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Abstract

The wealth of open-source software development artifacts
available online creates a great opportunity to learn the pat-
terns of performance improvements from data. In this paper,
we present a data-driven approach to software performance
improvement in C#. We first compile a large dataset of hun-
dreds of performance improvements made in open source
projects. We then leverage this data to build a tool called
PerfLens for performance improvement recommendations
via code search. PerfLens indexes the performance improve-
ments, takes a codebase as an input and searches a pool of
performance improvements for similar code. We show that
when our system is further augmented with profiler data
information our recommendations are more accurate. Our
experiments show that PerfLens can suggest performance
improvements with 90% accuracy when profiler data is avail-
able and 55% accuracy when it analyzes source code only.

CCS Concepts: - Computer systems organization; - Com-
puting methodologies — Machine learning; « Software
and its engineering — Software performance;
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1 Introduction

Inefficient code sequences can cause significant performance
degradation and resource waste, referred to as performance
bugs. Detecting and fixing performance bugs is important
as these bugs can lead to poor user experience, reduced
throughput, increased latency, and wasted resources. How-
ever, performance bugs are hard to detect as they don’t cause
system failure, are dependent on user input, and in some
cases, only manifest with specific inputs. These bugs can
be introduced even by expert developers in well known ap-
plications [6, 9, 10, 14] and can propagate quickly due to
prevalence of code re-use. Even when performance bugs are
detected, they are more difficult to fix than non-performance
bugs [11, 15]. Therefore, better tool support is needed for
fixing performance bugs.

In recent years, a variety of techniques have been pro-
posed to detect performance issues, majority of which rely
either on static code analysis or application profiling [3, 5].
Profiling is an important analysis technique, where an ap-
plication is analyzed dynamically to determine its space and
time complexities and usage of its instructions that reveal
performance bottlenecks [16]. However, profiling is not al-
ways available and static analysis only detects a small subset
of bugs based on pre-defined rules. With the recent wide-
spread availability of open source repositories, it has become
possible to use data-driven techniques to discover patterns
of performance improvements. In this paper, we present
techniques that use machine learning to collect performance
improvements. We then describe PerfLens, a novel perfor-
mance improvement recommendation system that leverages
collected data to suggest improvements in C# code. PerfLens
operates in two modes: (i) basic source code analysis mode
that only analyzes source code and (ii) combined profiler data
and source code analysis mode that uses both profiler data and
source code to suggest improvements. Our evaluation on five
open source and five proprietary projects shows that Per-
fLens can suggest fairly accurate performance improvements
especially when used with profiler data.
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2 Performance Improvement
Recommendation Engine

In this section, we first describe how we leverage machine
learning to collect performance PRs (Pull Requests) from
open source projects. We then explain details of our perfor-
mance improvement recommendation algorithm. Finally, we
explain how we leverage profiler data to further prune and
rank our recommendations.

2.1 Collecting Performance Improvement Data

Given the complexity and variation of performance issues,
a large number of examples are necessary to make valid
recommendations for different scenarios. We used a semi-
supervised data gathering approach to gather relevant PRs
from Github. We first gathered 6 million PRs from 4559 C#
repositories with >100 stars. To identify performance PRs,
similar to prior work [2, 11], we started by selecting 100
repositories from our data set. For these repositories, we
found all the PRs that contained a performance-related key-
word ("perf”, "performance”, "latency”, "slow" etc.) in their
title, description, etc. We then manually labeled these PRs to
be performance and non-performance related, which yielded
60 performance PRs and 120 non-performance PRs. We used
the set of labeled PRs to train a binary classifier to detect
whether or not a PR is performance related. From each PR,
we collected the title, description, commit texts, and the be-
fore and after code in each modified file. We then extracted
two sets of features: text features and source code features.

Source Code Features To get a represent the code changes in
a PR, we tokenized the before and after code in each modified
file. We then converted the extracted sequences of tokens
to a vector representation by taking the differences in the
before and after raw counts using bag-of-words [8].

