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Abstract

High sample complexity remains a barrier to the
application of reinforcement learning (RL), par-
ticularly in multi-agent systems. A large body of
work has demonstrated that exploration mecha-
nisms based on the principle of optimism under
uncertainty can significantly improve the sample
efficiency of RL in single agent tasks. This work
seeks to understand the role of optimistic explo-
ration in non-cooperative multi-agent settings. We
will show that, in zero-sum games, optimistic ex-
ploration can cause the learner to waste time sam-
pling parts of the state space that are irrelevant to
strategic play, as they can only be reached through
cooperation between both players. To address this
issue, we introduce a formal notion of strategically
efficient exploration in Markov games, and use this
to develop two strategically efficient learning algo-
rithms for finite Markov games. We demonstrate
that these methods can be significantly more sam-
ple efficient than their optimistic counterparts.

1 INTRODUCTION

Despite its success in recent years, the applicability of rein-
forcement learning is still limited by the enormous amounts
of training data required to solve complex tasks, particularly
when those tasks involve multiple agents [Vinyals et al.,
2019, Berner et al., 2019]. For single-agent problems it
has been shown that sample efficiency can be significantly
improved with the use of more sophisticated exploration
mechanisms that take into account the learner’s own uncer-
tainty about the learning task [Pathak et al., 2017, Burda
et al., 2018]. Extending these approaches to multi-agent
settings, however, remains an open challenge.

In this work, we focus on efficient exploration for reinforce-
ment learning in competitive multi-agent settings. In recent

related work, Bai and Jin [2020] have presented algorithms
for self-play in finite Markov games with sample complexity
bounds that are polynomial in the size of the state and action
spaces. These methods are based on the principle of opti-
mism under uncertainty, in which each agent acts greedily
w.r.t. a statistically plausible model of the learning task that
maximizes the agent’s expected return. In two-player games,
this optimism encourages the players to cooperate to reach
states that have not previously been observed (driven by
the assumption that both players can receive large positive
returns from such unknown states). In zero-sum games, how-
ever, such cooperative behavior would never be observed
between rational opponents.

In this paper, we show that such cooperative exploration is
strategically inefficient, and may cause the learner to waste
time exploring parts of the state space that provide no ad-
ditional information about the Nash equilibria of the game.
The key question for this work is how a reinforcement learn-
ing algorithm can recognize and avoid such strategically
irrelevant parts of the state space, while still ensuring that
an approximate solution to the game will be found. To ad-
dress this question, we propose two reinforcement learning
algorithms, Strategic ULCB and Strategic Nash-Q, which
are strategically efficient in a suitably well-defined sense.
As with the optimistic algorithms of Bai and Jin [2020],
these algorithms select exploration policies optimistically
w.r.t. a set of statistically plausible games. However, unlike
prior work, in our approach each player chooses an opti-
mistic best-response against the strongest known adversary
strategy (rather than its opponents’ exploration strategy).

In Section 4.1 we will prove that that Strategic ULCB is
both strategically efficient and sample efficient in the tradi-
tional sense, while in Section 5 we will show that Strategic
ULCB and Nash-Q significantly outperform their existing,
optimistic counterparts. Our key conclusion is that the direct
extension of optimistic exploration to multi-agent RL in
competitive settings can be highly inefficient, and that by
leveraging the adversarial nature of zero-sum games, it is
possible to dramatically improve sample efficiency through
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the use of strategically efficient exploration mechanisms.

2 PRELIMINARIES

This work focuses on the role of exploration in finite, two-
player zero-sum Markov games [Littman, 1994]. We de-
fine such a Markov games as a tuple G = {S,A,B,P,R,H}.
Here S is a finite state space, and we let h ∈ [1,H] be the
steps since the start of the current episode. Ah,s and Bh,s are
state and step-dependent action spaces Ah,s for the min and
max-players respectively, Ph : S×A×B 7→ P(S) is the step-
dependent transition distribution, Rh : S×A×B 7→ [0,1]
is the step-dependent reward function for the max player,
and H is the fixed episode length. Let |S| = maxh |Sh|,
|A| = maxs,h |Ah,s| and |B| = maxs,h |Bh,s|. We assume that
rewards are deterministic. For zero-sum games, we need
only specify the reward function for the max-player, with
the reward for the min-player defined as −Rh(s,a,b). The
restriction to Markov games implies that the state is fully
observable to both agents at all times. We also assume that
there is a unique initial state s1.

