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Abstract

Commonsense generation is a challenging task
of generating a plausible sentence describing
an everyday scenario using provided concepts.
Its requirement of reasoning over common-
sense knowledge and compositional general-
ization ability even puzzles strong pre-trained
language generation models. We propose a
novel framework using retrieval methods to
enhance both the pre-training and fine-tuning
for commonsense generation. We retrieve pro-
totype sentence candidates by concept match-
ing and use them as auxiliary input. For fine-
tuning, we further boost its performance with
a trainable sentence retriever. We demonstrate
experimentally on the large-scale Common-
Gen benchmark that our approach achieves
new state-of-the-art results.

1 Introduction

The understanding of commonsense knowledge in
human language has been acknowledged as a crit-
ical component for artificial intelligence systems.
In recent years, many new tasks and datasets are
proposed to assess NLP model’s ability of common-
sense reasoning (Yu et al., 2020). SWAG (Zellers
et al., 2018) is a task of inferring the upcoming
event based on a partial description using common-
sense. CommonsenseQA (Talmor et al., 2019) is
a commonsense question answering dataset built
from ConceptNet. Recently, Lin et al. (2020) pro-
pose CommonGen, a new challenge for evaluating
model’s ability of generative commonsense reason-
ing.

CommonGen requires the system to construct
a plausible sentence based on several concepts re-
lated to an everyday scenario. Two examples for
this task is shown in Table 1. The task is challeng-
ing because the system needs to organize provided
concepts into the most plausible scenario, avoid
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Concept Set #1:
dog, frisbee, catch, throw
Gold Target Sentence:
A dog leaps to catch a thrown frisbee.
The dog catches the frisbee when the boy throws it.
A man throws away his dog ’s favorite frisbee expecting him
to catch it in the air.

Concept Set #2:
lake, shore, canoe
Gold Target Sentence:
Canoe on a shore of lake.
Canoe on shore with rainbow across the lake.
Several canoes parked in the grass on the shore of a lake.

Table 1: Two concept sets and their gold corresponding
sentences from CommonGen dataset.

violation of commonsense, and ensure the gener-
ated sentence is grammatically correct. Existing
approaches fine-tune pre-trained encoder-decoder
models for description construction with concate-
nated concepts as input.

Fan et al. (2020) propose a retrieve-and-
generation method for commonsense generation
which uses a prototype candidate sentence as auxil-
iary input. However, their retriever is non-trainable
and only works for the fine-tuning process. In this
work, we extend this idea and propose a novel
framework for commonsense generation by us-
ing retrieval method for enhancing both the pre-
training and fine-tuning stages. Furthermore, we
design a trainable prototype sentence retriever to
further boost generation performance.

We conduct experiments on CommonGen (Lin
et al., 2020) benchmark dataset. It contains 35,141
concept sets and 79,051 corresponding sentences.
Each concept set is mapped to multiple correspond-
ing sentences. Our approach achieves new state-of-
the-art results on CommonGen on several metrics,
including BLEU, CIDEr and SPICE.



2 Method

We frame CommonGen challenge as a sequence-
to-sequence task and adopt T5 (Raffel et al., 2020),
a powerful pre-trained encoder-decoder model, as
our base model. Fan et al. (2020) find concepts-
related sentences in external corpora can benefit re-
lational reasoning for CommonGen. We extend this
idea by proposing retrieval-enhanced T5 (RE-T5)
which equips original T5 with a trainable retriever
for selecting prototype sentences based on given
concepts. Meanwhile, referring to (Zhou et al.,
2021), we design a pre-training task for Common-
Gen which continue to pre-train RE-T5 on pseudo
concept sets extracted from external corpora. We
also use a retriever in this pre-training stage.

Formally, given a concept set X =
{x1, x2, . . . , xn}, where xi represents the i-
th concept and n is the number of concepts, our
goal is to generate a natural language output of
tokens Y = {y1, y2, . . . , ym}, which describes a
common scenario in our daily life, using all given
concepts in X .

