the effect of the known treatment ads through A/B
testing or reinforcement learning-based methods like contextual
bandits [12, 15, 34] that target treatment to specific individuals dur-
ing an experiment. Brodersen et al. [4] applies Bayesian structural
time-series models to infer causal impact of market interventions
on an outcome metric over time. They illustrate the statistical prop-
erties of posterior inference on simulated data, and demonstrate
their approach practically in an online ad campaign. Wang et al.



[36] enables analysis for more complex ad treatments using cam-
paign data, such as measuring the impact of ads with different
frequencies rather than of the randomized binary ads exposures.
They employ tree structure in modeling the complex treatment
propensities for achieving robust and unbiased estimations. Li and
Pearl [14] integrates both experimental data and observational data,
using Pearl’s structural causal model [19] to formulate a unit selec-
tion problem that aims to identify a set of individuals who would
most likely respond positively to the ads in short term. [38] targets
for long-term outcomes by identifying a surrogate index in the
short-term campaign data to impute the potential long-term values.
Our work differs from these previous analysis of the causal impact
of ads campaigns in that we are trying to predict the impact of an
advertisement before starting a campaign.

The second group of work do not require treatment ads to be
randomized, but need them exposed in the data, and then adjust
selection bias in such observational data. For example, Chan et al.
[5] utilizes doubly robust methods to evaluate the effectiveness of
online ads from large observational data, and validates results using
simulations based on realistic scenarios. Gordon et al. [9] assesses
empirically how the variation in data availability can affect the
ability of observational methods to recover the causal effects of
online advertising learnt from randomized trials. Our work differs
from these observational studies in that we estimate the impact of
a prospective message that does not exist in the current data.

3 IDENTIFICATION BY SPLIT-TREATMENT
In this section we describe how the Split-Treatment method can
identify the ranking of individuals most likely to benefit from a
novel treatment or recommendation. Suppose Z is the prospective
treatment of interest and Y is the outcome we aim to measure its
effect on. If we run an A/B experiment where half of the population
is treated with Z , then we can assess the conditional average treat-
ment effect (CATE) of Z within a subpopulation G by taking the
difference between the two outcome means respectively measured
in the treatment and control groups:

CATE(z)
G
= EG |Z=1 [Y | Z = 1] − EG |Z=0 [Y | Z = 0], (1)

However, our observational data does not contain the prospective
(target) treatment Z , as it has not been deployed yet. To achieve
the goal, we propose splitting the target treatment’s effect into
two parts. The first part is the effect of the target treatment on
some short-term user behaviorA, such as the first immediate action
encouraged by the treatment Z . The second part is the effect of
this immediate action A on the outcome measure Y that we are
optimizing. The requirements for our choice of A are: (1) The effect
ofZ onY should be mediated throughA. That is,Z does not directly
affect the outcome; (2) Z does (or would) effect the use of A; (3) A
exists, with some natural variation, in our observational logs.

Note that the first two requirements are exactly the requirements
for a valid instrumental variable (exclusion and relevance [2]), ex-
cept in this case Z is not observed. In addition, Z needs not to be a
valid instrumental variable. It may be caused by the same variables
that confound the effect ofA onY (however there cannot be any un-
observed common cause for Z and A). For example, the prospective

intervention may be assigned based on the features of each individ-
ual. The causal graph from Fig. 1 is also similar to the front-door
identification criterion (Definition 3.3.3, Pearl [18]), however the
criterion cannot be directly applied since Z is unobserved. Instead
we use the following assumptions to use A as a proxy for ranking
the most promising individuals for assigning the target treatment.
Assumption 1 (Ignorability): There exists no unobserved con-
founding between the proxy treatment A and the outcome measure
Y : P(Y |do(a),x) = P(Y |a,x), for some observed variables X .
Theorem 3.1. Under the causal graph G from Figure 1 and given
Assumption 1, the post-intervention distribution of Y resulting
from the intervention do(z) conditional on x can be identified as,

P(Y |do(z),x) =
∑
a

P(a |z,x)P(Y |a,x).