Training proceeds episodically for K episodes of length
H. For the state sk

h encountered at step h of episode k, the
learner samples actions ak

h ∈ Ah,sk
h

and bk
h ∈ Bh,sk

h
from the

joint exploration policy πk
h(s,a,b). After taking joint action

(ak
h,b

k
h), the learner observes reward rk

h = Rh(sk
h,a

k
h,b

k
h), and

state sk
h+1 ∼ Ph(sk

h,a
k
h,b

k
h) if h < H. We assume here that

the exploration policy πk
h : S 7→P(Ask

h
×Bsk

h
) is computed

in advance for all s and h, and fixed throughout episode k.
When the exploration policy can be factored into separate
policies for the max and min-players, we denote these as µk

and νk respectively, with πk
h(s,a,b) = µk

h(s,a)ν
k
h(s,b).

For any pair of policies µ ,ν , we define V µ,ν
h (s) to be the

expected return of the max player from state s at step h as:

V µ,ν
h (s) = E

[
H

∑
i=h

ri(si,ai,bi)|µ,ν ,sh = s

]
(1)

When training in self-play, we have no way of knowing what
adversary the policies we learn will eventually need to play
against. We therefore evaluate our learned policies µ and
ν in terms of their worst-case return against any adversary
policy, which we define as their exploitability

expl(µ) =− inf
ν ′

V µ,ν ′

1 (s1), expl(ν) = sup
µ ′

V µ ′,ν
1 (s1) (2)

For a pair of policies µ and ν , the total exploitability is
equal to the NashConv loss [Johanson et al., 2011, Lanctot
et al., 2017], defined as

NashConv(µ,ν) = sup
µ ′

V µ ′,ν
1 (s1)− inf

ν ′
V µ,ν ′

1 (s1), (3)

If µ,ν constitute a Nash equilibrium of the game, then
NashConv(µ,ν) = 0, and if NashConv(µ,ν) ≤ ε , then µ

and ν will constitute an ε-Nash equilibrium of the game.

3 RELATED WORK

While we focus on exploration in finite Markov games, this
work is motivated by the goal of extending exploration ap-
proaches that have proven effective in single-agent deep re-
inforcement learning to the competitive multi-agent setting.
Many successful approaches guide exploration by provid-
ing an additional intrinsic reward signal that is larger for
states and actions for which the learner is less certain, often
referred to as curiosity [Burda et al., 2019]. These include
the Intrinsic Curiosity Module [Pathak et al., 2017], which
uses the error of a supervised transition model to estimate
uncertainty, and Random Network Distillation [Burda et al.,
2018], which uses the error between a fixed, randomly ini-
tialized network and a prediction network trained on the
states the learner has observed so far. Such intrinsic rewards
have also proven effective in cooperative multi-agent RL,
where all agents aim to maximize a common reward func-
tion [Iqbal and Sha, 2019, Böhmer et al., 2019].

While not subject to the same theoretical guarantees, the
use of uncertainty-based intrinsic rewards in deep RL can
be motivated by work on finite MDPs, where a number of
algorithms based on the principle of optimism under un-
certainty have been shown to have good worst-case sample
complexity [Jaksch et al., 2010, Strehl and Littman, 2008,
Jin et al., 2018]. In particular, Strehl and Littman [2008]
and Jin et al. [2018] describe algorithms which incorporate
optimism through a count-based exploration bonus of the
form β/

√
N(s,a), where N(s,a) is the number of times the

state s and action a have been observed previously. We refer
to these algorithms as “optimistic” because they select the
action that maximizes an upper confidence bound on the
expected in the current state, where the upper bound is taken
over some set of statistically plausible MDPs.

Recent results have shown that the use of upper confidence
bounds can be extended to self-play in two-player zero-sum
Markov games. Bai and Jin [2020] present a model-based
self-play algorithm, VI-ULCB (which we will refer to as Op-
timistic ULCB in later sections) that finds an ε-equilibrium
with at most O(H4|S|2|A||B|/ε2) samples. VI-ULCB drives
exploration by solving for the Nash equilibrium of an opti-
mistic, general-sum corresponding to upper and lower con-
fidence bounds on the max-player returns. Bai et al. [2020]
build on this work, presenting a model-free self-play algo-
rithms, Optimistic Nash-Q which finds an ε-equilibria in at
most O(H5|S||A||B|/ε2) samples.

While these bounds are near-optimal in the worst case, they
say little about the practical efficiency of these algorithms,
or the approaches to exploration that they embody. These re-
sults do not rule out the possibility that the learner will need
to explore the entire state-action space, even when this is
unnecessary for the identification of an ε-equilibrium of the
game. More specifically, in Section 4 we will show that VI-
ULCB can select pairs of output policies such that neither



Figure 1: The generic decoy task game. We can choose any
single-player game to define the target task and decoy tasks,
as long as the max-player can always succeed in these sub-
games with the right policy. The (−1,1) payoffs correspond
to a max-player loss, while the (0,0) is a tie.

policy can plausibly be an equilibrium of the game. In Sec-
tion 5, we will empirically compare Optimistic Nash-Q and
VI-ULCB, against two novel algorithms that avoid selecting
such implausible policies. Through these comparisons we
will demonstrate that Optimistic Nash-Q and VI-ULCB can
suffer from unnecessarily high sample complexity in envi-
ronments where large parts of the state space are irrelevant
the equilibrium solution.

