
Intra-Document Cascading: Learning to Select Passages
for Neural Document Ranking

Sebastian Hofstätter1, Bhaskar Mitra2, Hamed Zamani3, Nick Craswell2, Allan Hanbury1
1 TU Wien, 2 Microsoft , 3 University of Massachusetts Amherst

1 s.hofstaetter@tuwien.ac.at, hanbury@ifs.tuwien.ac.at, 2 {bmitra, nickcr}@microsoft.com, 3 zamani@cs.umass.edu

ABSTRACT
An emerging recipe for achieving state-of-the-art effectiveness in
neural document re-ranking involves utilizing large pre-trained
language models—e.g., BERT—to evaluate all individual passages
in the document and then aggregating the outputs by pooling or
additional Transformer layers. A major drawback of this approach
is high query latency due to the cost of evaluating every passage in
the document with BERT. To make matters worse, this high infer-
ence cost and latency varies based on the length of the document,
with longer documents requiring more time and computation. To
address this challenge, we adopt an intra-document cascading strat-
egy, which prunes passages of a candidate document using a less
expensive model, called ESM, before running a scoring model that
is more expensive and effective, called ETM. We found it best to
train ESM (short for Efficient Student Model) via knowledge distil-
lation from the ETM (short for Effective Teacher Model) e.g., BERT.
This pruning allows us to only run the ETM model on a smaller
set of passages whose size does not vary by document length. Our
experiments on the MS MARCO and TREC Deep Learning Track
benchmarks suggest that the proposed Intra-Document Cascaded
Ranking Model (IDCM) leads to over 400% lower query latency by
providing essentially the same effectiveness as the state-of-the-art
BERT-based document ranking models.

CCS CONCEPTS
• Information systems→ Learning to rank;

KEYWORDS
Neural Re-Ranking; Knowledge Distillation

ACM Reference Format:
Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani, Nick Craswell, Allan
Hanbury. 2021. Intra-Document Cascading: Learning to Select Passages
for Neural Document Ranking. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3404835.3462889

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462889

1 INTRODUCTION
Ranking documents in response to a query is a core problem in
information retrieval (IR). Many systems incorporate ranking as
a core component, such as Web search engines and news search
systems. Other systems build on document ranking, e.g., an agent
capable of conversation and disambiguation may still have doc-
ument ranking as a component [42]. Therefore, retrieval model
improvements are likely to lead to “lifting all boats”.

One difficulty in document ranking is that documents can vary
significantly in length. In traditional IR, variation in length can
be explained by (1) the verbosity hypothesis, that the author used
more words to explain the topic, or (2) the scope hypothesis, that
the author covered multiple topics [29]. In practice, each hypothesis
is a partial explanation for document length, and retrieval models
typically apply document length normalization. In other words, a
document with some irrelevant parts can still be considered relevant
overall, because having somewhat broader scope than the current
query does not rule out a document from being a useful result.

One way to deal with documents of varying length with some ir-
relevant parts is to use passage-level evidence for document ranking.
Early studies [6, 18] found that a passage of text need not be defined
based on document structure, such as paragraphs or sentences. A
good approach was to divide the content into fixed-size windows
of 150 words or more, compare the query to all passages, then score
the document based on the score of its highest-scoring passage.
This is consistent with the scope hypothesis, that we should focus
on finding some relevant content, without penalizing the document
for having some irrelevant content.

In neural IR, it is possible to significantly outperform classic
retrieval systems [9, 21]. This is often done by taking multiple fixed-
size windows of text, applying a deep neural network to score each
passage, and scoring the document based on the highest-scoring
passages. This is similar to the classic IR approaches in [6, 18], but
works much better as the per-passage models are more effective.

However, the problem with the neural approaches is the cost of
applying the per-passage model. Applying neural net inference for
every passage in every document being ranked requires significant
computation and leads to higher query latency. This limits the
impact of the new neural approaches, since if the cost of inference
is too high, it cannot be used in large-scale production systems. To
avoid this problem, some models retrieve documents solely based
on their first passage [9], however, this is a sub-optimal solution.

In this work, we address this issue by proposing an Intra-Document
Cascading Model (IDCM) that employs an in-document cascading
mechanism with a fast selection module and a slower effective

https://doi.org/10.1145/3404835.3462889
https://doi.org/10.1145/3404835.3462889

scoring module.1 This simultaneously provides lower query la-
tency and state-of-the-art ranking effectiveness. We evaluate our
model on two document ranking query sets: (i) TREC DL 2019 [9],
(ii) MSMARCO [2]. We study how to train the IDCM architecture
in multiple stages to control the collaboration of the cascading
sub-modules, and investigate:
RQ1 Can IDCM achieve comparable effectiveness to the full BERT-

based ranker at lower computation cost and query latency?
Among the different variants we explore in this work, we found that
training the selection module using knowledge distillation based on
passage-level labels derived from the BERT score in conjunction
with an intra-document ranking loss achieves the best overall re-
ranking quality. Under this setting, the selection module is trained
to approximate the passage ranking that would have been produced
if ordered by their corresponding BERT-scores, to filter out non-
relevant parts of the document.

An important hyperparameter in this setting is the number of
passages per document that survives the selection stage for the
subsequent BERT-based evaluation. Here we study:
RQ2 How is the effectiveness-efficiency trade-off influenced by

the number of passages 𝑘 that the less expensive model
selects from the document?

In our baseline setting, the BERT model inspects up to the first 𝑘
passages. We observe superior performance with 𝑘 = 40 compared
to smaller values of 𝑘 . However, the proposed IDCM framework
achieves roughly the same ranking effectiveness by applying the
BERT model to only the top 4 passages pre-selected by the less-
expensive preceding model. Consequently, this result comes at a
much lower query latency.