Proof. For any set of nodes Y , R, S and T , the rules of the do-
calculus [17] can be written as (where G B/B denotes the graph
by deleting fromG all arrows pointing to/emerging from the set of
nodes B respecively).
Rule 2: P(Y |do(r ),do(s), t) = P(Y |do(r ), s, t), if (Y ⊥⊥ S |R,T )G R,S

;
Rule 3: P(Y |do(r ),do(s), t) = P(Y |do(r ), t), if (Y ⊥⊥ S |R,T )G R,S (T )

,
where S(T ) are the S-nodes that are not ancestors of T in G R .

P(Y |do(z),x) =
∑
a

P(a |do(z),x)P(Y |do(z),a,x)

=
∑
a

P(a |z,x)P(Y |do(z),do(a),x) ... Using Rule 2

=
∑
a

P(a |z,x)P(Y |do(a),x) ... Using Rule 3

=
∑
a

P(a |z,x)P(Y |a,x) ... Using Assumption 1

Using the above theorem, for individuals characterized by x , we
can write their individualized treatment effect (ITE) of Z as,

ITE(z)(x) = E[Y |do(z = 1),x] − E[Y |do(z = 0),x] (2)

=
(
P(a = 1|z = 1,x) − P(a = 1|z = 0,x)︸                                          ︷︷                                          ︸

Compliance(x )

)
·
(
(E[Y |a = 1,x] − E[Y |a = 0,x]︸                                 ︷︷                                 ︸

ITE(a)(x )

)
.

While we cannot identify the first term, Compliance(x), as Z does
not exist in our data, we can still estimate ITE(a) from the observa-
tional data. If we take the group G containing the most effective
individuals to the proxy treatment A to be the same group of the
most promising individuals to the target treatment Z , we can derive
another format of Eq. (1) based on Eq. (2) into the following:

CATE(z)
G
= Ex ∈G

[
ITE(z)(x)

]
(3)

∝ Ex ∈G

[
ITE(a)(x)

]
, for Ex ∈G

[
Compliance(x)

]
> 0

Assumption 2 (Compliance): We assume the target treatment Z
has a positive average effect to encourage the proxy treatment A
within the selected group containing the most effective individuals
to A. That is, Ex ∈G[P(a = 1|z = 1,x) − P(a = 1|z = 0,x)] > 0.
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Figure 2: An end-to-end analysis pipeline of using
Split-Treatment in feature recommendation. Validation is
added only if experimental data having Z is available.

We cannot test this assumption in observational data due to the
absence of Z , so we must use external domain knowledge to ensure
that the assumption is satisfied.

4 ESTIMATION USING SPLIT-TREATMENT
The key challenge in feature recommendation, such as marketing
software features to existing users, is to identify who would benefit
from using a feature. Here, we show how Split-Treatment can
be used to rank individuals using only observational data.

Following the formulation of Split-Treatment in Eq. (3), we
say the target treatment Z is the given message recommending a
software feature. We pick the proxy treatment A to be an individ-
ual’s first trial of the feature from a target group that is assumed
to have positive comparable compliance to Z ; and we define the
outcome measure Y to be an observation that the individual is
receiving benefit from A. In our analysis, Y is sustained usage of
the recommended feature measured in a post-treatment window,
indicating the individual found the feature useful enough to keep
engaging with it. Other examples (not included in this paper) in-
clude proactive churn management, where the target treatmentZ is
a price discount given to the existing subscribers, the outcome mea-
sure Y is long-term (e.g., three or five years) revenue; we can pick
the proxy treatment A to be a subscriber’s continuous subscription.

We split the treatment effect, use only observational data to learn
the ITE function ITE(a) for treatment A, and rank the individuals
characterized by x ’s as the most likely to keep using the feature
if they have tried it now. We select the top K individuals into the
recommendation group G. By making the assumption that a well-
designed message will encourage these individuals to try out the
product (i.e., positive compliance of A to Z in the selected group),
we claim that the individuals in group G are most likely to be
positively affected by the recommendation such that they will use
the feature and sustain using it once they got exposed.

