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Abstract—Large pools of synthetic DNA molecules have been
recently used to reliably store significant volumes of digital data.
While DNA as a storage medium has enormous potential because
of its high storage density, its practical use is currently severely
limited because of the high cost and low throughput of available
DNA synthesis technologies.

We study the role of batch optimization in reducing the cost
of large scale DNA synthesis, which translates to the following
algorithmic task. Given a large pool S of random quaternary
strings of fixed length, partition S into batches in a way that
minimizes the sum of the lengths of the shortest common
supersequences across batches.

We introduce two ideas for batch optimization that both
improve (in different ways) upon a naive baseline: (1) using both
(ACGT )∗ and its reverse (TGCA)∗ as reference strands, and
batching appropriately, and (2) batching via the quantiles of an
appropriate ordering of the strands. We also prove asymptotically
matching lower bounds on the cost of DNA synthesis, showing
that one cannot improve upon these two ideas. Our results
uncover a surprising separation between two cases that naturally
arise in the context of DNA data storage: the asymptotic cost
savings of batch optimization are significantly greater in the case
where strings in S do not contain repeats of the same character
(homopolymers), as compared to the case where strings in S are
unconstrained.

A full version of this paper is accessible at:
https://arxiv.org/abs/2011.14532

I. INTRODUCTION

Storing digital data in synthetic DNA molecules has re-
ceived much attention in the past decade [1]–[11]. DNA data
storage offers several orders of magnitude higher information
density compared to conventional storage media, as well as the
potential to store data reliably for hundreds or thousands of
years. However, the prohibitively high cost and low throughput
of modern DNA synthesis technologies present a key barrier
that needs to be addressed in order to make DNA data storage
a commonplace technology.

For the purposes of the current paper we can think of a
DNA molecule as a string (strand) in the quaternary alphabet
{A,C,G, T}. Today the dominant method for producing large
quantities of DNA molecules is array-based DNA synthe-
sis [12], [13]. With this technology the DNA synthesizer
creates a large number of DNA strands in parallel, where
each strand is grown by one DNA base (character) at a time.
To append bases to strands, the synthesis machine follows
a fixed supersequence of bases, called a reference strand.
As the machine iterates through this supersequence, the next
base is added to a select subset of the DNA strands. This

process continues until the machine reaches the end of the
supersequence. In particular, each synthesized DNA strand
must be a subsequence of the reference strand. The cost of
DNA synthesis is proportional to the length of the reference
strand.

In applications to DNA data storage one typically needs to
synthesize very large quantities of DNA molecules, signifi-
cantly exceeding the capacity of any single DNA synthesizer.
Therefore the pool of strands that one aims to synthesize needs
to be partitioned into batches, where the size of each batch
corresponds to the maximum load of the synthesizer. In this
setting the total cost of DNA synthesis is proportional to the
sum of the lengths of the shortest common supersequences of
each batch. The focus of this paper is the algorithmic task of
batch optimization, where the goal is to partition the strands
into batches and assign every batch a reference strand in a
way that minimizes this cost.

The encoding process that generates the list of DNA strands
that need to be synthesized to store a given digital file varies
with the specific system [2], [5], [9], [14] and is usually quite
complex. The encoder adds redundancy to the data to allow
for the correction of various types of errors that occur during
DNA synthesis, storage, and sequencing, including insertions,
deletions, and substitutions of individual bases, as well as
missing DNA strands.

We now describe two aspects of encoding of digital data
in DNA that are relevant to our work. Commonly, input
digital data is randomized [9] using a seeded pseudorandom
number generator or compressed and encrypted [14]; this is
done in order to reduce the frequency of undesirable patterns
that may occur in strands that are used to represent the
data, for instance, patterns likely to cause the presence of
DNA secondary structure [15]. Ensuring that strands look
random also facilitates certain tasks that may be a part of
the decoding process such as clustering [9], [16] and trace
reconstruction [9], [17]–[21]. Another important aspect is as
follows. Algorithms that encode digital data in DNA [3], [9]
often ensure that the resulting strands do not contain long
runs of the same character (i.e., homopolymers), since such
runs are known to cause errors during the DNA sequencing
stage. The length of the longest allowed homopolymer run
may be as low as one—that is, not allowing homopolymers—
or unconstrained, depending on the scenario.