The application of BERT to multiple in-document passages has
the undesirable property of introducing large variance in query
response time depending on the length of candidate documents.
Under the IDCM settings, this variance is largely reduced because
the expensive BERT model is applied to 𝑘 top passages for every
document, unless the document is so short that it has less than 𝑘
passages. This leads us to our next research question:
RQ3 How does IDCM compare to the baseline with respect to

variance in query latency?
We observe that our baseline setup of using BERT over all pas-

sages has a very high standard deviation and long tail w.r.t. query
latency, whereas IDCM has much more predictable query latency
centered around the mean. This is partly because our passage selec-
tion module is fast enough to triage up to 40 candidate passages in
the same time as the BERT model takes to evaluate a single passage.
Therefore, while the contribution of the selection stage to query
latency is still a function of document length, the variance is largely
reduced.

Finally, we study the how the passage selection under IDCM
compares to the highest-scoring passages by the BERT model.
RQ4 How often does the passage selection under IDCM recall the

same passages as those scored highly by the BERT model?
Overall, we observe that the selection module recalls 60-85% of

the top BERT-scored passages depending on the value of 𝑘 . We
1In our experiments, we used DistilBERT [30], an efficient variant of BERT as the “slow
effective scoring module”. Throughout this paper, we refer to it as the BERT model.

also find that passages closer to the beginning of the document are
more likely to be selected by both models, although there is a long
tail of passage selection from lower positions within the document.
Interestingly, we also observe that the selection module achieves
a better recall in the case of relevant documents, which may be
explained by the relevant passages being easier to distinguish from
the nonrelevant passages in a relevant document, compared to the
same in case of a nonrelevant document.

To summarize, this paper proposes a cascaded architecture and
training regime to address the high and variable query latency
associatedwith applying BERT to evaluate all in-document passages
for the document ranking task. We demonstrate that employing
our approach leads to lower mean and variance for query latency,
and enables broader scope of application for BERT-based ranking
models in real-world retrieval systems.
• We propose IDCM, an intra-document cascade ranking model,
including a training workflow using knowledge distillation.

• We evaluate our approach on TREC-DL’19 and MSMARCO DEV;
and show that IDCM achieves similar effectiveness on average
at four times lower latency compared to the BERT-only ranking
model.

• We perform extensive ablation studies to validate our multi-stage
training approach and the benefits of knowledge distillation for
optimizing the selection module of IDCM.
To improve the reproducibility of our work, we open-source our

implementation and release the trained models at:
https://github.com/sebastian-hofstaetter/intra-document-cascade

2 RELATEDWORK
Since demonstrating impressive performance on passage rank-
ing [25], several successful efforts are underway to employ BERT [13]
and other Transformer [33] based models to the document ranking
task [9, 16]. However, the quadratic memory complexity of the
self-attention layer with respect to the input sequence length poses
a unique challenge in the way of scaling these models to docu-
ments that may contain thousands of terms. While some efforts are
underway to directly address the scalability of the self-attention
layer in these ranking models [1, 3, 24], a majority of applications
of Transformer-based architectures to document ranking involves
segmenting the document text into smaller chunks of text that can
be processed efficiently [16, 20, 39].

The idea of using passage-level evidence for document ranking
is not unique to neural methods. Several classical probabilistic [6]
and language model [4, 22] based retrieval methods—as well as ma-
chine learning based approaches [31]—incorporate passage-based
relevance signals for document ranking. An underlying assump-
tion across many of these approaches is that all passages from the
document are inspected by the model. However, as our models be-
come more computation and memory intensive, it quickly becomes
expensive and even infeasible to evaluate every passage from the
document. This is exactly where text selection using light-weight
approaches becomes necessary so that the more complex model
only has to inspect themost important parts of the document, which
is the main motivation for this work.

One could draw parallels between our approach of using cheaper
models to detect interesting regions of the document to the highly

https://github.com/sebastian-hofstaetter/intra-document-cascade

Query Document

 Select k passages

......
......

...

Query Term Vector

Document Term Vector

Single Passage Score

For each selected passage

Document Score

PS

Passage Score
AggregatorPS

❶
 F

as
t

❷
 S

lo
w

...

......

...
Efficient Student
Model (CK)

Effective Teacher
Model (BERT)

ESM
ESM

ESM

ETM
ETM

Figure 1: The IDCM architecture that consists of two cascading stages: ➊ To allow for long-document input, the first stage is a
lightweight and fast selection model. ➋ Only the top k passages from the selection model are scored with a costly BERT-based
scoring module to form the final document score.

influential work of Viola and Jones [34] in computer vision for fast
object detection using cascades of models of increasing complexity.
Similarly, cascaded approaches have also been employed exten-
sively [7, 14, 26, 35] in IR to progressively rank-and-prune the set
of candidate documents, from the full collection all the way to the
final ten or so results presented to the user. Unlike these approaches
that employ a cascade of models to prune the candidate set of doc-
uments, we use the cascaded approach to prune the set of regions
within the document that needs to be inspected by the expensive
and effective ranking model (i.e., intra-document cascading).

In a cascaded setting, typically the models are trained progres-
sively, starting with the simplest model that is exposed to the largest
number of candidates, and then subsequent models are trained us-
ing a data distribution that reflects the candidates that survive
the earlier stages of pruning. This sequential training strategy is
sometimes referred to as telescoping [23]. Joint optimization of the
different rankers within a multi-stage cascaded search architecture
has also been explored [14].

In our work, we adopt a different training strategy. We begin
by training the costly ranking model and then apply knowledge
distillation to train the model for the preceding selection stage.
Our approach is motivated by the strong empirical performance
observed in recent work exploring knowledge distillation from
larger BERT to more effective models [15, 17, 30, 32].

3 THE INTRA-DOCUMENT CASCADE MODEL
Neural ranking models have resulted in significant improvements
in a wide variety of information retrieval tasks. However, there
exists an efficiency-effectiveness trade-off in these models. In other
words, state-of-the-art neural ranking models mostly suffer from
high query latency and high GPU memory requirements. A popular
solution to address the GPU memory issue is to divide documents
into multiple passages and compute the retrieval scores for each
passage [27, 39, 41]. For instance, Dai and Callan [10] compare
considering only the first passage of the document with scoring
every passage in the document and use the highest passage score as
the document score. We believe that the existing approaches lead
to either sub-optimal ranking or high computational cost.