Our end-to-end observational analysis and validation pipeline
is shown in Figure 2. First, we collect and analyze observational
data containing the proxy treatment A; we use this to estimate
the function ITE(a). Using this ITE function, we rank individuals
by the effect that A (and thus in turn, Z ) will have on them. In
our analysis of this data, we might use different algorithms, and
even different feature sets. Second, we test our causal assumptions
through sensitivity analyses. These help us eliminate the analysis
design that appears to be unreliable. Finally, in our validation stage,
we use experimental data to check that our Split-Treatment ob-
servational analysis has correctly identified the recommendation
group G. Note that in practice, experimental data for validation
will not be available for all prospective treatments. As we will show

Pre- Post- Pre- Post-
Campaign
Window

Treatment
Window

Observational data Experimental data (incl. Z)

1 2a 3 1 2b 3

Confounding factors X: Extracted from pre-period
Proxy treatment A: First use of product in treatment window
Target treatment Z: Message in campaign window 
Outcome measure Y: Sustained usage of recommended feature

1

2a

3

2b

Figure 3: Data timeline in observational and experimental
regimes

in the empirical analysis, sensitivity analyses can be useful to elim-
inate unreliable models in the absence of experimental validation
(or when experiments are available only for a limited number of
interventions). Below we provide further details of the three major
components in the pipeline.

Step 1. Data preprocessing and set up
Given a cohort of users, we divide the observational data temporally
into three windows. Observations made during a pre-treatment
window provide a behavioral baseline of users (X ). We use this X
to address confounding. We look for observations of A during the
treatment window, labeling a user as treated if we observe A, and
untreated otherwise. In the post-treatment window, we measure the
outcome Y that indicates a user has benefited from the action A.

For target data that our proposed method will be deployed on,
we will only need to extract the user featuresX in the Pre-treatment
window prior to the time point when the feature recommendation
decision should be made. But for experimental data that we use for
validation, we need to align the data timeline between the observa-
tional and experimental regimes. Instead of specifying a Treatment
window, the experimental data has a Campaign window during
which the ad treatment Z was randomly assigned and actively
tested; the proxy treatment A of the first usage is also measured
in this window. We exclude those users who still got exposed to
the ad in the Post-campaign window, and count the sustained usage
Y in that window. The user features are again extracted from the
Pre-Campaign window. The three windows are aligned with the
same length between the two regimes, as shown in Figure 3.

Step 2. Estimating Individual Treatment Effects
The key challenge of estimating causal effects from observational
data is to adjust the factors X that can potentially confound the
causal relationship between treatment A and outcome measure Y .
Given unconfoundedness in Assumption 1, existing causal methods
fall into three main categories: inverse probability of treatment
weighting (IPTW) based methods that predicts propensity scores
(P(a = 1|x)) to reweight individuals and obtain unbiased ATE esti-
mates; g-formula based methods that predict the two arm potential
outcomes E[Y (a) |x] for individuals and obtain unbiased ITE esti-
mates; doubly robust methods that combine the two methods so
that only one of the model need to be correctly specified. We de-
velop a generic doubly robust framework in Split-Treatment by
fitting a logistic regression model for generating propensity scores
and using different machine learning techniques for estimating
the potential outcomes. For predicting the amount of usage in the



post-treatment window, our regression choices include Poisson Re-
gression, linear regression with Stochastic Gradient Descent, Fast
Tree Regression, Fast Forest Regression, and a 2-layer Convolu-
tional Neural Network (CNN). These methods can be switched to
classification models if the outcome measure is binary.

We define an outcome regression function f : RK × {0, 1} → R,
where K is the cardinality of the input feature X and treatment A
is considered binary, and compute ITE for an individual x ∈ RK as

ˆITE(a)(x) ≡ f (x ,a = 1) − f (x ,a = 0). (4)

Given observational data D(n) = {(yi ,xi ,ai ) |
n
i=1}, we can learn f

by minimizing the following loss function
n∑

i=1
wiL(yi , f (xi ,ai )), (5)

where L is either Poisson loss or mean squared error in the se-
lected regression models;wi is the IPT weight computed from the
predicted propensity score. Note that loss in Eq. (5) goes back to
ordinary regression loss ifwi ≡ 1, and becomes no longer a causal
model with confounding adjustments. In particular, we use the
Stabilized IPTW [23] to compute the weightwi :

wi = ai ·
P̂(ai = 1)

