

Al Music Composition

Xu Tan
Microsoft Research Asia
xuta@microsoft.com

Self-introduction

- Xu Tan (谭旭)
- Senior Researcher @ Machine Learning Group, Microsoft Research Asia
- Research interests: deep learning and its applications on NLP/Speech/Music
 - Text to speech
 - Automatic speech recognition
 - Music understanding and generation
 - Neural machine translation
 - Language/speech pre-training
- Homepage: https://www.microsoft.com/en-us/research/people/xuta/
- Speech related research: https://speechresearch.github.io/

Background

- Pipeline of music composition
 - Song Writing (Lyric/Melody) → Accompaniment/Arrangement → Instrumental Recording → Vocal Recoding → Mixing
- General pipeline
 - Score Generation → Performance Generation → Sound Generation
- How deep learning can help?
 - Music is not only about art, also logic/rule/theory!
 - Data, model, and computation
 - Score/Performance generation → Language generation
 - Sound generation → Speech synthesis

Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

Song writing

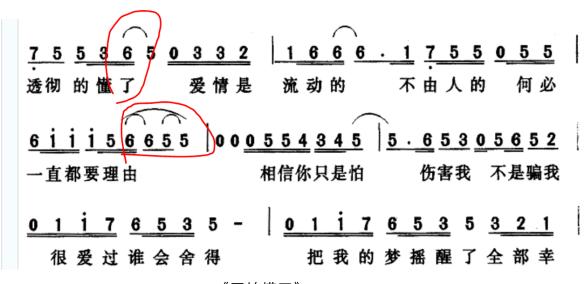
- Melody and lyric generation
 - Lack of paired melody and lyric data
 - The connection between melody and lyric is weak
 - Unlike other tasks: Automatic Speech Recognition, Text to Speech, Neural Machine Translation
 - Needs large amount of paired data
 - Or motivate us to find connections from other aspects
- How to model the connections
 - Learning: SongMASS
 - knowledge based on rhythm/structure: StructMelody
 - Combine them together: ongoing

SongMASS: Automatic Song Writing with Masked Sequence to Sequence Pre-training, AAAI 2021

- Background
 - Lyric-to-melody and melody-to-lyric generation are two important tasks for song writing
 - Lyric and melody are weakly coupled, but strictly aligned

Paired Aligned Data:

Lyric	Another			day	has	gone	ľm		still	alone		
Pitch	R	G3	E4	D4	C4	В3	C4	R	E4	C4	В3	C4
Duration	$\frac{7}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$



- Background
 - Lack of training data
 - The two domains are weak coupled, need a lot of data to build the relationship
 - A lot of unpaired data available on the web
 - Previous works only use supervised data from training, the quality is limited
 - Solution
 - Adapt masked sequence to sequence pre-training (MASS) on song writing for both tasks

- Background
 - Lyric and melody alignment
 - For each word/syllable, which note to align? How many notes to align?

《再见二丁目》 作词: 林夕

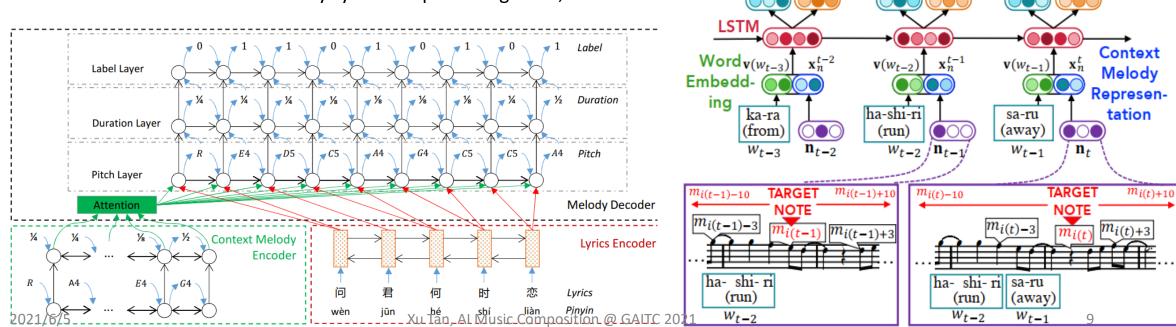
作曲:于逸尧演唱:杨千嬅

《开始懂了》 作词:姚若龙 作曲:李偲菘 演唱:孙燕姿

Syllable

Count

<BOL)


SongMASS

- Background
 - Lyric and melody alignment

• For each word/syllable, which note to align? How many notes to align?