Inspired by previous work on passage-level evidences for doc-
ument retrieval [6, 22], in this section we propose an alternative
efficient and effective solution by introducing the Intra-Document
Cascade Model named IDCM. In the following, we first introduce
the IDCM architecture and optimization, and then describe its im-
plementation details.

3.1 The IDCM Architecture
IDCM is designed based on a cascade architecture within the doc-
uments. For each query-document pair, the idea is to select a few
passages from the document using an efficient model and then
produce the retrieval score for the document by exploiting a more
expensive and effective model on the selected passages. The high-
level architecture of IDCM is presented in Figure 1.

IDCM takes a query 𝑞 and a document 𝑑 as input. It first divides
the document into multiple units of partially overlapping windows
of size𝑤 with an overlapping factor of 𝑜 , where 𝑜 < 𝑤 . This results
in ⌈𝑑𝑙/𝑤⌉ passages as follows:

𝑃 = [(𝑑1−𝑜 :𝑤+𝑜) (𝑑𝑤−𝑜 :2𝑤+𝑜) (𝑑2𝑤−𝑜 :3𝑤+𝑜); ...] (1)
Each passages contains𝑤 + 2𝑜 tokens with exactly 2𝑜 + 1 tokens

in common with their previous and next passages respectively. The
first and the last passages are padded. A key practical impact of
padding the windows (as opposed to padding the document) is
the possibility to compact batched tensor representations and skip
padding-only windows entirely for batches that contain documents
of different lengths.

IDCM uses an efficient model to score each passage 𝑝 ∈ 𝑃 with
respect to the query. This model is called ESM. To cascade the
scoring decision and discard a large number of passages, IDCM
selects the top 𝑘 passages with the highest scores produced by the
ESM model, as follows:

𝑃 = argmax
𝑃⊆𝑃, |𝑃 |=𝑘

∑
𝑝∈𝑃

ESM(𝑞, 𝑝) (2)

It is important to keep the size of 𝑃 as small as possible to use
the efficiency advantages brought by the cascading approach.

Passage

Per
passage ESM

❶ Passage Training

Query Query Document

Per
passage

Query Document

❷ Full Document Training ❸ Selection Training

(Pairwise: RankNet) (Pairwise: RankNet) (In-Document: KD-Loss)

PS

ESM ETM
Single Passage Score Efficient Student

Model (CK)
Effective Teacher
Model (BERT)Document Score

Passage Score
AggregatorPS

ETM
ETM ETM

Figure 2: The staged training workflow of IDCM: ➊ Training the ETM (BERT) passage module ➋ Training the full model on a
document collection without selection (all available passages of a document are scored with ETM). ➌ The ESM (CK) selection
module is now trained via knowledge distillation using the ETM (BERT) scores as labels.

The selected passages are then scored by a more expensive and
effective ranking model, called ETM:

𝑆ETM = ETM(𝑞, 𝑝)
�� 𝑝 ∈ 𝑃 (3)

Note that the token embedding parameters are shared between
the ESM and ETM models. We compute the document relevance
score using a weighted linear interpolation. In other words, we feed
the top 𝑙 sorted ETM scores to a fully-connected layer to produce
the document relevance score as follows:

IDCM(𝑞, 𝑑) = top𝑙 (𝑆ETM) ∗𝑊𝑃𝑆 (4)
where𝑊𝑃𝑆 is a 𝑙 × 1 weight matrix for linear interpolation of the
passage scores.

3.2 The IDCM Optimization
The IDCM framework consists of multiple non-differentiable oper-
ations (e.g., passage selection) that makes it difficult to use gradient
descent-based methods for end-to-end optimization. Therefore, we
split the IDCM optimization to three steps with different objectives,
as shown in Figure 2. These three steps include: (1) optimizing the
ETM model for passage ranking, (2) extending the ETM optimiza-
tion to full document ranking, and (3) optimizing the ESMmodel for
passage selection using knowledge distillation. Each step completes
with early stopping based on the performance on a held-out valida-
tion set and the best model checkpoint is used as the initialization
for the following step(s). The first step involves training the passage
ranking model.

Step I: Optimizing ETM for Passage Ranking. The first train-
ing step is to train the ETM model on a passage collection. To
this aim, we adopt the pairwise ranking loss function used in
RankNet [5]. In more detail, for a given pair of negative and positive
passages 𝑝− and 𝑝+ for the query 𝑞 in the training set, we use a
binary cross-entropy loss function for pairwise passage ranking
optimization as follows:

LPas. (𝑞, 𝑝+, 𝑝−) = − log𝜎 (ETM(𝑞, 𝑝+) − ETM(𝑞, 𝑝−)) (5)
where 𝜎 (·) is the sigmoid function.

This step prepares the ETM model for the document retrieval
task. Such pre-training has been successfully employed in recent
models, such as PARADE [20]. The parallel MSMARCO passage
and document collections make this pre-training possible, albeit it
remains optional if passage relevance is not available, as the BERT
module is also trained in the next step.

Step II: Extending the ETMOptimization to Full-Document
Ranking. Optimizing the model for passage ranking is not suffi-
cient for document retrieval, mainly because of the following two
reasons: First, the passage aggregation parameters (i.e.,𝑊𝑃𝑆) need
to be optimized; Second, the passage and document collections
may exhibit different assumptions on what constitutes relevance.
Therefore, in the second optimization step, we train the ETMmodel
in addition to the passage aggregation layer using a full document
ranking setting, in which there is no passage selection and all
passages are scored and the top 𝑙 passages are chosen for the aggre-
gation layer (i.e.,𝑊𝑃𝑆). We initialize the ETM parameters with the
best checkpoint obtained from early stopping in the previous opti-
mization step. We again use the binary cross-entropy loss function,
this time for a query and a pair of positive and negative documents.