Finally, we note a connection between the concept of strate-
gically efficient exploration and the Alpha-Beta pruning al-
gorithm from game-tree search [Pearl, 1980]. While Alpha-
Beta pruning is limited to deterministic, turn-based games
with known transition dynamics (and so is not applicable
in most RL settings), it nonetheless exploits the adversarial
nature of zero-sum games in much the same way that the al-
gorithms developed in this work will. Like Strategic ULCB
and Strategic Nash-Q, Alpha-Beta pruning bounds the value
of a state in terms of the strongest adversary strategy it has
identified so far, and will not explore states that it knows
cannot occur under a minimax optimal strategy for the root
player. Unlike Strategic ULCB and Nash-Q however, Alpha-
Beta pruning is not optimistic, and will continue evaluating
a set of strategies (corresponding to the current sub-game)
even when there exist potentially superior alternatives.

4 STRATEGIC EXPLORATION

The worst case sample complexity of optimistic algorithms,
such as Optimistic ULCB (Algorithm 1) and Optimistic
Nash-Q (Algorithm A.1), correspond to the complexity of

learning a complete model of the game (even for model free
algorithms). In some cases such complete exploration will
be necessary, for example, when the game is effectively a
single-agent MDP for the max-player, and every possible
outcome must be known to ensure the max-player’s policy
is optimal. For truly competitive games, however, learning
a complete model will often be unnecessary to find a Nash
equilibrium. When this is the case, an optimistic algorithm
may waste time exploring parts of the state space that yield
no useful information about the solution to the game.

We can illustrate this issue with the abstract, turn-based
game shown in Figure 1. This game, which we will refer
to as the decoy task game, is composed of a set of single-
player sub-tasks in which only the max-player takes actions.
In Section 5 we will show experimental results in this game
for a specific choice of sub-task, but for now it is sufficient
to assume that each task is “complex” in the sense that a
learner will have to attempt the task many times before a
successful policy is found. At each episode, the max player
first chooses which sub-task they wish to explore. What is
important here is that, for all but one sub-task (the target
task), the min player has the option to end the game imme-
diately, resulting in a tie, or allow the max-player to attempt
the sub-task. As a result, the learner gains nothing by solv-
ing these alternative, or decoy tasks, as with or without a
solution the best the learner can hope for is a tie if it chooses
one of these sub-tasks during evaluation.

In spite of this, an optimistic algorithm may attempt to
solve each of the decoy tasks, because, until a sub-task is
solved, it will assume that it is possible for both the min
and max-players to simultaneously receive a payoff of 1
when that task is complete. Under an optimistic exploration
rule, the learner assumes that the min-player will allow the
max-player to complete each of the decoy tasks, when in
the underlying game the only reason this would happen
is if the max-player gets a payoff ≤ 0 for completing the
task (otherwise the min-player with terminate the game
early). If there are many decoy tasks, optimistic exploration
may be highly inefficient. In this section, we will describe
algorithms which, while still sufficiently optimistic to ensure
convergence to a solution, will be robust to the existence of
such strategically irrelevant sub-tasks.

4.1 STRATEGIC EFFICIENCY

To develop strategically efficient algorithms, we will first
need to formalize our intuitive notion of strategic efficiency.
Here we define strategic efficiency in terms of the marginal
exploration strategies µk and νk the learner follows during
training. Loosely speaking, a strategically efficient learning
algorithm should not consider strategies that it believes do
not correspond to equilibria of the game.

Dependence on the agent’s own belief is essential, as any



strategy could correspond to an equilibrium if we place no
restrictions on the set of possible games. Therefore, we need
a representation of the “belief state” of a given learning
algorithm. It will be sufficient to consider a representation
that is independent of the learning algorithm itself, that
is, one which only depends on the observable interactions
between the learner and the environment. We represent the
knowledge state by a sequence of sets C1≤k ⊂G(H,S,A,B).
Here, G(S,A,B) is the set of games on A, B, and the state
space S∪{s∗} (where s∗ is a hypothetical absorbing state)
and max-player rewards in [0,H]. The absorbing state and
larger reward range will simplify the task of proving that an
algorithm is strategically efficient.