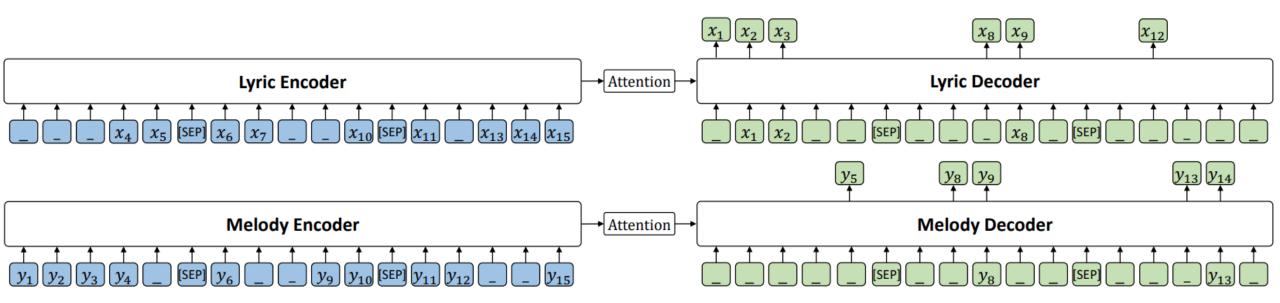
- Decide if switch to next word when predicting notes (lyri
- Predict how many syllable in predicting word, to decide I

Context Melody Vector

 w_{t-1}

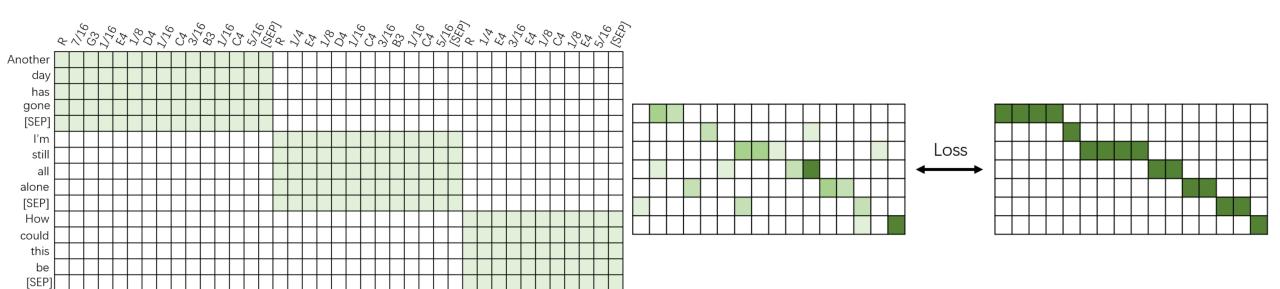
sa-ru

(away)

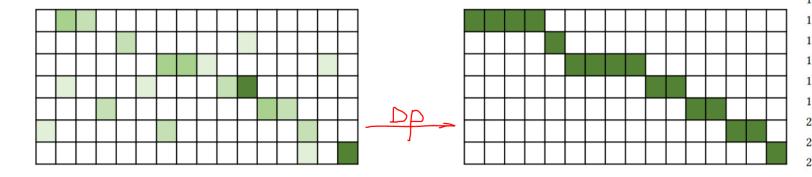

Output ha-shi-ri

(run)