This optimization step further fine-tunes the ETM parameters
and learns the𝑊𝑃𝑆 parameters.

Step III: Optimizing ESM for Passage SelectionusingKnowl-
edge Distillation. The last two optimization steps give us an ef-
fective document ranking model that runs ETM on every passage
in the document and aggregates the scores. In this step, we opti-
mize the ESM parameters. Given the fact that the goal of ESM is
to select passages to be consumed by ETM in a cascade setting, we
use knowledge distillation for training the ESM model. In other
words, we optimize the ESM parameters such that it mimics the
ETM behavior using a teacher-student paradigm, where ESM and
ETM play the roles of student and teacher, respectively. Therefore,
the output of ETM provides labels for the ESM model. A similar
idea has been employed in the weak supervision literature [12].

Formally, the loss function for this optimization step is defined as:
LSelection (𝑞, 𝑑) = LKD

(
[ETM(𝑞, 𝑝)], [ESM(𝑞, 𝑝)]

) �� 𝑝 ∈ 𝑃 (6)
where 𝑃 denotes all the passages in the document 𝑑 and LKD de-
notes a knowledge distillation loss function. The function LKD is
responsible for computing the average across passages. A unique
feature of our distillation approach is that the teacher signals cre-
ated by ETM are unsupervised. It is important to train the less
capable ESM on the exact distribution it is later used. There are no
passage-level labels for all MSMARCO documents we could use to
train the ESM, therefore the ETM is the only training signal source.

In our experiments, we study multiple loss functions for knowl-
edge distillation. They include distribution losses, such as mean
square error (MSE) and cross entropy, and in-document passage
ranking loss functions, such as nDCG2 introduced as part of the
LambdaLoss framework [36]. The nDCG2 loss function is a gain-
based loss to tightly bind the loss to NDCG-like metrics. For the
exact formulation we refer to Wang et al. [36]. In the nDCG2 loss,
we assign gain values only to the top 𝑘 passages sorted by ETM
and all other passages receive no gain. The nDCG2 loss, focusing
on moving the correct 𝑘 passages in the top positions is a great
fit for our problem: The ESM is only used for pruning or filtering,
which means that the ordering inside and outside the top-𝑘 set does
not matter. The only thing that matters is to find the right set of 𝑘
passages, as the ETM then creates our final fine-grained scores for
each of the 𝑘 passages. This is a crucial difference in our knowledge
distillation approach to concurrent works, which try to fit every
decision from the more powerful ranking model to a smaller model
[20]. Not surprisingly, we find that using the nDCG2 ranking loss
outperforms other loss functions, as discussed in Section 5.1.

3.3 The IDCM Implementation
In this section, we describe the implementation details for the ESM
and ETM models used in our experiments.

ESM: The CK Model. The ESM model is the first model in our
cascaded architecture and is expected to be extremely efficient. In
our experiments, we use CK, an efficient variation of the Conv-
KNRM model [11] that combines convolutional neural networks
(CNNs) with the kernel-pooling approach of Xiong et al. [38]. Unlike
Conv-KNRM that uses multiple convolutional layers with different
window sizes for soft-matching of n-grams in the query and docu-
ment, the CK model uses a single convolutional layer to provide
local contextualization to the passage representations without the
quadratic time or memory complexity required by Transformer
models. In more detail, the CK model transforms the query and
passage representations using a CNN layer and uses the cosine
function to compute their similarities, which are then activated by
Gaussian kernels with different distribution parameters:

𝐾𝑘𝑖,𝑗 = exp
(
−

(
cos(CNN(𝑞𝑖),CNN(𝑝 𝑗)) − 𝜇𝑘

)2
2𝜎2

)
(7)

where 𝑞𝑖 and 𝑝 𝑗 respectively denote the 𝑖th token in the query
and the 𝑗 th token in the passage. 𝜇𝑘 and 𝜎 are the Gaussian kernel
parameters. Each kernel represents a feature extractor, which is
followed by a pooling layer that sums up the individual activations,
first by the passage dimension 𝑗 and then log-activated by the query

token dimension 𝑖 . Each kernel result is weighted and summed with
a single linear layer (𝑊𝑘) as follows:

CK(𝑞, 𝑝) =
(|𝑞 |∑
𝑖=1

log ©«
|𝑝 |∑
𝑗=1

𝐾𝑘𝑖,𝑗
ª®¬
)
∗𝑊𝐾 (8)

ETM: The BERT Ranking Model. Large-scale pre-trained lan-
guage models, such as BERT [13], have led to state-of-the-art results
in a number of tasks, including passage retrieval [25]. The BERT
passage ranking model takes sequences representing a query 𝑞
and a passage 𝑝 and concatenates them using a separation token.
The obtained BERT representation for the first token of the query-
passage pair (i.e., the [CLS] token) is then fed to a fully-connected
layer (𝑊𝑠) to produce the ranking score:

BERT(𝑞, 𝑝) = BERT
[CLS]

([CLS];𝑞; [SEP]; 𝑝) ∗𝑊𝑠 (9)

where ; denotes the concatenation operation.

4 EXPERIMENT DESIGN
In this section, we describe our experiment setup. We implemented
our models using the HuggingFace Transformer library [37] and
PyTorch [28]. We employed PyTorch’ mixed precision training and
inference throughout our experiments for efficiency. In our experi-
ments, we re-rank the documents retrieved by BM25 implemented
in Anserini [40]. The query latency measurements are conducted
on the same single TITAN RTX GPU.

4.1 Document Collections and Query Sets
For our first passage-training stepwe utilize theMSMARCO-Passage
collection and training data released by Bajaj et al. [2]. We follow
the setup of Hofstätter et al. [15] for training the BERT passage
ranker. For passage results of the BERT ranking model we refer to
the previous work. In all datasets, we limit the query length at 30
tokens to remove only very few outliers, and re-rank 100 documents
from BM25 candidates.