Motivated by the above considerations, in the current paper
we model pools S of DNA strands that we aim to synthesise



as large collections of random quaternary strings. We consider
two key representative cases: the case where strings in S are
unconstrained and the case where strings in S do not contain
repeats of the same character.

II. PROBLEM STATEMENT

Fix a strand length n, and consider two different choices
for the strand universe U .

1) Unconstrained strands: U = {A,C,G, T}n.
2) Strands without homopolymers: U is the subset of
{A,C,G, T}n that contains all strands with no consec-
utively repeated characters.

Let S be a subset of elements of U , with M := |S|; this is the
pool of strands we wish to synthesize. Let k be an integer that
divides M, and let π be a partition of S into k subsets (which
we refer to as batches) B1, . . . ,Bk of size M/k.1 We define
cost(Bi), the cost of synthesizing elements of the batch Bi, as
the length of the shortest common supersequence of all strands
in Bi. Using this notation, we define the cost of synthesizing
the whole pool S as:

cost(S) := min
π

k∑
i=1

cost(Bi). (1)

We assume that elements of S are selected i.i.d. from U
uniformly at random, and we are interested in upper and lower
bounds for cost(S) that hold with high probability.

While in the practice of DNA synthesis the parameters n,
M , and k are concrete numbers, to facilitate the asymptotic
study of the problem we focus on the following relevant
scenario: n is growing, M is significantly larger than but
polynomial in n, and k is either a constant or a slowly growing
function of n. For simplicity, we often state results in terms
of universal constants; these can be made explicit.

Example 2.1: Consider the setting of strands with no
homopolymers. Let n = 4 and M = 4. Let S =
{AGCT,GCAT,CAGA,GAGC}. Assume that k = 2, that
is, there are two batches and each batch contains two strands.

We can partition S into B1 = {AGCT,GCAT} and
B2 = {CAGA,GAGC}. The DNA synthesizer (printer) first
prints B1. It starts with two empty strings (∅, ∅). Then, it
appends A to the first strand and obtains strands (A, ∅). It
appends G to both strands and obtains (AG,G). Then, it
appends the letters C, A, and T as follows:

(∅, ∅) A−→ (A, ∅) G−→ (AG,G)
C−→ (AGC,GC)

A−→ (AGC,GCA)
T−→ (AGCT,GCAT ).

After the last step, we get the set B1 = {AGCT,GCAT}.
The printer prints B2 as follows:

(∅, ∅) C−→ (C, ∅) G−→ (C,G)
A−→ (CA,GA)

G−→

(CAG,GAG)
A−→ (CAGA,GAG)

C−→ (CAGA,GAGC).

1The assumption that the batches are of equal size is made for simplicity.
Indeed, our techniques extend to a more general setting where the batches are
roughly the same size (e.g., up to a constant factor), and several results are
phrased in this more general setting.

In this example, we used the reference strand AGCAT to print
the set B1 in five steps and the reference strand CGAGAC
to print the set B2 in six steps. Therefore cost(S) ≤ 11.

III. MAIN RESULTS FOR MULTIPLE BATCHES

Before describing our main results for multiple batches, we
briefly and informally discuss the setting of a single batch—
formal statements and proofs are in the full version of the
paper [22]. A natural reference strand to use to print a pool
of strands S is the periodic strand (ACGT )∗, where ACGT
repeats indefinitely. Our results can also be generalized to
periodic sequences, such as (ATATCG)∗ or (ACGACGT )∗,
leading to a cost analysis for other supersequences.