Each set is Ck itself a random variable, that is, a function
Ck(Hk), where Hk is the history of states, actions, and re-
wards up to but not including episode k. For σ ∈ [0,1], we
say that C0≤k are σ -confidence sets if, under any learning
algorithm run on a game G

Pr{∃k ≥ 1 : G /∈Ck} ≤ σ (4)

It is possible to define the confidence sets with respect
to some subset of X ⊂ G(S,A,B,H), such as the set
D(S,A,B,H) of games with deterministic state transitions,
so long as we can be certain a priori that G ∈ D. Our defi-
nition of strategic efficiency will be with respect to a given
sequence of confidence sets.

Definition 4.1 (Strategic Efficiency). If C1≤k are σ -
confidence sets w.r.t. X ⊆ G(S,A,B), then an algorithm is
strategically efficient w.r.t. C1≤k if, for all k ≥ 1, there exists
G̃ ∈Ck such that

∃G̃ ∈Ck, inf
ν

V µk,ν

G̃,1
≥ sup

µ

inf
ν

V µ,ν

G̃,1
(5)

and there exists
˜
G ∈Ck such that

∃
˜
G ∈Ck,sup

ν

V µ,νk

˜
G,1 ≤ inf

ν
sup

µ

V µ,ν

˜
G,1 (6)

Under this definition, a learning algorithm is strategically
efficient if its exploration policies are always a component of
a plausible Nash equilibrium of the true game G. Note that
under the trivial sequence C0≤k =G(S,A,B), any learning
algorithm would be efficient. To address this, we will require
that the confidence sets converge when data is generated
by the algorithm under consideration, that is, for any ε > 0,
δ ∈ (0,1], there exist K,µ,ν s.t. NashConvG(µ,ν)≤ ε for
all G ∈CK with probability at least 1−δ .

4.2 NON-STRATEGIC EXPLORATION

Before discussing the design of strategically efficient learn-
ing algorithms, we first demonstrate how the joint-optimism
employed by existing approaches can fail to be strategically

efficient. Specifically, we show that Optimistic ULCB can
fail to be strategically efficient w.r.t. its own implicit con-
fidence sets. This is easiest to show this for games with
deterministic state transitions (which include matrix games
with no transitions). In such games, Optimistic ULCB can be
run with an exploration bonus term of βt = 0, with efficient
exploration being guaranteed by optimistic initialization.
The models maintained by Optimistic ULCB will be exact
for all observed (h,s,a,b) ∈Hk, and its natural confidence
sets will be the sets Dk of games that are exactly consistent
the the rewards and state transitions observed up to episode
k, that is

Dk = {G ∈D(S,A,B,H)|Ph(sk
h,a

k
h,b

k
h,s

k
h+1) = 1∧

Rh(sk
h,a

k
h,b

k
h) = rh,∀(sk

h,a
k
h,b

k
h,r

k
h,s

k
h+1) ∈Hk}. (7)

Remark 4.1. Optimistic ULCB is not guaranteed to be
strategically efficient with respect to the confidence sets
D1≤k (Equation 7) for deterministic games.

We can demonstrate the strategic inefficiency of Optimistic
ULCB using a variation on the classical prisoners dilemma.
Similar to the prisoner’s dilemma, each player has the option
to either cooperate (c) with the other player, or defect (d).
Unlike the original prisoner’s dilemma, however, payoffs in
this game are zero-sum

c d
c (x,-x) (-.5,.5)
d (.5,-.5) (0,0)

with x ∈ [−1,1]. Note that regardless of the value of x, the
only equilibrium for this game is the strategy profile in
which both players always defect. Assume now that we
have run Optimistic ULCB for three episodes, selecting
joint strategies such that the only unobserved combination
remaining is joint cooperation. To compute the exploration
strategy for the next episode, Optimistic ULCB will select a
Nash equilibrium of the general-sum game

c d
c (1,1) (-.5,.5)
d (.5,-.5) (0,0)

where joint cooperation is assumed to yield a payoff of 1
for both players because the true payoffs have never been
observed. Because we know in advance that the game is
zero-sum, however, we know that no matter what the true
payoff for joint cooperation is, at least one player will have
an incentive to defect. The row player will defect unless its
payoff is greater than or equal to .5, but if this is the case.
the column player must have a payoff less that or equal to
-.5. This implies that joint defection is the only plausible
equilibrium, and that neither player will cooperate as part of
an equilibrium strategy for any plausible game. Therefore,
if Optimistic ULCB chooses joint cooperation as its next
strategy, it will fail to satisfy Definition 4.1.



4.3 STRATEGIC ULCB

Algorithm 1 The Strategic (and Optimistic) ULCB algo-
rithms. The function Nash(G,G′) computes a mixed strat-
egy profile (µ,ν) constituting a Nash equilibrium of the
two-player game given by the payoff matrices G and G′.
Strategic ULCB maintains separate evaluation policies µ̃k

and ν̃k, while Optimistic ULCB [Bai and Jin, 2020] uses
the same policies for exploration and evaluation.