2.1 Retrieval

Since external corpora have lots of scenario knowl-
edge to describe the relationship between con-
cepts (Fan et al., 2020), we retrieve sentences re-
lated to input concepts to help the model perform
better commonsense reasoning. First, given an in-
put concept set, we extract all sentences from exter-
nal corpora that contain at least two concepts in the
input x as candidate set Z . Then, We design two
retrieval models, matching retriever and trainable
retriever, to further retrieve k prototype sentences
Z = {z1, z2, . . . , zk}, Z ⊆ Z as auxiliary input
context for RE-T5.

Matching Retriever The matching retriever first
orders candidate sentences by the number of con-
tained concepts. Then it simply samples k sen-
tences starting from sentences that contained the
most concepts as the auxiliary input.

Trainable Retriever In order to retrieve more
useful sentences from the sentence candidate set,
we design a trainable retriever, which predicts
scores to rank these candidates, and then select
top-k sentences as additional context. The scorer
is built based on BERT (Devlin et al., 2019), a
pre-trained language model usually used for lan-
guage understanding. Given a concept set X and a
candidate sentence zi, our trainable retriever first

concatenate them into a text input:
[CLS]X[SEP]zi[SEP]

where [CLS] and [SEP] are special symbols in
BERT.

We pass this into BERT, which generates an
output vector for each input token. We take the
output vector corresponding to [CLS] which is
used as the aggregated representation of the input
sequence (denoted c ) into a linear layer with sig-
moid activation to obtain the binary classification
output yc.

yc = σ(W cc+ bc) (1)
where W c is a projection matrix and bc is a bias.

To train this retriever, for each concept set in
CommonGen training set, we use its paired sen-
tence as a positive example and we randomly sam-
ple another sentence, also from the training set, as
a negative example. Then, we adopt cross entropy
loss for this binary classification. The top-k scored
sentences with the highest scores will be selected
as the auxiliary input Z.

We will describe how these two retrievers are
used in CommonGen pre-training and fine-tuning
stages.

2.2 Pre-training
To enhance model’s ability of commonsense rea-
soning, we design a pre-training task for RE-T5
which is similar to original CommonGen task. In
more details, given a sentence from external cor-
pora, we first use spaCy (Honnibal et al., 2020) to
tag the sentences with part-of-speech and extract
Verb, Noun and Proper Nouns as pseudo concept
phrases. We then only keep phrases in Concept-
Net (Speer et al., 2017) and remove concept-sets
that appear in CommonGen’s testset. We use the
original sentence as the target sentence, and con-
structs a pre-training task of using RE-T5 to gener-
ate this sentence given pseudo concepts.

Due to the extraction method for pseudo con-
cepts, when retrieving prototype sentences, for
each concept set in pre-training data, we have a
large candidate set Z with an excessive number of
candidate sentences. This leads to a long inference
time for using the trainable retriever. Thus, due to
speed consideration and also to introduce a degree
of randomness into pre-training, we use the match-
ing retriever to retrieve k sentences as auxiliary
input Z.

After retrieval, RE-T5 takes the concatenation
of input concepts and retrieved prototype sentences
as input, and the original sentence as output.



Model BLEU-4 CIDEr SPICE SPICE(v1.0)
GPT-2 (Radford et al., 2019) 26.833 12.187 23.567 25.90
BERT-Gen (Bao et al., 2020) 23.468 12.606 24.822 27.30
UniLM (Dong et al., 2019) 30.616 14.889 27.429 30.20
BART (Lewis et al., 2020) 31.827 13.976 27.995 30.60
T5-Base (Raffel et al., 2020) 18.546 9.399 19.871 22.00
T5-large (Raffel et al., 2020) 31.962 15.128 28.855 31.60
EKI-BART (Fan et al., 2020) 35.945 16.999 29.583 32.40
KG-BART (Liu et al., 2021) 33.867 16.927 29.634 32.70
CALM (Zhou et al., 2021) - - - 33.00
RE-T5 (ours) 40.863 17.663 31.079 34.30

