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Abstract—Speech separation has been shown effective for
multi-talker speech recognition. Under the ad hoc microphone
array setup where the array consists of spatially distributed
asynchronous microphones, additional challenges must be over-
come as the geometry and number of microphones are un-
known beforehand. Prior studies show, with a spatial-temporal-
interleaving structure, neural networks can efficiently utilize the
multi-channel signals of the ad hoc array. In this paper, we
further extend this approach to continuous speech separation.
Several techniques are introduced to enable speech separation for
real continuous recordings. First, we apply a transformer-based
network for spatio-temporal modeling of the ad hoc array signals.
In addition, two methods are proposed to mitigate a speech
duplication problem during single talker segments, which seems
more severe in the ad hoc array scenarios. One method is device
distortion simulation for reducing the acoustic mismatch between
simulated training data and real recordings. The other is speaker
counting to detect the single speaker segments and merge the
output signal channels. Experimental results for AdHoc-LibiCSS,
a new dataset consisting of continuous recordings of concatenated
LibriSpeech utterances obtained by multiple different devices,
show the proposed separation method can significantly improve
the ASR accuracy for overlapped speech with little performance
degradation for single talker segments.

Index Terms—ad hoc microphone array, speech separation,
spatially distributed microphones, speaker counting

I. INTRODUCTION

In multi-talker automatic speech recognition (ASR), speech
separation plays a critical role for improving the recogni-
tion accuracy since conventional ASR systems cannot handle
overlapped speech. While a microphone array with a known
geometry has been widely used for far-field speech sepa-
ration [1]–[4], some attempts have recently been made to
utilize ad hoc microphone arrays for speech separation and
overlapped speech recognition [5]–[8]. Compared with the
fixed microphone array, the ad hoc microphone array com-
prising multiple independent recording devices, provides more
flexibility and allows users to use their own mobile devices,
such as cellphones or laptops, to virtually form the microphone
array system. Moreover, the distributed devices can cover a
wider space and thus provide more spatial diversity, which
may be leveraged by the speech separation algorithms.

There are two major challenges that arise from using the
ad hoc arrays. One is the input permutation problem where
the number and spatial arrangement of the microphones are
unknown and unfixed. The other is that the individual micro-
phone signals are asynchronous, which can be largely solved
with cross-correlation-based approaches [9]–[11]. To handle

the input permutation problem, a spatial-temporal-interleaving
(STI) neural network architecture was proposed [5]. This net-
work models the spatial and temporal correlation by stacking
cross-channel self-attention layers and cross-frame BLSTM
layers alternately. In [6], a guided source separation method
was applied to the ad hoc array-based separation by using
speaker diarization results, where a duplicate word reduc-
tion method was also proposed. In [8], an ad hoc array-
based target speech extraction was proposed by selecting 1-
best or N-best channels for beamforming. Transform-average-
concatenate [12] and a two stage-based method [13] were
proposed for spatially unconstrained microphone arrays, but
they were only evaluated with simulated data.

The previously proposed methods share a limitation that
they require prior knowledge of utterance boundaries, which
were often obtained from ground truth labels. However, in a
realistic conversation scenario, the boundary information of
overlapped speech is not easily obtainable. While [6] used
a speaker diarization system to acquire the utterance bound-
aries, it was based on offline processing whereas streaming
processing is desired in many applications. In addition, in
conversations, the speech overlap happens only occasionally.
Therefore, the separation system must not only deal with the
overlapped speech but also preserve the speech quality for
single speaker regions so as not to degrade the ASR accuracy.

In this paper, we apply continuous speech separation (CSS)
to the ad hoc microphone array setup. Previously, CSS was
used for fixed microphone arrays [14], [15] and a single
microphone setting [4], [16] to deal with real conversations.
It outputs a fixed number (typically two) of audio channels,
where each output channel contains at most one active speaker
at any time. When the input contains two overlapping utter-
ances, CSS must separate them and emit the separated signals
from different output channels. For segments with no speaker
overlaps, the incoming speech should be routed to one of
the output channels, while the other output channels produce
zero or negligible noise. For conversation transcription, a
conventional recognition system can be simply applied to each
output signal to enable multi-talker ASR.

Three additional steps are proposed to address ad hoc array-
based CSS challenges. A transformer-based architecture is
adopted to model the spatial and temporal correlation of the
ad hoc array signals. Moreover, two methods are introduced
to mitigate the duplicate speech problem [4], [6] in single
speaker regions, which becomes severe especially when the



array consists of different microphones. One is based on data
augmentation using device distortion simulation to mimic the
acoustic variations of different devices and thereby reduce the
mismatch between training data and real recordings. Also,
speaker counting is applied to merge the CSS output channels
into one if only one speaker is detected.