For the reference strand (ACGT )∗, we can write the cost of
printing a random strand as

∑n
i=1Xi, where {Xi}ni=1 are i.i.d.

uniformly random on {1, 2, 3, 4} in the case of unconstrained
strands; in the case of strands without homopolymers, {Xi}ni=1

are independent, with X1 uniformly random on {1, 2, 3, 4}
and Xi uniformly random on {1, 2, 3} for i ≥ 2. By a
standard concentration inequality, we obtain the upper bounds
cost (S) ≤ 2.5n + 3

√
n logM for unconstrained strands and

cost (S) ≤ 2n + 3
√
n logM for strands without homopoly-

mers, with both bounds holding with probability 1 − o(1).
Combining this with an appropriate stochastic domination ar-
gument that compares random walks, we also obtain matching
lower bounds, for both choices of the strand universe U . This
shows that for a single batch no reference strand can do
asymptotically better than the periodic strand (ACGT )∗.

The setting of multiple batches, which is the focus of our
work, presents interesting challenges. As a simple baseline,
we could consider randomly partitioning S into k batches.
A direct application of the single batch upper bound would
provide a cost of roughly 2.5nk+O(k

√
n log(M/k)) for un-

constrained strands and 2nk+O(k
√
n log(M/k)) for strands

without homopolymers. We provide improvements in both
cases by using a slightly more sophisticated batching method.

We first observe a symmetry property: For any strand
without homopolymers the cost of printing it using (ACGT )∗

and the cost of printing it using (TGCA)∗ add up to 4n+ 1,
so the better choice of reference strand results in a cost of at
most 2n. This idea can be extended to a large set of strands,
by choosing for each strand the better reference strand out
of (ACGT )∗ and its reverse (TGCA)∗. We further improve
upon the cost by leveraging a second idea. After partitioning
strands based on which of the two reference strands is better,
we then sort the strands based on their cost (with respect to
the chosen reference strand). We then use a quantile-based
batching process to group the first M/k lowest cost strands,
then the next M/k, etc. Combining these two ideas reduces
the total cost to 2nk −Θ(k

√
n) for k ≥ 3 batches.

In the case of unrestricted strands, such an improvement
is not possible, although we are able to show that with k
batches a similar partitioning strategy, based on appropriately
ordering the strands and using quantiles, enables us to save
a factor of k in the deviation term and obtain a total cost of
2.5nk +O(

√
n logM). We now formally state our results.



Theorem 3.1 (Upper bounds): Let S be a set of M random
strands in {A,C,G, T}n, and let k be an integer satisfying
3 ≤ k ≤ 1

4

√
M

logM . There exist absolute constants C1 > 0

and C2 <∞ such that the following hold.
1) (Strands without homopolymers) There exists a way

to efficiently partition S into k equal size batches
B1, . . . ,Bk such that with probability at least 1− 1/M
we have that

k∑
i=1

cost(Bi) ≤ 2nk − C1k
√
n.

2) (Unconstrained strands) There exists a way to effi-
ciently partition S into k equal size batches B1, . . . ,Bk
such that with probability at least 1−1/M we have that

k∑
i=1

cost(Bi) ≤ 2.5nk + C2

√
n logM.

We complement these results with almost tight lower bounds.
Proving the following theorem is the most technically chal-
lenging part of our work.

Theorem 3.2 (Lower bounds): Let S be a set of M ≥
10n2 log n random strands in {A,C,G, T}n, and let k be a
positive integer satisfying k ≤ 1

10

√
logM/ log logM.

1) (Strands without homopolymers) There exists an abso-
lute constant c1 <∞ such that the following holds with
probability at least 1−c1/M . For any partition of S into
k equal size batches B1, . . . ,Bk, we have that

k∑
i=1

cost(Bi) ≥ 2nk − c1k
√
n log k.

2) (Unconstrained strands) Suppose that M ≤ exp(n).
There exists an absolute constant c2 > 0 such that the
following holds with probability at least 1−c−12 /M . For
any partition of S into k equal size batches B1, . . . ,Bk,
we have that

k∑
i=1

cost(Bi) ≥ 2.5nk + c2
√
n logM.