1: Initialize: ∀h ∈ [H], s ∈ Sh, a ∈ Ah,s, b ∈ Bh,s, s′ ∈ Sh+1,
N1

h (s,a)← 0, N1
h (s,a,s

′)← 0.
2: for episode k = 1, . . . ,K do
3: for step h = H, . . . ,1 do
4: for s ∈ Sh, a,b ∈ Ah,s×Bh,s do
5: t← Nk

h(s,a,b)
6: Q̄k

h(s,a,b) ← min{R̂k
h(s,a,b) + P̂k

h (s,a,b)
>V̄ k

h+1 +
βt ,H}

7:
¯
Qk

h(s,ab)←max{R̂k
h(s,a,b)+P̂k

h (s,a,b)
>

¯
V k

h+1−βt ,0}
8: end for
9: for s ∈ Sh do

10: if Strategic ULCB then
11: µk

h(s), ν̃
k
h ← Nash(Q̄k

h(s, ·, ·),−Q̄k
h(s, ·, ·))

12: µ̃k
h(s),ν

k
h ← Nash(

¯
Qk

h(s, ·, ·),− ¯
Qk

h(s, ·, ·))
13: else if Optimistic ULCB then
14: µk

h(s),ν
k
h ← Nash(Q̄k

h(s, ·, ·),− ¯
Qk

h(s, ·, ·))
15: µ̃k

h(s), ν̃
k
h ← µk

h(s),ν
k
h

16: end if
17: V̄ k

h (s)← µk
h(s)

>Q̄k
h(s, ·, ·)ν̃

k
h

18:
¯
V k

h (s)← µ̃k
h(s)

>
¯
Qk

h(s, ·, ·)ν
k
h

19: end for
20: end for
21: set sk

1← s1
22: for step h = 1, . . . ,H do
23: Take actions ak

h ∼ µk
h(s

k
h) and bk

h ∼ νk
h(s

k
h)

24: Observe max-player reward rk
h and next state sk

h+1
25: Nk+1

h (sk
h,a

k
h,b

k
h)← Nk

h(s
k
h,a

k
h,b

k
h)+1

26: Nk+1
h (sk

h,a
k
h,b

k
h,s

k
h+1)← Nk

h(s
k
h,a

k
h,b

k
h,s

k
h+1)+1

27: P̂k+1
h (·|sk

h,a
k
h,b

k
h)←

Nk+1
h (sh,ak

h,b
k
h,·)

Nk+1
h (sh,ak

h,b
k
h)

28: R̂k+1
h (sh,ak

h,b
k
h)← rh

29: end for
30: end for

We now present a model-based learning algorithm that will
be provably strategically efficient in some settings. As this
new algorithm is similar in structure to Optimistic ULCB,
we refer to it as Strategic ULCB (Algorithm 1). Strategic
ULCB differs from Optimistic ULCB in three key ways.
First, it maintains separate policies µ̃k and ν̃k for evaluation.
This is necessary because strategically efficient exploration
may converge to a solution before the game has been fully
explored, such that the optimistic exploration policies may
remain exploitable indefinitely. Second, the max-player ex-
ploration policy for each state s is defined as a minimax op-
timal strategy of the matrix game defined by Q̄k

h(s, ·, ·) (the
min-player exploration policy is computed w.r.t.

¯
Qk

h(s, ·, ·)).
This focuses exploration on actions that maximize the return

a player can optimistically guarantee against an adversary.
Finally, the value function updates are

V̄ k
h (s) = µ

k
h(s)

>Q̄k
h(s, ·, ·)ν̃k

h (8)

¯
V k

h (s) = µ̃
k
h(s)

>

¯
Qk

h(s, ·, ·)νk
h (9)

which ensures that V̄ k
h (s) reflects the best return the max-

player can expect against a true adversary, rather than the
min-player’s exploration policy. To demonstrate the correct-
ness of Strategic ULCB, we provide a bound on the total
NashConv loss incurred by the evaluation policies µ̃k and
ν̃k over K episodes, which we denote as Regret(K),

Regret(K) =
K

∑
k=1

[
sup

µ

V µ,ν̃k

1 (s1)− inf
ν

V µ̃k,ν
1 (s1)

]
(10)

We will show that Regret(K)≤ O(
√

K), such that the aver-
age NashConv loss will decay as O(1/

√
K).

Theorem 4.1. For any K ≥ 3 and δ ≥ 0, if Strategic ULCB
(Algorithm 1) is run with βt defined as

βt = H

√
2|S|`

t
(11)

where `= ln(KH|S||A||B|/δ ), then its regret satisfies

Regret(K)≤ 6
√

2KH4|S|2|A||B|` (12)

with probability at least 1−δ .