P̂(ai = 1|xi )
+ (1 − ai ) ·

1 − P̂(ai = 1)
1 − P̂(ai = 1|xi )

. (6)

Step 3. Sensitivity Analyses
In general, multiple treatment effect estimation methods will pro-
vide varying results about the causal effect. These can be due to
faults in different parts of the analysis pipeline: mis-specification of
the underlying causal model, due to errors in identification, or due
to limits in estimation. Here we provide methods to evaluate the
estimates returned by different methods. Note that similar to statis-
tical hypothesis tests, the tests below can refute an estimator that
may be unsuitable, but cannot find the “correct” estimator. In other
words, we can weed out some unreliable estimators, but cannot
prove that a certain estimator is the closest to the true estimate.

We consider two tests: placebo test and unobserved-confounding
test. In the first, we introduce a random variable and rerun the anal-
ysis assuming it is the treatment variable [3, 29]. Our expectation
is that an estimator should return a zero causal effect. To the extent
that estimate varies significantly from zero, we can assess the bias
of the estimator and prune out estimators that show substantial
bias. In the unobserved-confounding test, we wish to estimate how
sensitive the models are to the presence of unobserved confounders.
In practice, it is plausible that some confounders were missed, so we
would like to prefer methods whose estimates are relatively stable
in the presence of new confounds, especially not vary substantially
with small changes in confounding. To verify this, we add a new
confounder to the feature set with varying degrees of its effect on
A and Y , and re-compute the causal effect. While we expect the
causal estimate to change as the degree of effect of the confounder
is increased, a better estimator is expected to be less sensitive to
such changes. Thus, we can rank estimators based on the variation
in their estimate for the same amount of confounder’s effect added.

To implement the second test, we model the confounder as sam-
pled from a Gaussian distribution and use the Bayes rule to arrive
at the posterior distribution that shows correlation with both the

outcome and the treatment. Let us denote the new confounder as
U , treatment variable as A and the outcome as Y . Intuitively, we
choose the degree of effect of U on Y and A to a desired value, and
then use Bayes Rule to obtain the distribution of such aU .

P(U |Y ,A) =
P(Y |U ,A)p(U |A)

P(Y |A)

Since we are interested in modeling the direct effect of U on Y , we
can ignore the causal association between Y and A and obtain,

P(U |Y ,A) =
P(Y |U )p(U |A)

P(Y )

For our experiments, we use a parametric form for the distri-
butions. To implement the relationship between U and A, P(U |A),
we assume the following the gaussian prior onU :U ∼ N(u |u0, ϵ);
where u0 = α + a, depending on a given realisation of treatment
variable A = a and tunable parameters α and ϵ . For the relation-
ship between Y and U, we then define the likelihood of observing
all the outcome samples using gaussian distribution as follows:∏Na

i=1N(yi |u, ϵ) where Na are the total of data points with treat-
ment A = a, and ϵ is a tunable parameter denoting the strength of
effect (higher ϵ corresponds to a weaker effect ofU on Y ) . Substi-
tuting the gaussian prior and the likelihood, we obtain:

N(u |u∗, ϵ∗) =
(
∏Na

i=1N(yi |u, ϵ)) ∗ N(u |u0, ϵ)∫ ∏Na
i=1N(yi |u, ϵ)du

(7)

Based on the above solution, we obtain,

u∗ =
u0 + Na ∗

∑Na
i=1 yi

Na + 1
ϵ∗ =

ϵ

Na + 1
Note that the posterior distribution N(u |u∗, ϵ∗) is dependent on
the treatment value via u0 = α + a. Hence, for each data point;
we sample value for the new confounder U from the posterior
distribution corresponding to the particular treatment class. The
mean of the posterior distribution is a weighted combination of the
prior mean (dependent on treatment) and the average of outcome
variables, which ensuresU is correlated with both A and Y .

Once the confounder is generated, we re-compute the estimate
with this additional confounder and compare the estimate to its
original value for each method. Since our goal is to select indi-
viduals for treatment (rather than estimating individual treatment
effect), we evaluate each method on what fraction of the individuals
selected for treatment stay the same between the original estimate
and the new estimate. Specifically, we consider individuals whose
estimate was higher than the median in both analyses, and compute
the number of common individuals between the two analyses.