To enable ad hoc array-based CSS evaluation, we col-
lected a new dataset of long-form multi-talker audio with
different consumer devices including cell phones and laptops,
which we call AdHoc-LibriCSS. As with LibriCSS [15],
LibriSpeech [17] utterances were concatenated and played
back in different conference rooms from multiple loudspeakers
to create meeting-like audio files. Experimental results using
this dataset are reported.

II. CONTINUOUS SPEECH SEPARATION WITH AD HOC
MICROPHONE ARRAYS

A. Continuous speech separation

The CSS framework [14], [15], [18] attempts to cope with a
long-form input signal including multiple partially overlapped
or non-overlapped utterances in a streaming fashion. It is based
on an observation that, most of the time, there are only one or
two simultaneously active speakers in meeting conversations.
CSS applies a sliding window to the input signal and performs
separation within each window to produce a fixed number
of separated signals (two in our experiments). The window
size and the window shift we use are 4s and 2s, respectively.
To make the output signal order consistent with that of the
previous window position, the Euclidean distance is calculated
between the separated signals of the current and previous
windows over the overlapped frames between the two window
positions for all possible output permutations. The output order
with the lowest distance is then selected. The separated signals
are then concatenated with overlap-add technique.

B. Transformer-based spatio-temporal modeling

Fig. 1 shows the overall architecture and the spatio-temporal
processing block of our separation model. The model consists
of stacked spatio-temporal processing blocks, which adopts
a transformer-based (or more precisely transformer encoder-
based) architecture [19]. The input to the separation model is
a three-dimensional tensor comprising a multi-channel ampli-
tude spectrogram, followed by global normalization [5]. In
the spatio-temporal processing block, a cross-channel self-
attention layer exploits nonlinear spatial correlation between
different channels and was shown effective in [5]. A cross-
frame self-attention layer allows the network to efficiently
capture a long-range acoustic context [16], [20], [21]. After
mean pooling-based global channel fusion, two BLSTM layers
are further added to model the temporal correlation of the
consolidated signals. Finally, two frequency domain masks are
obtained with linear projection followed by ReLU activation.

C. Channel selection

In the ad hoc microphone array setting, the signal-to-
noise ratio (SNR) may vary significantly across channels due

Fig. 1. Overall separation model structure.

to the differences in microphone characteristics as well as
the large distances between different devices. Therefore, the
masks estimated for each speaker should be appplied to an
appropriate channel. We perform channel selection based on
posterior SNR estimation [5], [22] for each CSS window.
We directly apply the separation masks to the signals of the
selected channels instead of enhansing the signals with mask-
based beamforming [23], [24]. This is based on our informal
observation that people often pick up their phones during
meetings, making beamforming challenging.

III. ADDRESSING SPEECH DUPLICATING PROBLEM

In real meetings, single speaker regions occupy most of the
meeting time [25]. Therefore, it is crucial for speech separation
systems to preserve the audio quality for the single speaker
regions while performing speech separation for the overlapped
regions. Models trained with permutation invariant training
(PIT) [26] tend to generate zero signals when there are fewer
speakers than the model’s output channels [1]. However, in the
ad hoc microphone array settings, we observed that a resultant
model still sometimes generated two output signals for a single
speaker voice even when trained on both single- and multi-
talker segments. This results in a high insertion error rate for
ASR. This problem is more severe for the ad hoc microphone
arrays as the same single speaker voice captured by different
microphones can be acoustically very different. We describe
two methods for avoiding the duplicate speech problem: device
distortion simulation and speaker counting.

A. Data augmentation with device distortion simulation

Device distortion simulation is a data augmentation scheme
to reduce the mismatch between simulated training data and
real multi-channel recordings obtained with different devices.



The device distortion simulation consists of three steps: band-
pass filtering, waveform amplitude clipping, and delay per-
turbation. Each step involves variable parameters, which are
randomly chosen within a pre-set range for each microphone.
The implementation details are described in Sec. IV-B.

B. Output signal merger based on speaker counting

To further mitigate the speaker duplication issue, we apply
speaker counting in each CSS processing window. When zero
or one speaker is detected, the output signals of the separation
model are merged into either one of the output channels by
taking their sum. We then produce a zero signal from the
other channel. The speaker counting is performed by using a
randomly chosen one channel signal to avoid speaker counting
errors caused by the data mismatch between multi-channel
simulated training data and real recordings.