Word



- MASS pre-training
 - Document-level MASS, mask each a segment in each sentence and predict all segments in the target
 - Separate encoder and decoder, add supervised loss to guide the pre-training



- Lyric and melody alignment
 - Sentence-level and token-level alignment
 - During training, attention constraint

- Lyric and melody alignment
 - Sentence-level and token-level alignment
 - During training, attention constraint
 - During inference
 - Sentence-level: SEP token
 - Token-level: Dynamic programming

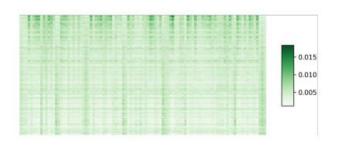
Algorithm 2 DP for Duration Extraction

```
1: Input: Alignment matrix A \in \mathbb{R}^{T \times S}
 2: Output: Phoneme duration D \in \mathbb{R}^{\mathcal{T}}
 3: Initialize: Initialize reward matrix O \in \mathbb{R}^{T \times S} with zero matrix.
    Initialize the prefix sum matrix C \in \mathbb{R}^{T \times S} to the prefix sum of
    each row of A, that is, C_{i,j} = \sum_{k=0}^{j} [A]_{i,k}. Initialize all elements
    in the splitting boundary matrix B_m \in \mathbb{R}^{T \times S} to zero.
 4: for each j \in [0, S) do
         [O]_{0,j} = [C]_{0,j}
 6: end for
 7: for each i \in [1, \mathcal{T}) do
        for each j \in [0, S) do
             for each k \in [0, S) do
                  O_{new} = [O]_{i-1,k} + [C]_{i,j} - [C]_{i,k}
                  if O_{new} > [O]_{i,j} then
                       [O]_{i,j} = O_{new}
                       [B_m]_{i,j} = k
13:
                  end if
14:
             end for
15:
        end for
17: end for
18: P = S - 1
19: for each i \in [T - 1, 0] do
        [D]_i = P - [B_m]_{i,P}
        P = [B_m]_{i,P}
22: end for
23: return D
```

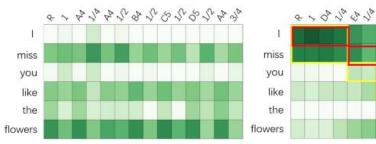

- Experiments
 - Datasets
 - Unpaired data: total 362,237 song lyrics, 65,000 song melodies
 - Paired data: LMD, 7998 songs
 - Data preprocessing
 - Pitch normalized to C major or A minor
 - Duration normalized to 1/16 note
 - Lyrics: BPE sequence
 - Melody: pitch, duration, pitch, duration, ...
 - Metrics
 - Objective
 - Pitch distribution (PD), duration distribution (DD), Melody Distance (MD), Alignment similarity (AS), Perplexity (PPL)
 - Subjective
 - Lyric: Listenability, Grammaticality, Meaning, Quality. Melody: Emotion, Rhythm, Quality

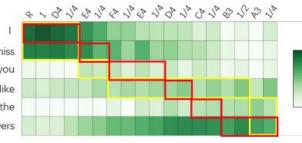
- Experiments
 - Results in objective evaluation

		Melody-to-Lyric			
	PD (%) ↑	DD (%) ↑	$MD \downarrow$	$PPL \downarrow$	$PPL\downarrow$
Baseline	38.20	52.00	2.92	3.27	37.50
SongMASS	57.00	65.90	2.28	2.41	14.66
pre-training	43.50	57.00	2.79	3.72	45.10
 separate encoder-decoder 	55.00	64.80	2.32	2.53	15.57
supervised loss	47.20	53.60	3.29	2.92	27.50
alignment	56.10	65.20	2.36	2.07	8.54


• Results in subjective evaluation

Metric	Baseline	SongMASS				
Lyric						
Listenability	1.67 ± 0.62	2.00 ± 0.65				
Grammaticality	3.00 ± 0.76	3.27 ± 0.59				
Meaning	2.20 ± 0.68	3.20 ± 0.68				
Quality	2.27 ± 0.46	3.00 ± 0.38				
Melody						
Emotion	2.40 ± 1.06	3.53 ± 0.64				
Rhythm	2.33 ± 1.18	2.87 ± 0.74				
Quality	2.33 ± 1.05	2.93 ± 0.70				