5 SIMULATION
We conduct a simulation study to demonstrate how Split-Treatment
can be used to rank the effect of a target treatment that does not
exist in the data. We simulate 10, 000 individuals, characterized by
a 50-dimensional variable X , from a multivariate normal distribu-
tion with mean zero. We randomly assign them into 4 groups, and
assume that the ground truth CATE of target treatment Z on the
outcome Y is 10, 20, 30 and 40 respectively in each group. Given
each individual x , the outcome measure Y z=0 with no treatment
is generated from a linear model over x (coefficients are integers



Figure 4: Comparison between the ground-truth rank and
the proxy-estimated rank in simulations with or without vi-
olations of the two assumptions made in Split-Treatment.

randomly picked from 0 to 4 with certain probabilities), and the
outcome measure Y z=1 with treatment is generated by adding the
assigned CATE value to the base measure Y z=0. Lastly, we generate
a binary proxy treatment A conditional on Z from a contingency
table producing positive compliance for satisfying Assumption 21.

The step function in Figure 4(a) shows the ground-truth ranking
of CATE of the target treatment Z . After masking Z from the simu-
lated data, we fit a doubly robust model with outcome model being
a linear regression (namely IPTW-LR), and obtain estimates of ITE
for the proxy treatment A. We rank the ITE estimates and group
them into 4 equally sized buckets assigned to level 1 to 4. We com-
pute the root mean squared error (RMSE) between the estimated
rank and the ground truth rank. Figure 4(b) show the estimated
ranks; the obtained RMSE for our IPTW-LR method is low (0.1).

Next we study how the estimation would be biased if we violated
the two untestable assumptions made in Section 3. To create a
dataset that violates Assumption 1, we introduce a confounding
variable U ∼ N(0, 1), generate outcome measure Y z=0 based on
X concatenating U , and then mask U from the data. We fit the
same model above, plot the estimated proxy rank in Figure 4(c)
showing that it obtains a larger RMSE of 0.3. Similarly, for violating
Assumption 2, we manipulate the contingency table of A given
Z to produce negative compliance and fit the same model to the
new simulated data. We plot the estimated proxy rank in Figure
4(d) showing that rank was reversed and RMSE increases to 1.8.
This analysis shows the importance of the identifying assumptions
(especially Assumption 2) for obtaining the correct estimate.

Finally, we demonstrate the value of sensitivity analysis for
model elimination. Consider another doubly robust method that
uses Support Vector Machine (SVM) as the outcome regression
(namely IPTW-SVM). We use the placebo and the unobserved con-
founder methods described in Section 4 to test sensitivities of the

1Code for the simulation is provided at https://github.com/yanboxu/split-treatment-
simulation

Figure 5: Unobserved-confounding analysis. Comparing
RMSE between estimated causal effect with and without un-
observed confounding, for two causal models. IPTW-LR is
less sensitive to unobserved confounding. Box plots are for
5 runs with different degrees of confounding.

two methods. We find that placebo test does not help us differen-
tiate between the two models, as both of them give high RMSEs
(1.6 vs. 1.4 for IPTW-LR and IPTW-SVM respectively) which is
expected due to the placebo treatment. We plot results from the
unobserved confounder method in Figure 5, in which we vary the
hyper parameters defined in Eq. (7) for changing the amount of
effect fromU to A and Y . Since ground-truth CATE is not available
in practice, we compare the two models based on RMSEs between
the estimated proxy rank under the no-confounder case and those
from 5 different simulations under the confounder case. IPTW-LR
obtains lower empirical RMSE than IPTW-SVM and thus it is less
sensitive (more robust) to the varying degrees of confounding. This
result indicates the IPTW-LR should be chosen. Sensitivity analy-
sis , therefore allows us to select between competing models for
estimating CATE.