A transformer-BLSTM model similar to the speech separa-
tio model is trained for speaker counting. The model structure
is the same as Fig. 1 except that the speaker counting model
does not have cross-channel self-attention layers as it is based
on a single channel input. The model input is an STFT of a
randomly chosen single-channel signal. The model generates
a frame-level speaker counting signal. We examine two output
types for speaker counting. One model, which we call s1 in
the experiment section, has a two-output linear layer followed
by sigmoid nonlinearity for voice activity detection (VAD) for
each speaker. One node gets activated when only one speaker
is talking while two nodes become active when two people are
speaking simultaneously. This model is similar to the method
proposed in [4] and can be trained with PIT. Another model,
which refers to as s2, has one linear output node for directly
estimating the number of active speakers (0, 1 or 2 in our
work). In both cases, we also add speech separation nodes and
perform multi-task learning, which might help better align the
speaker counting learning with speech separation.

For each CSS processing window, we determine whether
there are multiple speakers in the currently processed window
based on the model output and a predetermined threshold. For
model s1, we decide that the current window contains multiple
speakers if the two nodes get activated (> 0.5) in three or more
consecutive frames. For model s2, the criterion is whether the
speaker counting node value is greater than 1.2 in three or
more consecutive frames.

IV. EXPERIMENT AND RESULTS

A. Evaluation data

Following the development of LibriCSS [15], we designed
and recorded a new dateset, namely AdHoc-LibiCSS, for
evaluation of ad hoc array-based speech separation and multi-
talker speech recognition algorithms under acoustically real-
istic conditions. The AdHoc-LibriCSS consists of recordings
of concatenated LibriSpeech utterances played back from
loudspeakers to simulate conversations. The recordings were
made with multiple devices such as cell phones and laptops.

As with LibriCSS, the new dataset comprises multiple mini-
sessions. Two different recording conditions are considered,

TABLE I
RECORDING SETUP DETAILS.

2-speaker 5-speaker
#loudspeakers 2 5
room personal office meeting room
duration per mini-session 4 mins 10 mins
#subsets / #mini-sessions per subset 4/20 4/8
#recording devices 5 5

which we refer to as 2-speaker and 5-speaker scenarios. The
details of these two recording conditions are shown in Table
I. There are four subsets, dev-no-overlap, dev-overlap, test-
no-overlap, and test-overlap, where the dev-∗ and test-∗ sub-
sets use the LibriSpeech dev-clean and test-clean utterances,
respectively. To enable fair comparison between the overlap
and no-overlap conditions, the same speech content is used to
create the overlap and no-overlap subsets.

For each mini-session, we firstly sampled N ∈ {2, 5}
speakers from the LibriSpeech dev or test set [17] while
ensuring that each utterance from every speaker was used only
once in the recording. We then re-arranged and concatenated
the utterances from each sampled speaker to form a simulated
conversation, which was played by N loudspeakers placed in a
room. Each loudspeaker uniquely represented one talker. The
loudspeakers and recording devices were randomly placed in
the room. The setup remained the same within each mini-
session. The overlap ratio for test-overlap was in the range of
0 to 30%, and that for dev-overlap was 10% to 40%. For each
mini-session, all raw recordings from different devices were
synchronized using cross-correlation before separation.

B. Training data

A training set consisting of 375 hours of artificially mixed
speech was constructed for speech separation and speaker
counting model training. We divided the training data into
five categories based on the overlap style as proposed in
[1]: 40% for single speaker segments, 9% for inclusive over-
lap segments, 6% for sequential overlap segments, 36% for
full overlap segments, and 9% for partial overlap segments.
Speaker and microhone locations as well as room dimensions
were randomly determined to simulate the ad hoc array setting
as described in [5], where room impulse responses were gen-
erated with the image method [27]. Gaussian noise was added
to each channel at an SNR of [−5, 15] dB. Device distortion
simulation was then applied to the noisy overlapped signals.
Each type of distortion was independently applied to each
device. The band-pass filtering, waveform clipping, and delay
perturbation were performed at probabilities of 40%, 5%, and
80%, respectively. The low and high cutoff frequencies of
the band pass filter were uniformly sampled from [50, 200]
Hz and [4000, 7000] Hz, respectively. The clipping ratio was
uniformly sampled from [0.55, 0.9]. The delay for each device
was uniformly sampled from [−20, 20] ms. A validation set
of 20 hours was also generated in the same way.



TABLE II
WERS OF 2-SPEAKER SCENARIO (%). SHADED AND UNSHADED RESULTS

ARE FOR THE NO-OVERLAP AND OVERLAP SUBSETS, RESPECTIVELY.