The full proof of Theorem 4.1 can be found in Appendix
A, and is similar to the proof for the Optimistic ULCB
given by Bai and Jin [2020]. We can sketch the main
ideas of the proof by assuming H = 1 (so we can ig-
nore the state) and that

¯
Qk(a,b) ≤ R(a,b) ≤ Q̄k(a,b). Be-

cause µk = maxa Q̄k(a, ·)ν̃k and νk = minb(µ̃
k)>

¯
Qk(·,b),

we have that V̄ k = maxa Q̄k(a, ·)ν̃k ≥ maxa R(a, ·)ν̃k, and

¯
V k = minb(µ̃

k)>
¯
Qk(·,b) ≤ minb(µ̃

k)>R(a, ·). Therefore,
the NashConv loss of the profile (µ̃k, ν̃k) is bounded by
V̄ k−

¯
V k. Note that it is not possible to bound the loss of

(µk,νk) in the same way, and so the need for separate
evaluation policies. We then show that V̄ k and

¯
V k con-

verge, by showing that they are bounded by the “on policy”
confidence bounds Ṽ k = (µk)>Q̄kνk and

˜
V k = (µk)>Q̄kνk,

which do converge under the joint exploration policy. Note
that Ṽ k = (µk)>Q̄kνk ≥ (µk)>Q̄kν̃k because ν̃k is also a
best-response to µk, with the same being true for Ṽ k.

We can also show that, for the special case of games with de-
terministic transitions, Strategic ULCB will be strategically
efficient with respect to the confidence sets Dk of games that
are exactly consistent the the rewards and state transitions
observed up to episode k.

Theorem 4.2. Strategic-ULCB will be strategically efficient
w.r.t. the confidence sets D1≤k (Equation 7) when run with
βt = 0,∀t, on any game with deterministic state transitions.



The proof of Theorem 4.2 can be found in Appendix B. The
restriction to deterministic games is necessary, as without
it Q̄k and

¯
Qk may not be exactly realizable for any plausi-

ble game, which is essential for the proof. For stochastic
games, the bonus terms βt will be approximations of the
true upper and lower bounds over the space of statistically
plausible games (to see this, consider the value of Q̄k

h(s,a,b)
when V̄ k

h+1 = 0). Therefore, Strategic ULCB is will only be
approximately strategically efficient in stochastic games.

4.4 MODEL-FREE ALGORITHMS

Bai et al. [2020] present Optimistic Nash-Q as model-free
counterpart to Optimistic ULCB. Optimistic Nash-Q main-
tains tabular estimates of the upper and lower bounds Q̄h
and

¯
Qh analogous to those used in Optimistic ULCB, but

which are updated online via a Q-learning update, rather
than being recomputed at each episode under the current
model. We can extend Strategic ULCB to the model-free
case in much the same way, defining the current exploration
and evaluation policies as

µ
k
h(s), ν̃

k
h(s) = Nash(Q̄h(s, ·, ·)) (13)

µ̃
k
h(s), ν̃

k
h(s) = Nash(

¯
Qh(s, ·, ·)) (14)

and updating the value function bounds as

V̄ k
h (s) = µ

k
h(s)

>Q̄h(s, ·, ·)ν̃k
h(s) (15)

¯
V k

h (s) = µ̃
k
h(s)

>

¯
Qh(s, ·, ·)ν̃k

h(s) (16)

Like Optimistic Nash-Q, Strategic Nash-Q recomputes the
policies and value function bounds for the current state
after the Q̄h and

¯
Qh are for the current state and action. We

provide the pseudocode for Optimistic Nash-Q in Appendix
C, and for Strategic Nash-Q in Appendix D.

5 EXPERIMENTS

In this section, we compare Strategic ULCB and Strategic
Nash-Q against Optimistic ULCB and Nash-Q, as well as
Independent Q-learning. To highlight the impact of strate-
gically efficient exploration on sample complexity, we first
present results in a version of the decoy task game (Figure 1).
We will demonstrate that, as the number of strategically ir-
relevant decoy tasks increases, so too do the advantages
of Strategic ULCB and Nash-Q over the alternatives. We
also evaluate these algorithms on a set of randomly gener-
ated turn-based games, to demonstrate the value of strategic
exploration in much more general settings.