6 APPLICATION TO REAL-WORLD DATA
6.1 Dataset
We apply our method to feature and product recommendations in
a large software ecosystem. Feature and product recommendations
are occasionally shown within the ecosystem as short, clickable
messages that lead to web pages that educate individuals about
features they already have access to in the ecosystem, and new
software products that are available for download. We report on
results studying a specific product recommendation encouraging
individuals to try a new software product. Prior to running a recom-
mendation campaign, we analyze existing logged user data through
the Split-Treatmentmethod to identify individuals most likely to
benefit from the software product. In this scenario, the treatment Z
is the message that encourages individuals to try the software. The
Split-Treatment or proxy treatment A is the individual’s first us-
age of the software during the treatment window. The outcome Y is
sustained usage of the software during the post-treatment window.

We run our method on an observational data collected from
2.2M users within the ecosystem. For the purpose of validation,
we ran a separated randomized experiment on another 1.1M users
who are randomly exposed to the treatment Z , but had not used
the recommended software during the pre-campaign window. The
campaign was run from March 29 to April 27 in 2019, during which
66.1% were randomly exposed to Z . Exposure to the treatment Z
encouraged the proxy treatment A as it caused a 7.5% increase in

https://github.com/yanboxu/split-treatment-simulation
https://github.com/yanboxu/split-treatment-simulation


software adoption. We align the timeline between the two datasets,
take both pre-treatment and treatment window to be 30 days, and
obtain themeasure of sustained usage of the recommended software
in varying from 0 to 30 days during the post-treatment window.

6.2 Feature extraction
We first extract two sets of snapshots on each day within the pre-
treatment window. One snapshot contains 25 features summarizing
the users’ total usage in the past 4 weeks of different software
within the ecosystem and collaboration patterns. The other contains
106 of similar features but finer grained usage information from
software ecosystem. As a result, we reach at two static feature
sets, namely Features−25 and Features−106, by using only the last
day’s snapshots in the pre-treatment window; and two dynamic
feature sets, namely Features−25−Seq and Features−106−Seq, by
aggregating (i.e., taking average, min, max, number of increases
and decreases) the 30 snapshots within the pre-treatment window.

6.3 Baselines and Algorithmic Details
Given each feature set, we explore the followingmodels for outcome
regression. Each of these models can be used in a causal mode,
addressing confounding issues through use of an IPTW adjustment,
or in a predictive mode that does not do such adjustment. Model
hyperparameters were tuned via grid search by splitting a 10%
validation set from the training data.

• Fast-Tree Regression (FTR): An efficient tree regression with
gradient boosting [20].

• Fast-Forest Regression (FFR): An efficient random forest re-
gression using the Fast-Tree learners.

• Poisson Regression (PR): A linear regression with respect to
minimizing Poisson loss instead of mean squared errors.

• Convolutional Neural Network (CNN): A 2-layer 1-D convo-
lutional network with Poisson loss.

6.4 Results
6.4.1 Evaluation on propensity scores. We build a logistic regres-
sion propensity model that predicts the likelihood that a user gets
treated byA over each of the four feature sets respectively. For each
propensity model, we discard the extreme propensity scores they
generate that are below the .01 quantile or above the 0.99 quantile.
Comparing the proxy treatment and control group distributions, we
find the two groups are well overlapped across all the four feature
sets. The purpose of propensity score model is for ensuring balance
of potential confounds. We compute the standardized mean differ-
ences (SMD) [30] across the features in the proxy treatment and
control groups to evaluate the balance. SMD calculates the diver-
gence of the mean feature values between two groups as a fraction
of the summed standard deviation of the two groups. To validate
that our propensity weighting is reducing the confounding, we
compare the computed SMDs before IPTW weighting and after. We
find that the SMDs are all reduced after weighting, indicating that
IPTW is reducing confounding. Moreover, we find that, with the
exception of one feature, the SMDs of IPTW-weighted Features-106
and Features-106-Seq are all reduced to lower than 0.2, considered
a threshold for well-balanced covariates [10, 30].

Figure 6: RMSE of outcome predictions on target data from
the baseline models over different feature sets; the range of
the outcome measure Y varies from 0 to 30.

6.4.2 Evaluation on outcome prediction. Now we evaluate how ac-
curate the regression models listed in Section 6.3 can generalize
their outcome predictions to an independent target dataset. In Fig-
ure 6, we see CNN models give the lowest RMSE across all the four
feature sets while Poisson regression models give the highest error;
all the other models perform similarly in between.