Text Features To get a feature representation of the PR title,
description and commit messages, we transformed the texts
to lower-case, removed all special characters and common
stop-words, and lemmatized the text. Unlike source code
features, we used TF-IDF (term-frequency inverse-document-
frequency) scores to vectorize text features.

We first trained a Random Forest classifier using the above
features and our labeled data, to detect whether or not a PR
is performance related. We ran the classifier on our large
PR pool in multiple iterations to classify unlabeled PRs. On
each iteration, we re-trained the classifier on the cumula-
tive labeled data from past iterations. We then leveraged
the classifier we trained to classify the rest of the unlabeled
PRs, taking the high confidence results as positive samples
and low confidence results as negative samples based on
a threshold, incorporating them into our training data for
future iterations. This allowed our model to learn new per-
formance improvement code and text patterns and find new
PRs on every iteration. After 10 iterations, we had collected
1350 performance PRs, which included 3022 commits.
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2.2 Performance Improvement Recommendation

We used the PRs we gathered to build a performance im-
provement recommendation engine by building an index
of recommendations based on the collected PRs. For every
modified function in each PR, we parse the before and after
version of the function and create a simplified parse tree and
featurize the differences in the simplified parse trees. We
then create an index out of all the differences in the features
collected from the before and after snippets. Given a code
snippet as input query, we return a set of recommended
code improvements from the index. Below we explain the
featurization and recommendation steps in detail.

2.2.1 Featurization. We first convert each parse tree into
a simplified parse tree (SPT) as described in previous work
in code search [7]. We then extract a set of features from
each SPT. A key requirement of these features is that two
similar code snippets, should yield a similar set of features.

For each SPT, we extract two kinds of features: Structural
and Performance Features.

Structural Features Similar to [7], we define the follow-
ing features for all non-keyword tokens in the SPT:

o A Token Feature which is the label representing a non-
keyword token.

e Parent Features of the form (token, iy, parent), (token,

ip, grand-parent), and (token, i3, great-grand-parent),

where i; is the index of token in its parent’s list of

children, i, is the index of parent in grand-parent’s

list of children and i3 is the index of grand-parent in

great-grand-parent’s list of children.

Sibling Features of the form (token, next token) and

(previous token, token) where previous token and

next token are the previous and next non-keyword

tokens tokens relative to token with no intervening

non-keyword tokens.

Variable Usage Features is only defined for tokens rep-

resenting local variables in the program and is of the

form (Context(previous usage token), Context(token))

and (Context(token), Context(next usage token)). For

a non-keyword token n, Context(n) is defined as:

— Tuple (i, p), where p is parent of n and i is index of
n in p’s list of children, if label of p is not #.#.

— First non-keyword token after n in program that is
not a local variable.

Performance Features These are designed to capture
performance related characteristics of a C# code snippet.

e Chain Invocation Feature is of the form (function to-
ken, next function token), where these tokens are or-
dered pairs of consecutive methods that are chained
in a single statement. For instance, for the snippets
in Figure 1, we would extract the feature (Where,
FirstOrDefault) because they contain consecu-
tive calls to these methods within a single statement.
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foreach (var client in Clients) {
var nodes = client.GetNodes();

VA

‘ INode parent = nodes.Where(x => x.GetNodeId() == client.Id) .FirstOrDefault ();

// Suggestion

private void GetCurrentFolder (bool create)

{

foreach (var p in m_path.Split (new string|[]

{

/")

var el = PagedFileListResponse (id) .Where(x => x.Name == p).FirstOrDefault ();
var el = PagedFilelListResponse (id) .FirstOrDefault (x => x.Name == p);
/)

Figure 1. Sample code snippet followed by a performance improvement suggestion by PerfLens. The suggestion to di-
rectly call FirstOrDefault with the lambda function and omit the call to Where, which is more efficient. This is rec-
ommended because both code snippets are structurally similar and have a common Chain Invocation feature (Where,
FirstOrDefault). The suggestion itself was collected by our Performance PR mining model and was extracted from a

pull-request! to the open source C# project, Duplicati.