5.1 ALGORITHMS

The fact that Strategic ULCB and Nash-Q define separate
evaluation policies could give them an unfair advantage

Figure 2: The k× k deep-sea task. The player always starts
in the state marked “S”. To reach the goal state, the player
must move right for k−1 steps.

over the Optimistic baseline algorithms. To provide a fair
comparison between these approaches, we therefore mod-
ify Optimistic ULCB and Nash-Q to compute pessimistic
evaluation policies µ̃k and ν̃k a

µ, ν̃k
h(s) = Nash(Q̄k

h(s, ·, ·)) (17)

µ̃
k
h(s),ν = Nash(

¯
Qk

h(s, ·, ·)) (18)

where Q̄k
h and

¯
Qk

h are the upper and lower confidence bounds
maintained by each algorithm. These policies correspond
to each player maximizing their expected return in the
worst plausible case. Note that existing NashConv regret
bounds for Optimistic Nash-Q only apply to a complex, non-
stationary mixture of the exploration policies µk

h and νk
h . In

these experiments, however, the NashConv loss is computed
for the most recent values of the evaluation policies µ̃k and
ν̃k. We also note that, as our experiments are conducted
in alternating move games, the computation of equilibrium
strategies for each state reduces to a simple maximization
problem over the actions for the current player.

Independent Q-Learning Additionally, we compare
against a learner that trains by running two independent
instances of tabular Q-learning against one another. While
this approach is not guaranteed to solve a Markov game, the
use of independent Q-learning (IQL) has historically proven
successful in some multi-agent settings [Tan, 1993, Tesauro,
1994]. In these experiments, we optimistically initialize the
Q-function estimates for each learner to their maximum
possible return H, which means that both learners engage in
optimistic exploration in much the same way that Optimistic
Nash-Q does, but without explicit coordination between the
learners. Like Optimistic ULCB and Nash-Q, each Q-learner
maintains a separate evaluation policy based on a separate,
pessimistically initialized Q-function.
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Figure 3: Comparisons between Strategic ULCB, Strategic Nash-Q and their optimistic counterparts on decoy task games
with deep-sea sub-tasks of varying sizes. Shows the NashConv loss, with zero corresponding to the point where the game
has been solved. Error bars show standard deviations over 10 game instances.

Hyper-parameters For Strategic and Optimistic ULCB,
the only hyperparameter that needs to be defined is the
exploration bonus βt (Strategic and Optimistic Nash-Q re-
quire this parameter as well). For our deterministic environ-
ments, however, we can set βt = 0 for all t. For Optimistic
and Strategic Nash-Q (as well as independent Q-learning),
we set the learning rate αt =

H+1
H+t , where t = Nk

h(s,a,b)
(t =Nk

h(s,a) for IQL), the theoretically justified value which
proved reliable in practice [Jin et al., 2018, Bai et al., 2020].
For IQL, we found empirically that using ε-greedy explo-
ration (in addition to optimistic exploration) led to better
performance, with ε = 0.05 being most effective.

5.2 DECOY TASK GAMES

To demonstrate advantage of strategically efficient explo-
ration, we first evaluate Strategic ULCB and Strategic Nash-
Q on instances of the decoy task game, illustrated in Figure 1.
The challenge for exploration in these games is the tendency
of the decoy tasks to distract algorithms that explore without
regard for the adversarial nature of the game. These games
are representative of the broader class of two-player zero
sum games in which the bulk of the state space is strate-
gically irrelevant, that is, it does not need to be explored
to find an equilibrium solution. To understand the impact
of such irrelevant states, we consider games with a single
target task, but varying numbers of decoy tasks. To keep
rewards normalized in [0,1], we modify the payoff structure
shown in Figure 1 such that a max-player loss corresponds
to a max-player reward of 0, and a tie a reward of 1/2. Each
decoy and target task is separate (solving one does not help
the learner solve the others), and we also randomize the the
index of the action leading to the target task.

5.2.1 Deep Sea Sub-Task

In our experiments with decoy task games, both the tar-
get and decoy tasks are instances of the deep sea environ-
ment [Osband et al., 2019, 2020]. We chose the deep sea
environment as it is specifically designed to be difficult to
solve using simple exploration strategies such as ε-greedy,
while being reliably solved using count-based exploration
bonuses or optimistic initialization of the value function.
The deep sea environment (Figure 2) is an n× n grid of
states, with the initial state in the top-left corner, and the
goal state in the bottom right corner. The player moves down,
to the left or right, at each step, and to reach the goal, the
player must go right for n−1 steps. For large n, random ac-
tion selection will have a very small probability of reaching
the goal. The use of instances of the deep sea environment
as target and decoy tasks in the decoy task game leads to a
task for which efficient exploration is essential, but the naive
application of single-agent exploration mechanisms perform
poorly when there are a large number of decoy tasks. This
combination is therefore ideal for evaluating the strategic
efficiency of a learning algorithm.