We use two query sets for evaluating our models as follows:

TREC DL 2019 and MS MARCO benchmarks. We use the
2019 TREC Deep Learning Track Document Collection [8] that
contains 3.2 million documents with a mean document length of
1,600 words and the 80th percentile at 1,900 words. We aim to
include them with a 2,000 token limit on our experiments. We
selected 5,000 queries from the training set as validation set for
early stopping and removed those queries from the training data.
We use the following two query sets in our evaluation:

• TREC DL 2019: 43 queries used in the 2019 TREC Deep
Learning Track for document ranking task. A proper pooling
methodology was used to create a complete set of relevance
judgments for these topics [8]. For evaluation metrics that
require binary relevance labels (i.e., MAP and MRR), we use
a binarization point of 2.

• MS MARCO: 5,193 queries sampled from the Bing query
logs contained in the MS MARCO Development set [2]. This
query set is larger than the previous one, but suffers from
incomplete relevance judgments.

Table 1: Effectiveness results for TREC-DL’19 and MSMARCO DEV query sets. Our aim is to hold the effectiveness of an All-
BERT configuration with a cascaded efficiency improvement. * is a stat.sig. difference to All-BERT (2K); paired t-test (𝑝 < 0.05).

Model Cascade # BERT Doc. TREC DL 2019 MSMARCO DEV
Scored Length nDCG@10 MRR@10 MAP@100 nDCG@10 MRR@10 MAP@100

Baselines
1 BM25 – – – 0.488 0.661 0.292 0.311 0.252 0.265
2 TKL [16] – – 2K 0.634 0.795 0.332 0.403 0.338 0.345
3 PARADEMax-Pool [20] – All 2K 0.666 0.807 0.343 0.445 0.378 0.385
4 PARADETF [20] – All 2K 0.680 0.820 0.375 0.446 0.382 0.387
Ours
5

IDCM

– All 512 0.667 0.815 0.348 *0.440 *0.374 *0.383
6 – All 2K 0.688 0.867 0.364 0.450 0.384 0.390

7 Static First 3 2K 0.638 0.785 0.309 *0.394 *0.330 *0.338
8 Static Top-TF 3 2K *0.624 0.778 0.324 *0.393 *0.329 *0.337
9 CK (nDCG2) 3 2K 0.671 0.876 0.361 0.438 0.375 0.380
10 CK (nDCG2) 4 2K 0.688 0.916 0.365 0.446 0.380 0.387

4.2 Training Configuration
We use Adam optimizer [19] with a learning rate of 7 ∗ 10−6 for all
BERT layers. CK layers contain much fewer and randomly initial-
ized parameters and therefore are trained with a higher learning
rate of 10−5. We employ early stopping, based on the best nDCG@10
value on the validation set.

4.3 Model Parameters
We use a 6-layer DistilBERT [30] knowledge distilled from BERT-
Base on the MSMARCO-Passage collection [15] as initialization for
our document training. We chose DistilBERT over BERT-Base, as
it has been shown to provide a close lower bound on the results
at half the runtime for training and testing [15, 30]. In general
our approach is agnostic to the BERT-variant used, when using
a language model with more layers and dimensions, the relative
improvements of our cascade become stronger, at the cost of higher
training time and GPU memory.

For the passagewindowswe set a base size𝑤 of 50 and an overlap
of 7 for a total window size of 64. In a pilot study, we confirmed that
a larger window size does not improve the All-BERT effectiveness
results. For the BERT passage aggregation, we use the top 3 BERT
scores to form the final document score, independent of the cascade
selection count. This allows us to base all selection models on the
same All-BERT instance.

We set the token context size for CK to 3 and evaluate two
different CK dimensions, first a full 768 channel convolution corre-
sponding to the dimensions of the BERT embeddings and second
a smaller convolution with a projection to 384 dimensions before
the convolution and another reduction in the convolution output
dimension to 128 per term, which we refer to as CKS.

5 RESULTS
In this section, we address the research questions raised in Section 1.

5.1 RQ1: Knowledge Distillation and
Effectiveness Study

Our first research question centers around training techniques and
we investigate:

RQ1 Can IDCM achieve comparable effectiveness to the full BERT-
based ranker at lower computation cost and query latency?

To address this research question, we compare the proposed
method to a number of strong retrieval baselines, including BM25,
TKL [16], and PARADE [20]. TKL is a non-BERT local self-attention
ranking model with kernel-pooling; PARADEMAX-Pool is very close
to our All-BERT baseline, in that it scores every passage with a
BERT ranker and aggregates passage representations in a light-
weight layer; PARADETF uses an additional Transformer block
to aggregate passage representations. The results are reported in
Table 1. The first observation on the All-BERT setting of IDCM,
without cascading, is the strong difference in effectiveness across
collections between 512 document tokens and 2K tokens (Line
5 vs. 6). The All-BERT 2K model (Line 6) outperforms all previ-
ously published single model re-ranking baselines on the TREC
DL 2019 dataset, except for PARADETF (Line 4) on MAP . We see
how training and evaluating with longer document input improves
the effectiveness. This is also a strong argument for our cascading
approach that makes it possible to process long inputs. We chose
the All-BERT 2K setting (Line 6) as the base model for all following
results.

Furthermore we use static cascade selectors as baselines, that use
BERT scoring after static selections. One selects the first 3 passages
by position, to have a direct comparison to CK selections (Line 7).
Another option we benchmark is the use of raw term frequency
matches, where we take the three passages with the highest fre-
quency of direct term matches without semantic or trained match-
ing (Line 8). Both approaches fail to improve the scoring over the
baselines or our CK selection model. The term frequency selection
even underperforms the first positions selector.

Table 2: Impact of knowledge distillation with measures us-
ing a cutoff at 10. * indicates stat.sig. difference; paired t-test
(𝑝 < 0.05).