e Nested Function Call Feature is of the form (function
token, nested function token), where first token is a
non-keyword token associated with a function and the
second is the non-keyword token for a function that’s
called from the argument list of the first function.

e Repeat Function Call Feature is of the form (function
token, invocation expression) repeated as often as the
max number of times the same invocation i.e. func-
tion call with same parameters is found on any path
through the Control Flow Graph within the method.

o Definition & Use Feature is of the form (function token,
usage token), where the first token is the identifier of
the function call in the most recent assignment to a
variable and the second token is the identifier of the
variable’s member function/property that’s accessed.

o Member Access Feature is only defined for variable to-
kens in the program. It is of the form (usage token,
next usage token), where the two tokens are the iden-
tifiers associated with the variable members (function,
properties, etc.) that are accessed in these two usages.

2.2.2 Recommendation Algorithm. For each function
f with before code f; and after code f3, let F(f;,) and F(f,)
represent the multi-set of features extracted from before
and after code. Then the difference between them, D(f) is
defined as D(f) = {x € F(f) | mp(x) < mgy(x) }, where
mp(x), mg(x) represent the frequency of feature x in multi-
sets F(f,) and F(f,) respectively. If feature x is not present
in a multi-set, function m returns 0. D(f) represents code
that was modified by the developer in before code. We then
create an index where each document is the pair (f, D(f)).

https://github.com/duplicati/duplicati/pull/3410
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To make recommendations for a given query g and each
function, f; within the query, we extract features F(f;) using
featurization explained above. We then filter out documents
that don’t have any performance features in common with
the query function. This initial filtration helps us limit our
search to only the PR’s that fix issues that may be present
in the query function. We then search the filtered index for
the best possible recommendations with each document, d,

is scored as follows: Score(fg, d) = % If we find doc-
uments with a high similarity score(> 0.8), we report the
function as buggy and return a ranked list of suggestions.
Using this algorithm, Figure 1 shows a suggestion to simplify
the LINQ [12] query in the boxed snippet using the transfor-
mation shown in the snippet below i.e. remove the call to
Where () and move its contents to FirstOrDefault ().
This index entry is selected because both the code snip-
pet and the document associated with this suggestion have
Chain Invocation feature (Where, FirstOrDefault)
in common and are structurally similar to one another.

2.3 Pruning Recommendations Based on Profiler
Data

Many commonly used software systems and services lever-
age performance profiling to monitor their service perfor-
mance. When profiler data is available, we use it to further
prune our list of performance recommendations. We first
analyze profiler data to determine hot code paths and rec-
ommend changes only for functions on a hot code path.

2.3.1 Hot Code Path Function Detection. We find hot
code path functions at every depth of the stack trace indi-
vidually by considering functions whose CPU or memory
usage is above 2.5 standard deviations from the average at
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Figure 2. Scatter plot showing stack depth based outlier de-
tection. Each point in the scatter plot corresponds to the CPU
usage of a stacks at the same depth. A dotted line shows the
outlier threshold of 2.5 standard deviations from mean. The
outlier stack (in red) was later confirmed to be a performance
bug by the project owners.

its depth. The majority of performance bugs are expected
to be among these functions. Figure 2 shows CPU usage of
various functions at one depth of a stack trace. The red dot
represents a hot path function later confirmed to be a bug.

2.3.2 Performance Improvement Recommendations
on Hot Code Paths. Instead of using all the functions in the
application as queries, we only provide recommendations for
the hot code path functions. We use each detected function as
a query to our recommendation algorithm explained above.

3 PerflLens

Based on the approach discussed, we built a software system
called PerfLens. PerfLens is a performance bug detection
and fix suggestion platform that suggests performance im-
provements when possible. When profiler data is available,
PerfLens performs a combined source code and profiler data
analysis. In absence of profiler data, the system uses source
code analysis to detect performance bugs and fix suggestions.
Details for each component are described below.