6.4.3 Model Elimination via Sensitivity Analysis. We first try the
placebo-treatment test by replacing the proxy treatment in each
dataset with a Bernoulli (p=0.5) random variable. We find that all
methods pass the test: no method reports an estimate significantly
away from zero for a placebo treatment. For the second test on
sensitivity of a method to unobserved confounding, we generate
multiple runs over different configurations of the hyperparameters
α and ϵ in Eq. (7), as below. In choosing these hyper parameters,
the goal is to generate a confounder variable U such that it is
correlated with both A and Y . Different configurations capture
different degrees of this correlation, and thus confounding due to
U .

Features-106:
• α : 105, ϵ : 40*α , Corr. T: 0.38, Corr. Y: 0.18
• α : 105, ϵ : 100*α , Corr. T: 0.25, Corr. Y: 0.12
• α : 103, ϵ : 1700*α , Corr. T: 0.53, Corr. Y: 0.25

Features-25:
• α : 105, ϵ : 10*α , Corr. T: 0.49, Corr. Y: 0.18
• α : 105, ϵ : 50*α , Corr. T: 0.22, Corr. Y: 0.08
• α : 103, ϵ : 600*α , Corr. T: 0.58, Corr. Y: 0.22

We ensure that the correlations across the two feature sets,
Features-106 and Features-25 are similar. Further, we only con-
sider causal models for this analysis since the other methods do not
account for confounding adjustment. Figure 7 shows the results
across all three configurations, by comparing the fraction of individ-
uals who stay in the top-50 percentile ranking of effect, even after
adding the confounder. As reported in Section 4, methods that have
a higher fraction of top-50 individuals that are consistent in the
original data and the simulated data (with an additional confounder)
are desirable. Note that we do expect that the estimates from each
model will change: our goal is to find the methods that change the
least with the same amount of additional confounding introduced,
and thus are likely to capture more stable relationships. Our first
observation is that models based on Features-106 are less sensitive
to additional confounding than Features-25, except the IPTW-PR
model. The two best models w.r.t. low sensitivity are IPTW-FFR



Figure 7: Sensitivity Analysis: Fraction of the top 50-
percentile individuals that remain in the top 50-percentile
after adding an unobserved confounder. Rankings from
IPTW-FFR106 and IPTW-CNN106 stay most consistent
when unobserved confounding is introduced. Box plots are
for 3 runs with different degrees of confounding.

and IPTW-CNN based on Features-106. Among models, we observe
models based on IPTW-FFR and IPTW-PR tend to achieve the high-
est fraction of consistent top-50 individuals, across both feature
sets. While the IPTW-CNN model performs well for Features-106,
its sensitivity is the worst among all models for Features-25. These
results indicate that models based on Features-25 (and models using
FTR method) may not be as robust to unobserved confounding as
other methods. On balance, we therefore conclude that IPTW-FFR
and IPTW-CNN methods on Features-106 may be most suitable to
estimate the causal effect.

6.4.4 Validation through Active Experiments. While we may not
frequently have the ability to run active experiments in practice,
we do run an A/B experiment in this case, to provide an end-to-end
evaluation of the proposed Split-Treatmentmethod. Through our
sensitivity analyses, we have identified that the methods most likely
to be reliable are the IPTW-FFR on Features-106 and IPTW-CNN on
Features-106; and the worst models are likely to be IPTW-CNN on
Features-25-Seq and IPTW-CNN on Features-25. While we focus
the presentation of our results on these best and worst models, our
evaluation of the rankings produced by other models is consistent
with their quality as identified by our sensitivity experiments.

The treatment assignment randomized in the A/B test is the
message treatment Z , while our observational study provides an
ITE estimate of the effect of the split-treatment, P(Y |A). To validate
the quality of the rankings implied by our observational models,
we treat our randomized experiment as an instrumental variable
(IV) analysis [2]: the message Z acts as a (strong) instrument in our
problem because 1) it encourages A the choice to first tryout of the
software (with treated individuals being 7.5% more likely to do A
than untreated users); and 2) its effect on Y the sustained usage of
the software is also fully mediated via its effect on the choice of A.
For further details of IV analysis see [1, 2].