Table 2: Test results on CommonGen benchmark. All results are based on the latest human references. v1.0
indicates evaluation with old evaluation protocol.1

2.3 Fine-tuning

At fine-tuning stage, we use trainable retriever to
score sentences from candidate set Z and select
top k sentence as additional context Z. Similar
to pre-training, RE-T5 takes the concatenation of
input concepts and retrieved prototype sentences
as input, and the original sentence as output.

3 Experiments
3.1 Experiments Settings

Dataset CommonGen is a benchmark dataset de-
signed to diagnose whether a model has the ability
of generative commonsense reasoning (Lin et al.,
2020). This dataset contains 32,651/993/1,497
concept sets for training/development/test, and
the numbers of corresponding sentences are
67,389/4,018/7,644. We use BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015)
and SPICE (Anderson et al., 2016) as evaluation
metrics. Because SPICE correlates the most with
human evaluation (Lin et al., 2020), we take SPICE
as the primary metric.

External Corpora We use VATEX (Wang et al.,
2019), Activity (Krishna et al., 2017), SNLI (Bow-
man et al., 2015) and MNLI (Williams et al., 2018)
as external corpora. We sample 500k sentences
from these corpora to constructing our pre-training
dataset. Meanwhile, these datasets are also used
as our sentence pool for the retrieval module. For
both the pre-training and fine-tuning, all sentences
that appear in the target are not used as retrieval
sentences candidates.

1https://inklab.usc.edu/CommonGen/leaderboard.html

Baselines We compare RE-T5 with several base-
line systems. GPT-2, BERT-Gen, UniLM, BART,
and T5 are pre-trained language models tested in
(Lin et al., 2020). They are all fine-tuned on Com-
monGen training set with concatenated concepts
as input and description sentence as output. EKI-
BART (Fan et al., 2020) is a retrieve-and-generate
framework for CommonGen, where they use a sim-
ple retriever to enhance pre-trained BART (Lewis
et al., 2020). KG-BART (Liu et al., 2021) aug-
ment BART with Knowledge Graph on both the
encoder and decoder side and continue to pre-train
BART with a masked concept token generation
task. CALM (Zhou et al., 2021) designs several
self-supervised strategies encouraging model to fo-
cus on concept-centric information.
Implementation Details We adopt the T5-base
as the generation model and BERT-base as the train-
able retriever in fine-tuning. We use the Hugging-
face Transformer (Wolf et al., 2020) for model im-
plementation. For pre-training phase, we use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with an initial learning rate of 2e-6, and the model
is pre-trained for 3 epochs. For fine-tuning, the
models are optimized using AdamW with an initial
learning rate of 5e-5 and trained for 20 epochs. For
the number of the retrieved sentences k, we exper-
imentally choose 3. More implementation details
are in Appendix.

3.2 Results

Table 2 shows results of different approaches on the
CommonGen testset. RE-T5 outperforms all pre-
vious approaches by a large margin in all metrics
and sets a new state of the art. RE-T5 combines
the generation flexibility of pre-trained language
model and the interpretability and modularity of



Concept Set:
trailer shirt side sit road
T5:
A man sits on the side of a trailer and a shirt.
Matching Retriever:
(1)Two guys in red shirts are sitting on chairs, by the side of the road, behind that open trailer.
(2)Two men, one wearing a straw cone hat, blue shirt, talking with a guy in a tan sunhat, red
plaid shirt, both with baskets in front of them, sitting on the side of a dirt road.
(3)An older guy with a tan shirt and hat sitting on the side of a road with bricks all around him
and a small green bowl on the side.
RE-T5(matching retriever):
a man in a tan shirt sits on the side of a road.
Trainable Retriever:
(1)Two guys in red shirts are sitting on chairs, by the side of the road, behind that open trailer.
(2)Teenagers in matching shirts stand at the side of the road holding trash bags.
(3)A man in a white shirt and black pants standing at the side or the road.
RE-T5(trainable retriever):
a man in a white shirt and black pants sits on the side of a trailer on the road.