Comparing Theorems 3.1 and 3.2, we see that the upper
and lower bounds match up to the absolute constants in the
deviation term when k is small enough. As a consequence, this
provides evidence that our batching method is nearly optimal,
perhaps surprisingly.

Furthermore, Theorems 3.1 and 3.2 provide a clear separa-
tion between the two representative strand universes. On the
one hand, for unconstrained strands we have, with probability
1− o(1), that cost(S) = 2.5nk + Θ

(√
n logM

)
; that is, the

cost exceeds the main term 2.5nk by the deviation term. On the
other hand, for strands without homopolymers we have, with
probability 1 − o(1), that 2nk − c1k

√
n log k ≤ cost(S) ≤

2nk−C1k
√
n; that is, the cost is smaller than the main term

2nk by the deviation term.

IV. RELATED WORK

For an overview of the biochemical DNA synthesis process,
we refer the interested reader to the surveys [10], [12]. Our
work is motivated by several experimental papers that address
the challenge of reducing the synthesis cost in both single
and multi-batch settings [23]–[32]. Variants of the problem
have also been studied that incorporate certain quality control
measures [33]–[36]. Much of this previous work considers the
(ACGT )∗ supersequence when analyzing the synthesis cost.
Rahmann first observed that in this case the single batch cost
of uniformly random strings is approximately Gaussian, but
he did not provide a formal analysis nor any asymptotic or
finite-size bounds [25]. In the multi-batch setting, previous
work uses the same cost function as we do, namely the sum
of the shortest common supersequence (SCS) lengths for each
batch [27], [31]. In general, a wide array of algorithms have
been proposed and empirically evaluated for selecting a short
reference string given the set of DNA strands to synthesize.
However, these heuristics do not come with guarantees, and
many of them implicitly solve the SCS problem, which is
known to be NP-hard for a collection of strings [37], [38].

From a theoretical point of view, a few recent works have
considered minimizing the synthesis cost through coding-
based approaches. Lenz et al. study reference strings that have
a large number of subsequences, and they consider mappings
to encode data by a set of strings while minimizing the single-
batch synthesis cost [39]. This coded synthesis approach max-
imizes information density for fixed synthesis cost. However,
the strands will then have additional structure (e.g., contained
in a small deletion ball of (ACGT )∗ with many pairs close
in edit distance). On the other hand, using random strings is
known to be easier for clustering as the strings are far apart
in edit distance [16] and for string reconstruction [21]. One
avenue for future work could be to optimize for many parts of
the DNA storage pipeline through codes. A different synthesis
model has also been considered, storing information based on
run-length patterns in the strings [40]–[42].

There is also a large body of prior work on the longest
common subsequence (LCS) of random strings [43]–[49]. The
expected LCS length of two random length n strings is known
to be (γ + o(1))n for a value γ > 0 called the Chvátal-
Sankoff constant. Despite decades of effort, the exact value
of γ remains unknown for constant alphabet sizes. For two
length n strings, the LCS and SCS are related via the equality
SCS(S1, S2) = 2n − LCS(S1, S2), but for larger sets, no
analogous relationship is known. In particular, our results show
that the average SCS length for a large collection of strings
behaves very differently than for a pair of strings. While we
are not aware of prior results on the SCS for multiple batches,
our single batch results improve an existing bound on the
expected SCS length in the special case of M = n strings
(see Remark 3.4 in the full version of this paper [22]).

V. PROOF OVERVIEW

In this section we give an overview of our results and the
associated proofs; full proofs are in the full version [22].



Suppose we want to synthesize a DNA strand S using a
reference strand R. Denote the length of the prefix of R which
we use for synthesis by costR(S). Then, the cost of printing
a batch of strands B using R equals the maximum cost of
printing S for S ∈ B:

costR(B) = max
S∈B

costR(S).