As an IV experiment does not allow us to calculate ITEs, we use
the following strategy to validate the rankings implied by our obser-
vational studies. First, we apply the ITE prediction model learned
from our observational study to predict the ITEs for individuals
observed in the course of our randomized experiment. We then split
individuals into two sets, Ghigh,k and a Glow,k . Ghigh,k consists of
all individuals having an ITE in the top kth percentile of predicted

ITEs, and Glow,k includes all remaining individuals. Note that the
average treatment effect in Ghigh,k is necessarily higher than the
average treatment effect in Glow,k . Secondly, we use our IV experi-
ment to calculate the conditional average treatment effect (CATE)
for the both Ghigh,k and Glow,k .2 By conditioning on instrument Z
being randomized, we can fit a two-stage least squares (2SLS) [1]
to obtain the CATE estimates CATE(a)

Gi
within a specified group Gi .

If the ranked causal effects given by our observational study
model are accurate, we will expect, for any splitting threshold k ,
that CATE(a)

Ghigh,k
will be higher than CATE(a)

Glow,k
. Thus, despite the

challenges of gaining ground-truth information about treatment
effects, this procedure effectively allows a validation of our model’s
estimated rankings of the causal effect of the split-treatment A.

Figure 8 (a) shows the results of this validation procedure over
our best causal model, as well as its non-causal counterparts. We
see that the best model consistently ranks the low and high groups
correctly. That is, for each threshold k , CATE(a)

Ghigh,k
> CATE(a)

Glow,k
.

We see that this ranking holds particularly strongly at high thresh-
olds. The quality of our ranking at high thresholds is particularly
important in our recommendation domain as, given the multitude
of possible feature recommendations, we are likely to display any
particular message only to a small portion of users who are most
likely to benefit. Figure 8 (b) shows the results of our validation
over our worst model, identified as such by our sensitivity analyses.
We see that the worst model clearly fail our experimental valida-
tion procedure. Note that the non-causal counterparts for each of
these models perform worse in each case. Validation results for
our other observational models (not shown) is consistent with the
above results for our best and worst models—i.e., not as good as
our best models, but not as bad as our worst models. Overall, we
find that our validation procedure confirms that our refutation and
sensitivity analyses are useful in helping to identify the most likely
best models based on observational data.

7 CONCLUSION
Wepresented a practical, observational analysis method for identify-
ing individuals likely to benefit from a novel message or recommen-
dation Z that encourages people to take action A. Through causal
analysis of existing logs that contain observations of A, though
not Z , we identify people who benefit from A, as measured by a
target outcome Y . Under a simple assumption that Z is a positive
encouragement that increases the likelihood of A, this allows tar-
geting of the message Z to individuals most likely to benefit. A
key contribution of our analysis is that our use of refutation tests
and sensitivity analyses enables a principled a priori identification
of the feature selection and elimination of unreliable algorithmic
design. We validate our analysis procedure with an A/B experiment
in a large real-world setting.

Promising future work includes development of additional refu-
tation and sensitivity analyses to provide further protection against
validity threats; using characteristics of the identified individuals
to aid writers and marketers in the crafting of messages that better

2The CATE, when conditioned on group membership, may also be known as a Local-
ATE over the group.



(a) Best model: Our validation of IPTW-FFR on Features-106 (left) shows that
CATE for low and high groups are correctly separated across all values of k .
The non-causal counterpart, FFR on Features-106, is not well-separated.

(b) Worst model: Our validation of IPTW-CNN on Features-25-seq (left)
shows that CATE for low and high groups are not correctly separated most
values of k . The non-causal counterpart, CNN on Features-25-seq, is worse.

Figure 8: Our CATE evaluation of the best model vs. the
worst model chosen by sensitivity analysis (left), as well as
their non-causal counterparts (right). The x-axis represents
the threshold k , and the y-axis the CATE estimate. For each
k , we show the CATE estimate, with standard error, for the
paired low and high groups in the same color.

express the benefits individuals may receive; and expansion of our
procedures to jointly analyze multiple treatments and outcomes.
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