Scoring Training TREC-DL’19 MSMARCO
Model nDCG MRR nDCG MRR
CK Standalone 0.551 0.677 0.353 0.287
CK BERT-KD *0.595 0.749 *0.363 *0.299

Table 3: Knowledge distillation loss study of the IDCM cas-
cade training with measures using a cutoff at 10. Stat.sig. is
indicated with the superscript to the underlined character;
paired t-test (𝑝 < 0.05).

BERT KD-Loss TREC-DL’19 MSMARCO
Scored nDCG MRR nDCG MRR

3
MSE 0.664 0.816 0.426 0.362
Cross Entropy 0.667 0.851 0.437 0.373
nDCG2 0.671 0.876 0.438 0.375

4
MSE 0.683 0.870 0.437 0.374
Cross Entropy 0.675 0.889 𝑚0.446 𝑚0.381
nDCG2 0.688 0.916 𝑚0.446 𝑚0.380

Our main IDCM configuration (Lines 9 & 10) with a knowledge
distilled CK shows strong results, which are not statistically differ-
ent to their base model of All-BERT (2K, Line 6). Across both query
sets, the select 3 (Line 9) is already close to the reachable results
and on select 4 (Line 10) we obtain better MRR and MAP results on
TREC-DL’19, even though they are not significantly different.

We further compare two training strategies for the efficient CK
model: (1) knowledge distillation as described in Section 3.2, and
(2) standalone training on relevance judgments. The results are
reported in Table 2. We observe that the knowledge distilled CK
model leads to significantly higher performance on both TREC DL
2019 and MS MARCO datasets in comparison to the standalone
training. The improvements on the TREC DL 2019 query set are
much larger. As expected, CK alone shows substantially lower
effectiveness compared to BERT. Overall we show that even though
alone CK is ineffective, combined with BERT in the IDCM model
produces very effective and efficient results.

We extend our analysis by inspecting different knowledge distil-
lation losses and their effect on the full cascaded setting in Table 3.
We probe knowledge distillation with an MSE, Cross Entropy and
the LambdaLoss nDCG2 losses for two different cascade selection
numbers, three and four. When four passages are selected, all three
knowledge distillation losses perform on par with the All-BERT
model. Overall using nDCG2 as the knowledge distillation loss
outperforms the other two loss functions and is the most stable
across the two evaluated query sets. Therefore, in the following
experiments, we only focus on nDCG2 as the default knowledge
distillation loss.

5.2 RQ2: Efficiency-Effectiveness Analysis
To study our next research questionwe turn to the viewpoint of both
efficiency and effectiveness of different IDCMmodel configurations
to answer:

0.60 0.62 0.64 0.66 0.68 0.70
nDCG@10

0

200

400

600

800

1000

1200

1400

Do
cu

m
en

ts
 p

er
 S

ec
on

d

1

2

3

1

2

3

45

6

IDCM-CKS
IDCM-CK
All-BERT (512)
All-BERT (2,000)
TKL (2,000)
PARADE (2,000)

(a) Throughput and nDCG@10 results on TREC DL 2019.

0.32 0.34 0.36 0.38 0.40
MRR@10

0

200

400

600

800

1000

1200

1400

Do
cu

m
en

ts
 p

er
 S

ec
on

d
1

2

3

1

2

3 4

5
6

IDCM-CKS
IDCM-CK
All-BERT (512)
All-BERT (2,000)
TKL (2,000)
PARADE (2,000)

(b) Throughput and MRR@10 results on MS MARCO Dev.

Figure 3: Throughput and ranking effectiveness trade-off re-
sults. The vertical line shows the achievable effectiveness,
for all IDCM models based on All-BERT (2,000). The num-
ber next to the marker indicates the selection count.

RQ2 How is the effectiveness-efficiency trade-off influenced by
the number of passages 𝑘 that the less expensive model
selects from the document?

The selection variants of IDCM are all based on the All-BERT
setting and therefore this model instance sets our potential for
cascaded effectiveness results, as we do not train the BERT module
during selection training. In Figures 3a and 3b we compare the
model throughput of documents per second (y-axes) with their

1 100 200 300 400 500 600 700 800 900 1000
Elapsed Time (ms)

0%

20%

40%

60%

80%

100%
%

 o
f Q

ue
rie

s R
es

po
nd

ed

CKS (Small 368 dim.)
CK (Full 768 dim.)

IDCM - Select: 0
IDCM - Select: 1
IDCM - Select: 2
IDCM - Select: 3
IDCM - Select: 4
All-BERT (2,000)

Figure 4: Fraction of queries that can be answered in the given time-frame for re-ranking 100 documents with up to 2,000
tokens on MSMARCO. Select 0 means only CK timing without BERT cascading.

effectiveness (x-axes). Akin to a precision-recall plot, the best result
would be situated in the upper right corner.

We evaluated IDCM’s selection parameter – the number of pas-
sages scored with the costly BERT model – 𝑘 from 1 to 6 using the
full convolution CK and a smaller dimensional CKS setting. We find
that selecting too few passages reduces the effectiveness strongly,
however starting with a selection of 4 or more passages, IDCM re-
sults are very similar to All-BERT results, while providing a much
higher throughput. On the nDCG@10 metric of TREC-DL’19 in
Figure 3a IDCM reaches the All-BERT effectiveness starting with 4
selected passages. In Figure 3b the IDCM setting is already close to
the reachable effectiveness, and taking 5 and 6 passages close the
gap to All-BERT further, to a point of almost no differences.

A simple efficiency improvement is to use a lower document
length on All-BERT passage scoring, such as limiting the document
to the first 512 tokens. We find that this works both more slowly
and less effectively than IDCM.

It is important to note, that in all our experiments presented
here we utilize the 6-layer DistilBERT encoder. When we compare
with related work, which commonly uses larger BERT-style models,
such as the original BERT-Base or BERT-Large, we show even
better efficiency improvements. A 12-layer BERT-Base model in
the All-BERT (2,000) configuration can only process 85 documents
per second, and the 24-layer BERT-large only manages to score
30 documents per second. Applying our IDCM technique to these
larger encoders, brings even larger performance improvements.