We observe that the cost of printing any strand of length n
using the periodic reference strand (ACGT )∗ is at most 4n,
since the i-th base of S can be printed using the corresponding
base in the i-th quadruple of (ACGT )∗. Hence, the cost of
synthesizing any batch of strands of length n is bounded from
above by 4n. As we discuss later, the cost of every strand
without homopolymers with respect to the reference strand
(ACGT )∗ is at most 3n + 1. So the cost of any batch of
strands without homopolymers is also at most 3n+ 1.

Since the cost of synthesizing every batch of strands is
upper bounded by 4n, we do not need to consider reference
strands of length more than 4n. However, for the sake of
analysis, we shall assume that all reference strands R have an
infinite length. The first 4n bases of these strands are arbitrary,
while the remaining infinite suffix is a repetition of the pattern
ACGT . We denote the set of all such strands by R∗. Observe
that every strand S can be synthesized using every R ∈ R∗
because R contains the substring (ACGT )∗. Note that when
we synthesize a batch B using a reference strand R ∈ R∗,
we truncate R after costR(B) bases, so effectively we use a
reference strand of length costR(B).

A. Cost of a Single Batch

We first show how to estimate the cost of synthesizing a
single batch of DNA strands. We prove that for a random
strand S of length n and reference strand R̃ = (ACGT )∗, the
expected costR̃(S) equals 2.5n. We then use concentration
inequalities to argue that the maximum cost of strands in B is
upper bounded by 2.5n+O(

√
n logM) with high probability,

where M is the batch size. Similarly, we show that for every
fixed strand R, we have that E[costR(S)] ≥ 2.5n. Hence,
for every fixed R the cost of B is also lower bounded by
2.5n+Ω(

√
n logM) with high probability. We obtain a lower

bound on the cost of a batch by taking the union bound over
all R ∈ R∗. Similarly, we get lower and upper bounds of
2n+Ω(

√
n logM) and 2n+O(

√
n logM) for random strands

without homopolymers.
We now discuss how to compute E[costR(S)] for a given

reference strand R and random S. Let τi(S,R) be the cost of
the prefix S1, . . . , Si. In other words, τi(S,R) is the index of
the base in R that is used for synthesizing the i-th base in S.
We let τ0(S,R) = 0. Observe that {τi(S,R)}i≥0 is a Markov
chain: the value of τi+1(S,R) depends only on the current
state τi(S,R) and the random value of Si+1. We denote the
increments of τi(S,R) by Xi(S,R): for i ∈ {1, . . . , n}, let

Xi(S,R) := τi(S,R)− τi−1(S,R).

Then, costR(S) = τn(S,R) =
∑n
i=1Xi(S,R). For the

reference strand R̃ = (ACGT )∗, each increment Xi(S, R̃)

is a random variable uniformly distributed in {1, 2, 3, 4},
and all Xi(S, R̃) are mutually independent. Consequently,
E[Xi(S, R̃)] = 2.5 for all i and thus E[costR̃(S)] = 2.5n.
Furthermore, by the central limit theorem, the deviation of the
cost from its expectation, costR̃(S) − 2.5n, is approximately
Gaussian with mean 0 and variance 1.25n. Thus, we can use
Hoeffding’s inequality and other concentration inequalities to
obtain upper and lower bounds of on costR̃(S). These bounds
imply that the cost of a single batch of M strands equals
2.5n+ Θ(

√
n logM).

To show that E[Xi(S,R)] ≥ 2.5 for every R ∈ R∗
and not only for R = R̃, we observe that the sequence
X1(S,R), . . . , Xn(S,R) stochastically dominates a sequence
of i.i.d random variables Y1, . . . , Yn, where each Yi is uni-
formly distributed in {1, 2, 3, 4}. Hence,

E[X1(S,R) + · · ·+Xn(S,R)] ≥ E[Y1 + · · ·+ Yn] = 2.5n.