Source Code Analyzer Our source code analyzer takes the
entire source code repository as the input. It parses every
file and creates a simplified parse tree for each class found
within the file. For each method within a class, the feature
extraction component extracts features as explained in 2.2.1.
Features for each method are then used as a query against
the search index and if a matching document with a high
score is found based on our search algorithm described in
2.2.2, we report the PR associated with the match as code
suggestions to help developers fix the issue.

Profiler Data Analyzer When profiler data is available,
PerfLens only analyzes functions on the hot-code path.

4 FEvaluation

We conducted two experiments of PerfLens. The goal of
the first experiment was to gauge the accuracy of our basic
source code analysis capabilities. The second experiment
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focused on the effectiveness of our combined profiler data
and source code analysis techniques.

4.1 Experiment 1: Basic Source Code Analysis

We ran PerfLens basic source code detection analysis on
five popular C# open source projects. A performance expert
analyzed and verified the correctness of our results. Table
1 show the number of issues that we found in each project
and the accuracy of the detection.

On average the accuracy of PerfLens suggestions was 55%.
The majority of false positives were caused by our assump-
tion that performance changes are confined to individual
methods, when in practice performance changes often span
multiple methods or classes. When creating the index, we
split performance PRs into methods and assume that the
changes made in the before and after code can be used as
self-contained recommendations. In some cases, however,
these changes do not completely capture the intent of the
performance changes made by the developer as they might
be part of a larger code change such as a refactoring or a sys-
tematic change across the file. As a result, these documents
may not contain a complete performance change, but might
still be recommended for a given query. This was the cause
for most of the false positives seen in AngleSharp.

Some false positives were due to mismatch in scope of a
variable between the suggestion and the query function in
cases where scoped control structures (if-statement, for-loop)
were involved. We believe that this may be because some
performance features such as Member Access or Definition
& Use features lack information about the control structure
or variable scope. Similar to prior work [7], we omitted cer-
tain details such as scope information from our features on
purpose because a feature set that is too specific may cause
PerfLens to only suggest changes when it finds identical
code and can impact the variety of recommendations.

4.2 Experiment 2: Combined Profiler Data and
Source Code Analysis

For the second experiment, we picked five active proprietary
projects with profiler data. We then ran PerfLens analysis
on these projects. Table 2 shows the number of issues found
in each project alongside the accuracy of the detection.

Similar to experiment 1, many of the false positives ob-
served in project E, were caused by the similarity of a hot
code path function to a function in a PR that was part of a
large performance change that spanned multiple functions
but was not a valid performance change by itself.

4.3 Overall Results

In both experiments, PerfLens was able to detect and recom-
mend fixes for a wide range of performance problems. For
instance, some suggested changes addressed issues related
to the use of .NET functionality. These included suggestions
like using the Count property when checking whether a
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Table 1. Number of performance suggestions in each project

Project Name | # of functions

# of suggestions

% of correct suggestions

Serilog 1325 6 83%
octokit.net 11441 4 50%
VsVim 8980 5 60%
FluentCassandra 3949 12 58%
AngleSharp 6858 9 22%

Table 2. Number of performance suggestions in each project

Project Name | # of functions

# of bottleneck functions

# of suggestions % of correct suggestions

A 9522 3 1 100%
B 9631 21 2 100%
C 8196 34 1 100%
D 170179 20 2 100%
E 26359 15 8 50%

List is empty instead of Any () that has the added cost of
enumeration, simplifying LINQ queries similar to suggestion
in Figure 1, replacing multiple string concatenations with
StringBuilder to reduce string allocations, replacing
ContainsKey () with TryGetValue () to reduce the
number of accesses toaDictionary, merging Any () and
First () calls to a single call to FirstOrDefault (),
removing unnecessary ToList () calls to reduce List al-
locations, etc. PerfLens was also able to make more general
performance suggestions for optimizations like caching the
results of repeated method calls with the same parameters,
hoisting allocations to an outer scope to prevent repeated al-
locations and specifying the size when allocatinga List ora
Dictionary when an exact count is available beforehand.
We found that, although our basic source code detection
technique is promising, the combined approach performs
much better. While the average accuracy of the basic source
code approach is 55%, the average accuracy of our profiler
data and source code analysis approach was 90%. However,
since profile data is not always readily available, we built
PerfLens to be able to operate in both modes. This will allow
any C# application to benefit from our recommendations.