Table 3: An example of sentences retrieved by different retrievers and sentences generated based on them.

Model SPICE
T5 30.80
T5 + MR 33.60
T5 + MR + pretrain 33.90
RE-T5 (T5 + TR + pretrain) 34.30

Table 4: Ablation results on the test set of Common-
Gen. Note that MR denotes Matching Retriever and TR
denotes Trainable Retriever.

a trainable retrieval-based approach. Unlike EKI-
BART (Fan et al., 2020) and KG-BART (Liu et al.,
2021), RE-T5 enjoys strong results without model
architecture modification. It is worth noting that
although T5-base baseline does not perform as well
as BART (Lewis et al., 2020) baseline, our method
still outperforms the two improved BART-based
methods mentioned above. RE-T5 demonstrates
that for state-of-the-art performance, neither model
modification nor complex fusion of knowledge
graphs is necessary, only a simple and effective
trainable retriever is needed.

Ablation Study We conduct ablation experi-
ments as shown in Table 4. First, we can see that
RE-T5 model outperforms the backbone T5 model
by a large margin in all metrics, with 3.5 improve-
ment in the main metric SPICE. The second line of
Table 4 shows that, although large-scale pre-trained
language models have been shown to learn and
store a substantial amount of the world knowledge
implicitly from the massive text corpora (Petroni
et al., 2019), the retrieved sentences from external
corpora can still explicitly expose lots of scenario
knowledge to describe the relationship between
concepts. The third line indicates that further pre-

training with data augmentation is helpful to im-
prove the performance of the model. In addition,
the last line demonstrates that a trainable scorer can
capture more helpful knowledge for the model for
commonsense generation.

Example Analysis Through the example in Ta-
ble 3, we can observe that the baseline model T5
generates a sentence without concept ”road”, and
the juxtaposition between ”trailer” and ”shirt” in
this sentence is not in line with common sense. For
both matching retriever and trainable retriever, the
retrieved sentences remind the model not to forget
the concept ”road”, in addition to providing the
relationship between shirt and person. Since match-
ing retriever randomly retrieves sentences based on
the number of concepts they contain, it tends to re-
trieve longer sentences to contain as many concepts
as possible, which may confuse the model and thus
ignore some concepts, for example, the sentence
generated by RE-T5 (matching retriever) in this
example is missing the concept ”trailer”. RE-T5
(trainable retriever) can solve the above problems
and generate a sentence that is fluent and in the line
with common sense.

4 Conclusions

In this paper, we empirically investigated RE-T5,
which utilizes a trainable retriever to retrieve sen-
tences from external corpora to enhance the gen-
erative commonsense reasoning capability of pre-
trained language model, such as T5. The state-of-
the-art result achieved by RE-T5 on CommonGen
benchmark demonstrates that a simple yet effec-
tive trainable retriever can be a useful addition to



the pre-trained language model for commonsense
generation.
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A Implementation Details

During pre-training, we use the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with weight
decay 0.01, adam epsilon 1e-6, and a warmup frac-
tion of 0.01. We use a batch size of 16, and gra-
dient accumulation of 4 batches. For fine-tuning,
the models are optimised using AdamW optimizer
with initial learning rate 5e-5, batch size 64, gradi-
ent accumulation 3 and warmup fraction 0.01, and
the model is trained for 20 epochs.

Meanwhile, the BERT-base scorer is optimised
using AdamW optimizer with an initial learning
rate 2e-5, batch size 64, and the model is trained for
3 epochs. For the number of the retrieved sentences
k, we experimentally choose 3. All experiments
are conducted using 4 V100 with 32 GB memory.