- Experiments
 - Study on the alignment constraints

	L2M Acc↑	M2L Acc↑
SongMASS	62.6	45.4
- TC	62.1	44.8
- SC	56.2	44.0
- TC - SC	55.3	43.8
- TC - SC - PT	48.3	37.1
- DP	15.7	11.3

- Demo
 - https://speechresearch.github.io/songmass/


```
1 3 5 3 2
                    6 1
you have loved lots of girls
                  5 3 6
             6
in the sweet long ago
and each one has meant heaven to you
    5 5 3 2 1
                  6
you have
            vowed your affection
            6 5 3
to each one in turn
               3 2
                       1 6 1
and have sworn to them be true
6 6 6 5
           5 3
     have kissed the moon
                       6 5 3
while the world seemed in tune
then left her to hunt a new game
     3 5 3
does it ever occur to you later
1 2 1 3
my boy
1 2 1 3 2 1 3
          doing the
that
6 6
                 5 3 2 1
i wonder kissing her
                       now
6 1
                2 1 3
wonder teaching her
wonder looking into her eyes
breathing sighs telling lies
1 1
                6
                    5 3 6
i wonder buying the wine 16
              6 5
```

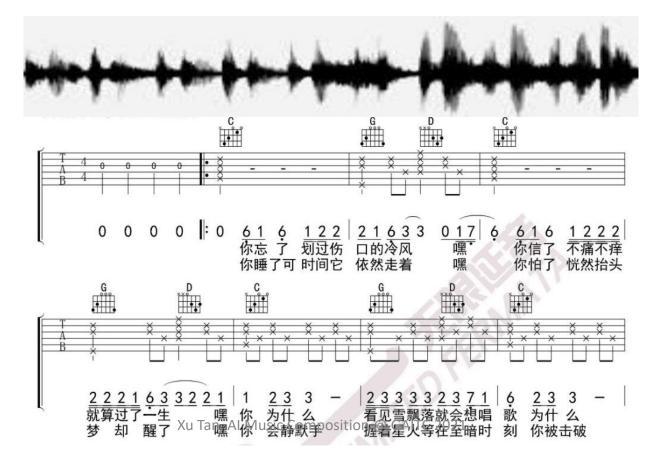

Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

StructMelody

Background

- Lyric and melody is weakly correlated
- Data hungry but low-resource
- However, lyric and melody has its own structures


Solution

- Lyric → Structure, Structure → Melody
- Lyric → Structure': learned based on supervised data
- Structure" → Melody: self-supervised learning from music data
- Close the gap between Structure' and Structure"

StructMelody

- Structure: Rhythm, Beat, Bar, Chord, Form
- How to get lyric-structure data

StructMelody

- Experiment results
 - 古诗词:《春晓》
 - 春眠不觉晓, 处处闻啼鸟。
 - 夜来风雨声, 花落知多少。

- 散文诗: 《童话》
 - 我给你们讲
 - 一位森林仙女
 - 她的样子和你们一样的
 - 她是一位女河神的妹妹
 - 她的衣裳多么离奇
 - 那是用露水和月光的薄纱做的
 - 这位仙女
 - 在树叶里面正要睡去
 - 活像这个时候的你们

Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling, ACL 2021

- Explore a new lyric-melody relationship: Rap
- Rap is a musical form of vocal delivery that incorporates "rhyme, rhythmic speech, and street vernacular"
 - Originated in America in the 1970s
 - Popular in the world especially in young people
- Hip-Hop
 - 1970s originated from New York, young people in African-American and Latino
 - Street culture
 - Four elements in Hip-Hop
 - DJ (Disc Jockey)
 - Rap (MC)
 - Street Dance (B-Boy)
 - Graffiti

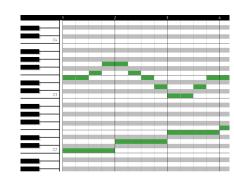
DeepRapper

- Lyric with Rhyme and Rhythm, and sing out
 - Rhyme and Rhythm (beat) is important
 - Rap cares more about beat/duration, rather than pitch (melody)
- However, previous works on rap generation only consider rhyme, but ignores rhythm
 - How they control rhyme? Use Rhyme list. Complicated and not learned end-to-end
 - No rhythm/beat information, cannot be directly used!