5 Discussion

Our experiment results validate the quality of the PR data
we gathered. Similar to [2, 13], our dataset can enable future
studies on performance bugs and training of various machine
learning models for performance bug detection. Similarly,
our semi-supervised data collection methodology is improv-
ing the state of the art in performance bug fix data collection
[2, 11], which are based on simple keyword search. With our
methodology, we were able to collect four times more data
(1350 PRs that have 3022 commits) in comparison to prior
work [2] (733 commits). Our methodology can also inform
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future data collections targeting other types of high impact
bugs such as security or reliability bugs.

For the purpose of this paper, we decided to focus on
recommending function level performance improvements.
This enables us to capture a wide variety of performance
improvements as described in the section 4.3. Therefore, we
are contributing to the state of the art in performance im-
provements that are focused on single type of performance
improvements [1, 4, 11, 17-20]. However, we cannot yet un-
derstand or suggest improvements that span multiple func-
tions. Future work needs to explore ways of capturing more
complex multi-method/class improvements.

Our combined profiler and source code detection approach
relies on profile information to select functions for source
code detection to focus on. However, previous work has
shown that often the root-cause function may not get ranked
by the profiler at all [15]. Even if the functions appear in the
profile report, finding the root-cause function from the call
stack is not a trivial task. Therefore, to ensure that the rec-
ommended improvements are targeting underlying perfor-
mance issues, future studies should be performed to explore
alternative ways of selecting target functions.

Our experiment results were verified by a performance ex-
pert, however previous studies have shown that the decision
of whether or not to fix a bug can often be project specific
and ultimately rests with the developer. Therefore, further
studies are required to investigate whether the project own-
ers will leverage our recommendations in action.

6 Related Work

Majority of performance detection tools focus on detecting
a specific type of performance bug. For instance, tools have
been developed to detect runtime bloat [4, 18, 20], low-utility
data structures [19], database related anti-patterns [1], and
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inefficient loops [11, 17]. Our tool extends prior work on per-
formance bug detection by developing a system that focuses
on diagnosing general performance problems considering
both runtime symptoms and source code features.

Prior work has explored various profiling techniques. For
instance, Xu et al [18] introduced copy profiling, which sum-
marizes the program’s runtime activity in terms of chains
of data copies. Similarly, Yan et al [21] presented a profil-
ing method based on reference propagation graph, which
represent creation, assignment, and operations on object ref-
erences. Coppa et al presented a profiler that automatically
measures the performance of routines as a function of input
size [3]. Research have also explored various ways of focus-
ing the analysis of profiling data. For instance, Han et al [5]
used a clustering mechanism based on domain-specific char-
acteristics of program-execution traces to help performance
analysts focus their analysis when dealing with millions of
profile stack traces. Our system is original relative to prior
work because it leverages both profiler data and source code
features to suggest performance improvements.

7 Conclusions

Detecting and fixing performance bugs is both important and
challenging. Our work makes three contributes to improve
the state of the art of detecting and diagnosing performance
bugs. First, we presented a machine learning based approach
to automatically collect performance PRs from open source
software. This dataset can inform future studies and appli-
cations in this space. Second, we built a novel system that
uses source code and profiler data to suggest performance
improvements for C# applications. Finally, we reported re-
sults from two evaluations showing that combining profiler
data with source code analysis can improve the accuracy of
performance improvement suggestions in practice.
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