5.2.2 Decoy Task Game Results

Figure 3 shows a set of comparisons between Strategic
ULCB and Strategic Nash-Q against their optimistic coun-
terparts, with pessimistic evaluation policies, in several in-
stances of the the decoy task game. We compare these algo-
rithms on instances with 10, 30 and 50 decoy tasks, where
both target and decoy sub-tasks are instances of the 20x20
deep sea environment. Figure 3a shows that, in terms of
the NashConv loss, the performance of Strategic ULCB
and Strategic Nash-Q, is largely insensitive to the num-
ber of decoy tasks. In contrast, Figures 3b and 3c show
that the number of samples required for Optimistic ULCB
and Optimistic Nash-Q to solve the game (where the loss
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Figure 4: Comparisons between Strategic ULCB, Strategic
Nash-Q and their optimistic counterparts on decoy task
games with deep-sea sub-tasks. Shows the percentage of
episodes per iteration that explore the target task. Error bars
show standard deviations over 5 games.

goes to zero) grows roughly proportionately with the num-
ber of decoy tasks. For clarity of presentation, Figures 3b
and 3c only show the performance of Strategic ULCB and
Strategic Nash-Q for the most difficult case with 50 decoys,
which is nonetheless significantly better than that of the op-
timistic algorithms for even the easiest case with 10 decoys.
As expected, the model-based ULCB algorithms are more
sample-efficient than their model-free counterparts.

These results are consistent with our hypothesis that the
strategically efficient algorithms will be able to quickly
recognize that for any decoy task, the best return the max-
player can expect against a rational opponent would be
1/2, and so will prioritize solving the target instance of the
deep-sea sub-task. We can see this behavior in Figure 3a,
where Strategic ULCB and Nash-Q take slightly longer to
solve games with more decoys, corresponding to the time
required to determine that each decoy task is irrelevant. To
further support this hypothesis, in Figure 4 we show the

percentage of episodes in which each algorithm explored
the target task. We can see that Strategic ULCB and Nash-
Q concentrate exploration on solving the target task much
more quickly than Optimistic ULCB and Nash-Q, which
waste time attempting to solve each decoy task.

5.3 TREE-STRUCTURED GAMES

While strategically efficient exploration has a dramatic im-
pact on performance in the decoy task game, we can also
show that it can have a significant impact on performance
in much more general classes of games. In this section, we
evaluate Strategic ULCB and Strategic Nash-Q in a space
of tree-structured, alternating move games, where, for each
random game instance, the max-player rewards for each
terminal state is drawn from the uniform distribution over
[0,1]. While there are no states in these games that are des-
ignated as being strategically irrelevant, we can nonetheless
bound the plausible return each player can guarantee from
a given state without knowing the payoffs of all terminal
states reachable from that state. Strategic exploration may
therefore still be beneficial, if it can prioritize states for
which a strong adversary policy has not yet been identified.

We consider alternating-move games of depth 5 and 6, with
either 5 or 6 actions available to the active player in each
state. Figure 5a compares the average performance of Strate-
gic and Optimistic ULCB in solving games of depth 5 with
6 actions per state, where Strategic ULCB has a clear ad-
vantage in how fast its NashConv loss converges to zero. In
Figures 5b and 5c, Strategic Nash-Q shows an advantage
over Optimistic Nash-Q (as well as independent Q-learning)
in games of depth 5 and 6, with Strategic Nash-Q having a
large advantage over the alternatives for games of depth 6.

6 CONCLUSION

Reducing sample complexity will be critical if reinforce-
ment learning is to see widespread use in solving real-world
problems, particularly for tasks that involve interaction be-
tween multiple agents. Here we have considered approaches
to exploration in competitive multi-agent tasks, and have
shown that the use of strategically efficient exploration
mechanisms can significantly reduce sample complexity
relative to non-strategic, optimistic mechanisms. We have
presented novel, strategically efficient reinforcement learn-
ing algorithms for finite Markov games, and demonstrated
that they can be significantly more sample efficient than their
optimistic counterparts in challenging exploration games,
while preserving the same sample complexity guarantees as
existing approaches across all possible games.

While this work is limited to Markov games with small,
finite state and action spaces, the concept of strategically
efficient exploration can be applied to games with infinite
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Figure 5: Comparisons of Strategic-ULCB and Strategic-Nash-Q against their optimistic counterparts and IQL, in tree-
structured, alternating move games with randomly generated payoffs. Shows the NashConv loss, with zero corresponding to
the point where the game has been solved. Error bars show standard deviation over 10 randomly generated game instances.

state and action spaces. Future work would focus on the
development of strategically efficient algorithms that are
compatible with the use of function approximation. The fi-
nite algorithms developed in this work may serve as the basis
for strategically efficient alternatives to existing frameworks
for deep multi-agent RL. Future theoretical work would
seek to extend the notion of strategic efficiency to n-player
general-sum games, and games with imperfect information.
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