- Generated results
 - N Rhyme: single, double, multiple
 - 下苦功 练武功 变武松
 - Diversity in rhyme

- Demo
 - https://deeprapper.github.io/

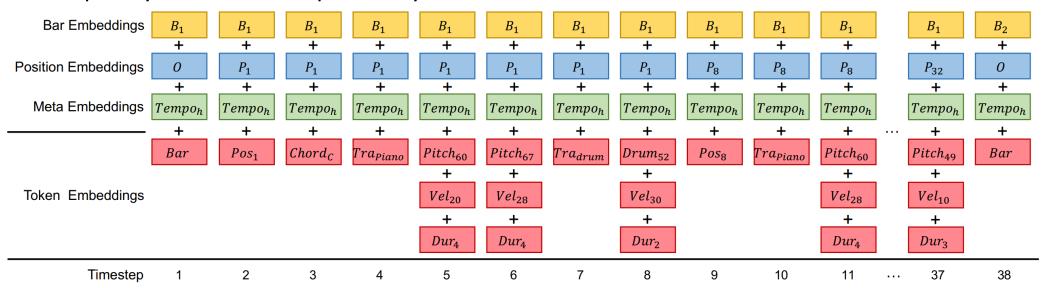

```
oang a e iangang i ean u e ai
     我长大的地放像一个简朴的寨
  ie ia ean ang an iieao ao <mark>eai</mark>
公里也许大的远方简直是个小小的寨
        ou er an an ao i a ang i en e ai
       偶尔穿件毛衣那样子很可爱
    an ang e an en e u ang ai i an en e ai
   远 方 可 单 纯 的 姑 娘 还 是 单 纯 的 孩
        iangua e u i a enge e ai
       是放不下的故事大声的喝彩
       ang ai e e ao ai o ing e ang e ai
       像快乐的小孩莫名的敞着怀
          i aiong i o en ang ue ao ei ai
         几百公里我们相约到未来
             在那无尽的沙漠和海
                   an e en an a ai
                   看着温暖花开
                      a i ang e ai
                     花一样的在
                    ie ong en e an ai
                   写 动 人 的 天 籁
                   跟着自由自在
                   消沉在那片海
      uong er i e a en uong <mark>en e i ai</mark>
     不懂儿时的他们不懂什么是爱
                   ao an ai i an ai
                   到现在你看来
```



Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

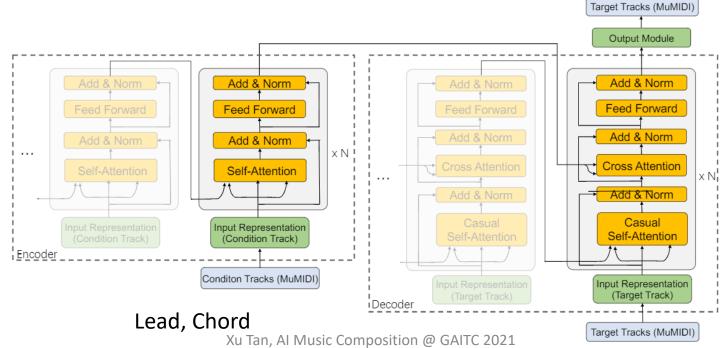
PopMAG: Pop Music Accompaniment Generation, ACM MM 2020