In summary, with this analysis we show how IDCM can be as
effective as an All-BERT model, while maintaining a four times
higher throughput. In addition, users of the IDCM model have the
option to trade-off effectiveness for more efficiency, along a clear
curve.

5.3 RQ3: Query Latency Analysis
The mean or median aggregations of query latencies hide crucial
information about the tail of queries that require more processing
time. In the case of neural ranking models this tail is heavily depen-
dent on the total document length of all documents in a batch. We
now study efficiency in detail with:

RQ3 How does IDCM compare to the baseline with respect to
variance in query latency?

0 1 2 3 4
Cascade Selection Count

0

25

50

75

100

125

150

175

200

225

Qu
er

y
La

te
nc

y
(m

s)

CKS (Small 368 dim.)
CK (Full 768 dim.)

Figure 5: Query latency for different IDCM cascade selec-
tion configurations for re-ranking 100 documentswith up to
2,000 tokens on MSMARCO. Selection 0 only measures the
time for the CK module without routing passages to BERT.

In Figure 4 we plot the fraction of queries (y-axis) that can be
processed by the neural models in the given time (x-axis). The
All-BERT baseline (dash-dotted black line) for documents up to
2,000 tokens has a large range in the time required to re-rank docu-
ments. The All-BERT setting of IDCM already is a strong baseline
for query latency, as we compact passage representations, to skip
padding-only passages. However, it still requires BERT to run on
up to 40 passages. Our IDCM model configurations with two CK
sizes (dotted and full line) show a much lower variance and overall
faster query response. Naturally, the more passages we select for
cascading to the BERT module, the longer IDCM takes to compute.

Now, we turn to a more focused query latency view of the dif-
ferent IDCM configurations with boxplots of the query latency
distributions in Figure 5. Again, we report timings for a full CK
(red; right side) and smaller CKS variant (blue; left side). The first
entry with a selection of 0 shows only the computational cost of
the CK module for 2,000 tokens without running BERT. When we

3 4 5 6 7
CK Selection Passage Depth

0.4

0.5

0.6

0.7

0.8

0.9
BE

RT
 T

op
-3

 R
ec

al
l

Document Label: 0
Document Label: 1
Document Label: 2
Document Label: 3

Figure 6: Intra-document passage selection recall of the CK
selection module in comparison to the top-3 BERT selec-
tion split by document relevance grade on TREC-DL’19. The
higher the label the more relevant a document.

compare the latency differences between 0 and 1 selection we can
see that computing BERT for a single passage per document adds
25 ms to the median latency. This shows the efficiency of CK(S):
roughly 40 passages processed with CK have an equal runtime
compared to a single passage that BERT requires.

5.4 RQ4: Passage Selection Analysis
As presented in Section 3.2 we aim to train the CKmodule to imitate
the passage scoring of the BERT module. To understand how well
the CK model is able to do just that we evaluate the intra-document
passage recall of the CK scores in comparison to the top-3 BERT
passages selected to form the final document score and study:
RQ4 How often does the passage selection under IDCM recall the

same passages as those scored highly by the BERT model?
In Figure 6 we plot the CK recall for different numbers of selected

CK-passages and split the reporting by document relevance grades
on the TREC-DL’19 query set. We find an interesting pattern among
the different relevance classes: CK is able to provide more accurate
passage selections the more relevant a document is.

A recall of 1 would guarantee the same document score, however
as we showed it is not necessary for the IDCM model to provide
very close effectiveness results to the original ranking.

Finally, we inspect the behavior of both BERT and CK modules
with respect to the positions of the highest scoring passages. In
Figure 7 we investigate the top selections of both CK and BERT
along the positions of the passages. In gray in the background are
the available passages per position of the top-100 documents of
the TREC-DL’19 query set, they reduce as not all documents are
long enough to fit the maximum used length of 2,000 tokens. The
All-BERT setting needs to compute BERT scores for all available
passages, whereas in IDCM the selected passages in blue are the
only passages score by BERT. The top-3 passages from BERT are
furthermore visualized by the shaded dark blue bars.

We see a strong focus on the first and last possible passages se-
lected by the modules. A focus on the first passages is to be expected
as the title and introduction of web pages is situated there, however
the focus on the last passages is more curious. Because of our sym-
metric padding, the first and last passages have an empty (padded)

1 10 20 30 40
Passage Position

0

2500

5000

7500

10000

12500

15000

17500

20000

Oc
cu

rre
nc

es

Available Passages
CK Top-4
BERT Top-3

Figure 7: Selected Passages by the CK top-4module and then
subsequently scored by BERT for the top-3 scoring.

overlap. This is the only indicator to the BERT model of passage
positions in a document, the absence of 7 more tokens. It seems this
is the signal the BERT model picks up on and subsequently trains
the CK model to follow along. We leave deeper investigations of
the behavior of BERT in different document parts for future work
and conclude this section with the finding that IDCM learns to use
all available passages including the end of a document input.

6 CONCLUSION
Applying a BERT model many times per document, once for each
passage, yields state-of-the-art ranking performance. The trade-off
is that inference cost is high due to the size of the model, potentially
affecting both the mean and variance of query processing latency.
Typically in neural retrieval systems, one is forced to a make a
clear decision between reaching efficiency or effectiveness goals. In
this work we presented IDCM, an intra-document cascaded rank-
ing model that provides state-of-the-art effectiveness, while at the
same time improving the median query latency by more than four
times compared a non-cascaded full BERT ranking model. Our two-
module combination allows us to efficiently filter passages and only
provide the most promising candidates to a slow but effective BERT
ranker. We show how a key step in achieving the same effectiveness
as a full BERT model is a knowledge distilled training using the
BERT passage scores to train the more efficient selection module.
Our knowledge distillation provides self-supervised teacher sig-
nals for all passages, without the need for manual annotation. Our
novel distillation technique not only improves the query latency
of our model in a deployment scenario, it also provides efficiency
for replacing manual annotation labor and cost with a step-wise
trained teacher model. In the future we plan to extend the concept
of intra-document cascading for document ranking to a dynamic
number of passages selected and more cascading stages.

ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent In-
formation Retrieval. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect those of the sponsor.

REFERENCES
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher,

Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. 2020.
ETC: Encoding Long and Structured Inputs in Transformers. In Proc. of EMNLP.

[2] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew Mcnamara, Bhaskar Mitra, and Tri Nguyen. 2016.
MS MARCO : A Human Generated MAchine Reading COmprehension Dataset.
In Proc. of NIPS.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[4] Michael Bendersky and Oren Kurland. 2008. Utilizing passage-based language
models for document retrieval. In Proc. of ECIR.

[5] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. MSR-Tech Report (2010).

[6] James P Callan. 1994. Passage-level evidence in document retrieval. In Proc. of
SIGIR.

[7] Ruey-Cheng Chen, Luke Gallagher, Roi Blanco, and J Shane Culpepper. 2017.
Efficient cost-aware cascade ranking in multi-stage retrieval. In Proc. of SIGIR.

[8] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2019. Overview
of the TREC 2019 deep learning track. In TREC.

[9] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2019. Overview of the trec 2019 deep learning track. In TREC.

[10] Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with
contextual neural language modeling. In Proc. of SIGIR.

[11] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional
Neural Networks for Soft-MatchingN-Grams inAd-hoc Search. In Proc. ofWSDM.

[12] Mostafa Dehghani, Arash Mehrjou, Stephan Gouws, Jaap Kamps, and Bernhard
Schölkopf. 2018. Fidelity-weighted learning. Proc. of ICLR (2018).

[13] J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proc. of NAACL.

[14] Luke Gallagher, Ruey-Cheng Chen, Roi Blanco, and J Shane Culpepper. 2019.
Joint optimization of cascade ranking models. In Proc. of WSDM.

[15] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv:cs.IR/2010.02666

[16] Sebastian Hofstätter, Hamed Zamani, Bhaskar Mitra, Nick Craswell, and Allan
Hanbury. 2020. Local Self-Attention over Long Text for Efficient Document
Retrieval. In Proc. of SIGIR.

[17] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019).

[18] Marcin Kaszkiel and Justin Zobel. 1997. Passage retrieval revisited. In ACM SIGIR
Forum, Vol. 31. ACM New York, NY, USA, 178–185.

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[20] Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. 2020. PA-
RADE: Passage Representation Aggregation for Document Reranking. arXiv
preprint arXiv:2008.09093 (2020).

[21] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained Transformers
for Text Ranking: BERT and Beyond. arXiv preprint arXiv:2010.06467 (2020).

[22] Xiaoyong Liu and W Bruce Croft. 2002. Passage retrieval based on language
models. In Proc. of CIKM.

[23] Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong.
2006. High accuracy retrieval with multiple nested ranker. In Proc. of SIGIR.

[24] Bhaskar Mitra, Sebastian Hofstatter, Hamed Zamani, and Nick Craswell. 2020.
Conformer-Kernel with Query Term Independence for Document Retrieval. arXiv
preprint arXiv:2007.10434 (2020).

[25] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[26] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).

[27] R. Nogueira, W. Yang, J. Lin, and K. Cho. 2019. Document Expansion by Query
Prediction. arXiv preprint arXiv:1904.08375 (2019).

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. In Proc. of NIPS-W.

[29] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc.

[30] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[31] Eilon Sheetrit, Anna Shtok, and Oren Kurland. 2020. A passage-based approach
to learning to rank documents. Information Retrieval Journal (2020), 1–28.

[32] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin.
2019. Distilling task-specific knowledge from bert into simple neural networks.
arXiv preprint arXiv:1903.12136 (2019).

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al. 2017. Atten-
tion is all you need. In Proc. of NIPS.

[34] Paul Viola and Michael Jones. 2001. Rapid object detection using a boosted
cascade of simple features. In Proc. of CVPR.

[35] Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A cascade ranking model for
efficient ranked retrieval. In Proc. of SIGIR.

[36] Xuanhui Wang, Cheng Li, Nadav Golbandi, Mike Bendersky, and Marc Najork.
2018. The LambdaLoss Framework for Ranking Metric Optimization. In Proc. of
CIKM.

[37] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing.
ArXiv (2019), arXiv–1910.

[38] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proc. of SIGIR.

[39] Ming Yan, Chenliang Li, Chen Wu, Bin Bi, Wei Wang, Jiangnan Xia, and Luo Si.
2019. IDST at TREC 2019 Deep Learning Track: Deep Cascade Ranking with
Generation-based Document Expansion and Pre-trained Language Modeling.. In
TREC.

[40] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene
for information retrieval research. In Proc. of SIGIR.

[41] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. 2019.
Cross-domain modeling of sentence-level evidence for document retrieval. In
Proc. of EMNLP-IJCNLP.

[42] Hamed Zamani and Nick Craswell. 2020. Macaw: An Extensible Conversational
Information Seeking Platform. In Proc. of SIGIR.

http://arxiv.org/abs/cs.IR/2010.02666

	Abstract
	1 Introduction
	2 Related Work
	3 The Intra-Document Cascade Model
	3.1 The IDCM Architecture
	3.2 The IDCM Optimization
	3.3 The IDCM Implementation

	4 Experiment Design
	4.1 Document Collections and Query Sets
	4.2 Training Configuration
	4.3 Model Parameters

	5 Results
	5.1 RQ1: Knowledge Distillation and Effectiveness Study
	5.2 RQ2: Efficiency-Effectiveness Analysis
	5.3 RQ3: Query Latency Analysis
	5.4 RQ4: Passage Selection Analysis

	6 Conclusion
	Acknowledgments
	References