For random strands without homopolymers, each jump
Xi(S, R̃) is uniformly distributed in {1, 2, 3} for i > 1;
and X1(S, R̃) is uniformly distributed in {1, 2, 3, 4}. Hence,
the expected cost costR̃(S) is 2n + 1/2. Also, note that the
maximum possible value of Xi(S, R̃) is 3 (for i > 1). Hence,
the cost of every strand is upper bounded by 3n+ 1.

B. Upper Bounds for Multiple Batches

We use the same reference strand R̃ = (ACGT )∗ for
synthesizing all batches of unconstrained strands. For synthe-
sizing batches of strands without homopolymers, we use two
different reference strands, R̃ = (ACGT )∗ and its reverse
R = (TGCA)∗,

Naïve Approach. Suppose we assign strands randomly to k
batches. Then, each batch consists of M/k random strands
sampled uniformly from {A,C,G, T}n. Hence, the cost of
every batch is 2.5n + Θ(

√
n logM). Consequently, the total

cost of synthesising k batches is 2.5nk+k ·Θ(
√
n logM). We

now show that by carefully assigning strands to batches we can
improve this cost to 2.5nk+ Θ(

√
n logM) for unconstrained

strands. Similarly, we show how to improve a naïve solution of
cost 2nk+k ·Θ(

√
n logM) for strands without homopolymers

to a solution of cost 2nk − Ω(k
√
n).

Unconstrained Strands. Our strategy for splitting the set of
unconstrained strands S into k batches is quite simple. For
every strand S in S, we compute costR̃(S) and then sort
strands by this cost. We put the first M/k strands in the first
batch, the second M/k strands in the second batch, and so
on. Then, the cost of the i-th batch is equal to the empirical
i/k-th quantile of

{
costR̃(S)

}
S∈S (see the full version [22] for

formal definitions). In [22] we also show that, with high proba-
bility, empirical quantiles of

{
costR̃(S)

}
S∈S are very close to

the corresponding quantiles of the distribution of the random
variable costR̃(S), where S is randomly and uniformly drawn
from {A,C,G, T}n. The only exception is the empirical 1-
quantile of the sample S which corresponds to the cost of the
most expensive strand in S. This cost is approximately equal



to the (1−1/M)-quantile of the distribution of costR̃(S), where
M is the size of S.

As we discussed above, costR̃(S) can be approximated by
the random variable 2.5n+ g, where g is a Gaussian random
variable with mean 0 and variance 1.25n. The sum of the
1/k, 2/k, . . . , (k − 1)/k quantiles of a symmetric Gaussian
distribution equals 0, since the quantiles i/k and (k− i)/k are
symmetric around 0. However, the (1 − 1/M)-quantile of the
distribution of g is relatively large and approximately equals
c
√
n logM . Hence, the total cost of synthesizing k batches

approximately equals

2.5nk + c
√
n logM.

Strands without Homopolymers. If we use the same batching
strategy as we discussed above for strands without homopoly-
mers, we obtain a solution of cost 2nk + c

√
n logM with

high probability. However, somewhat surprisingly, we can do
better by utilizing two reference strands, R̃ = (ACGT )∗,
and its reverse, R = (TGCA)∗, instead of just the single
strand R̃. We show that the random variables costR̃(S) and
costR(S) are anticorrelated. Specifically, for every strand S
without homopolymers, we (deterministically) have

costR̃(S) + costR(S) = 4n+ 1. (2)

Also, there is a bijection ϕ : {A,C,G, T}n → {A,C,G, T}n
such that for every strand S ∈ {A,C,G, T}n we have that

costR̃(S) + costR̃(ϕ(S)) = 4n+ 1. (3)

To see this, let τi(S, R̃) and τi(S,R) be the time that the ith

character of S is printed using R̃ or R, respectively. Consider
the per-character costs Xi(S, R̃) = τi(S, R̃)− τi−1(S, R̃) and
Xi(S,R) = τi(S,R) − τi−1(S,R). Observe that Xi(S, R̃) +
Xi(S,R) = 4 for i > 1 and X1(S, R̃)+X1(S,R) = 5. Hence,

costR̃(S) + costR(S) =

n∑
i=1

(Xi(S, R̃) +Xi(S,R)) = 4n+ 1.