Overlap
ratio % ori sep sep

+dis
sep+dis+spk-cnt

s1 s2
dev-set

0 12.01 18.13 16.02 13.23 12.46
[10, 20) 16.25 21.52 19.83 15.68 15.12
(20, 30) 24.19 16.75 15.87 17.12 15.96
(30, 40] 32.65 20.98 19.85 20.14 19.64

test-set
0 12.23 26.94 16.49 12.79 11.67

(0, 10) 12.93 17.88 13.48 12.08 12.25
(10, 20) 16.98 23.40 18.05 16.00 13.99
(20, 30] 25.08 29.86 18.85 16.24 15.17

C. Training schemes

For a separation model, the input waveform of each chan-
nel was transformed into an STFT representation with 257
frequency bins every 16 ms. Layer normalization was per-
formed on the input magnitude spectrum vectors. Three spatio-
temporal processing blocks were stacked. The self-attention
for spatial modeling and temporal modeling both had 128-
dimensional embedding spaces and eight attention heads. The
last two BLSTM layers contained 512 cells for each direction.
We adopted PIT using an amplitude spectrum-based MSE
loss. The model was trained for 50 epochs while saving the
model parameters at the end of each epoch. The best model
parameters were chosen based on the dev set WER.

Our speaker counting models had three cross-frame self-
attention layers, each followed by a feed-forward layer. Two
BLSTM layers and a final linear layer are stacked on top.
The VAD-based s1 model had a sigmoid activation function
to produce two VAD signals. For both models, we performed
multi-task learning by using speech separation as an auxiliary
task. It should be noted that, for s1 model training, PIT
was independently applied to speech separation and VAD
estimation. Both speaker counting models adopted an MSE
loss for training. The separation loss and the speaker counting
loss were given an equal weight. At test time, the separation
output was ignored. Model training was continued until a
validation loss did not decrease for 10 continuous epochs.

D. Evaluation scheme

For each mini-session, the CSS module using the trained
separation model generated two output streams, each of which
was then processed by a speech recognizer. Then, the recog-
nition outputs were evaluated with asclite [28], [29], which
can align multiple (two in this work) hypotheses against
multiple reference transcriptions. We used an in-house hybrid
ASR system [30] with 5-gram decoding trained on 33k hours
of audio, including close-talking, distance-microhpone, and
artificially corrupted speech.

E. Results and discussions

Tables II and III show the WER results for various overlap
ratios for the 2-speaker and 5-speaker scenarios, respectively.
For the dev-overlap and test-overlap subsets, the results are

TABLE III
WERS OF 5-SPEAKER SCENARIO (%). SHADED AND UNSHADED RESULTS

ARE FOR THE NO-OVERLAP AND OVERLAP SUBSETS, RESPECTIVELY.

Overlap
ratio % ori sep sep

+dis
sep+dis+spk-cnt

s1 s2
dev-set

0 12.85 17.19 15.50 13.05 12.15
[10, 20) 16.80 17.03 15.47 13.69 13.90
(20, 30) 26.38 16.76 18.58 16.50 16.73
(30, 40] 28.28 19.09 19.51 18.64 17.68

test-set
0 15.50 20.44 16.57 13.62 13.70

(0, 10) 15.27 15.60 12.79 11.51 11.38
(10, 20) 21.07 16.76 15.65 14.82 15.43
(20, 30] 29.42 22.27 20.05 17.92 17.34

broken down by the mini-session overlap ratio. For each
setting, we present the results of the following systems: (1)
ASR applied to a randomly chosen channel without speech
separation (ori); (2) ASR applied to the signals separated
by the model trained without data augmentation (sep); (3)
ASR applied to the signals separated by the model trained
on device distortion simulated data (sep+dis); (4) systems
performing speaker counting-based channel merger on top of
(3) (sep+dis+spk-cnt).

The results show that the separation model improved the
WER for highly overlapped cases, but it resulted in sig-
nificant degradation for less overlapped cases without the
proposed duplication mitigation methods. This was mostly due
to increased insertion errors. Applying the device distortion
simulation for the training data substantially improved the
WERs in most cases. However, the WER degradation for
the no-overlap subsets was still significant for both the 2-
speaker and 5-speaker cases. The channel merger processing
using speaker counting mostly solved this problem, resulting
in significant WER improvement for the highly overlapped
data without compromising the ASR accuracy for the no-
overlap subset. Among the two speaker counting schemes,
the s2 system outperformed the s1 system in the 2-speaker
scenario for almost all overlap conditions. In the 5-speaker
case, both models performed equally well.

V. CONCLUSIONS

We described a CSS system for ad hoc microphone arrays. A
transformer-based architecture was applied for separation. To
mitigate the speech duplicating problem for non-overlapped
segments, we proposed data augmentation based on device
distortion simulation to reduce the mismatch between training
data and the real recordings obtained with spatially distributed
devices. The use of speaker counting was also introduced
to further mitigate the issue. Multi-talker ASR experiments
were performed by using newly recorded AdHoc-LibriCSS,
showing that the proposed system significantly improved the
ASR accuracy for recordings including various degrees of
overlaps while retaining the WER for non-overlapped speech.
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