We now map every strand S to its compliment by replacing
each base A with T , C with G, G with C, and T with A.
Observe that if we renamed each base as above both in S and
the reference strand R̃, then the cost would not change. That
is, costR̃(S) = costR(ϕ(S)). Using (2) we thus obtain (3).

These observations suggest the following strategy: We first
sort all strands S by their cost when printed with R̃. For the
first dk/2e batches, we print them with R̃, and we print the
remaining batches with R. Overall, we will argue that this
batching process results in k − 2 batches having a cost of at
most 2n, and a constant fraction of these batches having an
additional savings of Ω(

√
n), which results in the ultimate

savings of Ω(k
√
n). The only challenging batches are the

“middle” two. We handle these by arguing that their costs
are coupled so that together they do not exceed 4n + 1. We
next explain the intuition behind the main savings.

Since (Xi(S, R̃)+Xi(S,R))/2 = 2 for all i > 1 and S does
not have homopolymers, the random variables costR̃(S) and
costR(S) can be approximated by correlated random variables

2n−g and 2n+g, where g is a Gaussian random variable with
mean 0 and variance 2/3n. The cost of every strand is thus
approximately equal to min{2n−g, 2n+g} = 2n−|g|, and the
total cost of k batches is approximately equal to the sum of the
i/k-quantiles of the random variable 2n− |g| for i = 1, . . . , k.
For sufficiently large k, this sum is approximately equal to

k · (E[2n− |g|]) = k · (2n− E[|g|]) = 2nk − k
√

4

3π
n.

For small k > 2, the sum is upper bounded by 2nk−Ω(k
√
n).

C. Lower Bounds for Multiple Batches

We now discuss how to obtain lower bounds on the cost of
batch synthesis. We start with lower bounds that are based on
the following observation: Every batch B must contain a 1/k
fraction of all strands in S. Consequently, its cost is lower
bounded by the empirical 1/k-quantile of {costR(S)}S∈S ,
which, in turn, approximately equals the 1/k-quantile of the
distribution of the random variable costR(S), where S is
a random strand. Here R is the reference strand used for
synthesising B. Using the notation (see full version [22]) for
empirical q-quantiles Q̃q,R(S) and q-quantiles Qq,R(D) of a
distribution D, we can lower bound the cost of B as follows:

cost(B) ≥ min
R∈R∗

Q̃1/k,R(S) & min
R∈R∗

Q1/k,R(D1/4),

where D1/4 is the uniform distribution of strands of
length n. Using Hoeffding’s inequality for costR(S) along
with bounds on Q̃1/k,R(S) and Q1/k,R(D1/4), we then show
that Q1/k,R(D1/4) ≥ 2.5n − O(

√
n log k) which yields a

lower bound of k · (2.5n − O(
√
n log k)) on the total cost

of synthesizing k batches. For strands without homopolymers,
the same argument gives a bound of k · (2n−O(

√
n log k)).

Improved Lower Bound for Unconstrained Strands. We
then improve the lower bound on the cost of batch synthesis
of unconstrained strands by showing that while the cost of all
batches are lower bounded by 2.5n − O(

√
n log k), the cost

of the most expensive batch is at least 2.5n+ Ω(
√
n logM).

Note that a similar statement does not hold for strands
without homopolymers. To prove that the cost of the most
expensive batch is 2.5n+Ω(

√
n logM), we consider a subset

S ′′ of strands that have disproportionately many (roughly,
n/4 + c

√
n logM ) repeated bases. We show that a random

set S contains many such strands (approximately
√
M) and

then prove that for random strands S from S ′′, the expected
cost costR(S) is at least 2.5n + c

√
n logM . This gives us a

lower bound of 2.5nk + c
√
n logM − O(k

√
n log k) on the

total cost of synthesising k batches (note, typically M � k).
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