- Music accompaniment generation/arrangement are challenging
 - Multi-track generation: Lead, Chord → Drum, Bass, Guitar, Piano, String
 - Arrangement: ensure the harmony between tracks
- Previous works
 - Pianoroll: MuseGAN, MIDI-Sandwich
 - Generate as image, suffers from data sparsity
 - Multi-track MIDI: Xiaoice Band, LakhNES
 - Cannot ensure the dependency in the same step
 - There are no explicitly dependency among tracks



PopMAG

- MUlti-track MIDI representation (MuMIDI)
 - enables simultaneous multi-track generation in a single sequence
 - explicitly models the dependency of the notes from different tracks


Bar: <Bar> token, **Position**: 32 position (1/32), **Chord**: 12 chord root * 7 types = 84 chords

Track: Lead, Chord, Drum, Bass, Guitar, Piano, String, Note: Pitch, Duration, Velocity

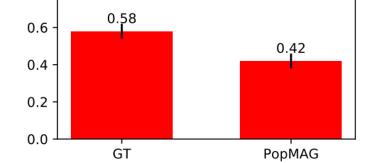
PopMAG

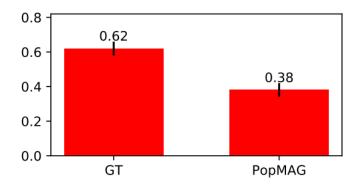
- MuMIDI sequence is long and challenging for long-term music modeling
 - Shorten the sequence length: modeling multiple note attributes (e.g., pitch, duration, velocity) in one step
 - Introduce long-term context as memory

PopMAG

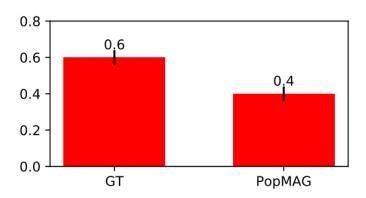
- Experiments
 - Dataset
 - Lakh MIDI
 - FreeMIDI
 - An internal Chinese Pop MIDI (CPMD)

Dataset	#Musical Pieces	#Bars	Duration (hours)		
LMD	21916	372339	255.13		
Free Midi	5691	92825	52.32		
CPMD	5344	94170	54.12		




Melody

Melody+ Generated Accompaniment


2021/6/5 //speechresearch.github.io/popmag/ Music Composition @ GAITC 2021

(a) Preference scores on LMD.

(b) Preference scores on FreeMidi.

(c) Preference scores on CPMD.

Arrangement

- Horizonal axis (time): music form, chord progression
- Vertical axis (harmony): texture (Melody, Harmony, Base, Rhythm, Noise)

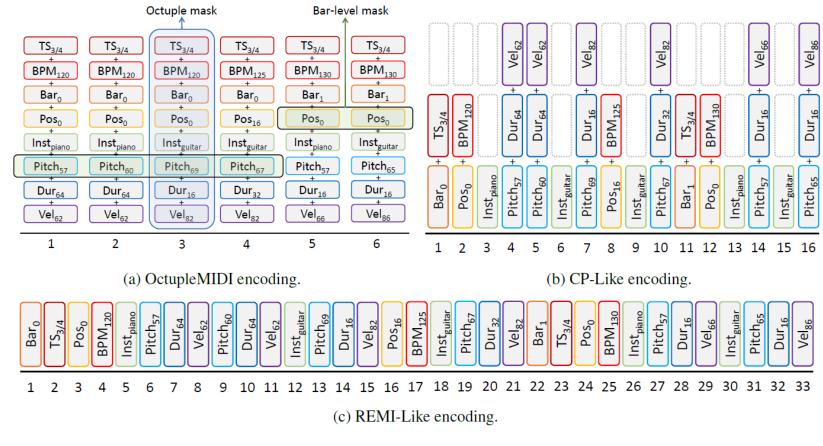
Music Form: verse-chorus	Intro: 4	Verse: 16	Chorus: 16	Interlude: 4	Verse: 8	Chorus: 16	Outro: 6
Melody		Sequence	Syncopation			Strengthen	Slow
Harmony	Guitar	Guitar	Piano				
Base			Bass				
Rhythm			Drum				
Noise	Sea Wave						

Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

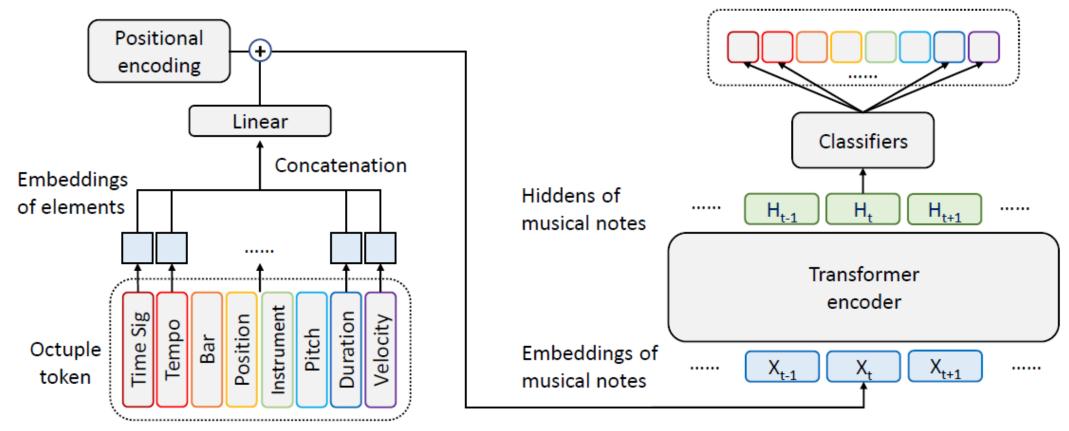
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training, ACL 2021

- Understanding music is important for generation
 - Emotion recognition
 - Genre classification
 - Melody/accompaniment extraction
 - Structure analysis
- Previous works on music understanding
 - PiRhDy, ACM MM 2020 best paper, contextual word embedding
 - Shallow model, too much complicated design with music knowledge


- Dataset construction: Million MIDI Dataset (MMD)
 - Crawled from various MIDI and sheet music websites
 - 1.5 million songs after deduplication and cleaning (10x larger than LMD)

Dataset	Songs	Notes (Millions)
MAESTRO	1,184	6
GiantMIDI-Piano	10,854	39
LMD	148,403	535
MMD	1,524,557	2,075

- Data representation: OctupleMIDI
 - Compound token: (Bar_1, TimeSig_4/4, Pos_35, Tempo_120, Piano, Pitch_64, Dur_12, Vel_38)
 - Supports changing tempo and time signature
 - Shorter length compared to REMI and MuMIDI in PopMAG


OctupleMIDI representation

	OctupleMIDI		
Tokens	3609 ran, Ar iviu	2169981bozi	tigns@n@AITC 2021

Model structure

- Experiments
 - Melody completion
 - Two sequences classification
 - Accompaniment completion
 - Melody and accompaniment sequences classification
 - Genre classification
 - Single sentence classification

	Melody Completion					Accompaniment Suggestion				Classification		
Model	MAP	HITS	HITS	HITS	HITS	MAP	HITS	HITS	HITS	HITS	Genre	Style
	MAI	@1	@5	@10	@25	IVIAI	@1	@5	@20	@25	F1	F1
melody2vec _F	0.646	0.578	0.717	0.774	0.867	-	-	-	-	-	0.649	0.299
melody2vec _B	0.641	0.571	0.712	0.772	0.866	-	-	-	-	-	0.647	0.293
tonnetz	0.683	0.545	0.865	0.946	0.993	0.423	0.101	0.407	0.628	0.897	0.627	0.253
pianoroll	0.762	0.645	0.916	0.967	0.995	0.567	0.166	0.541	0.720	0.921	0.640	0.365
PiRhDyGH	0.858	0.775	0.966	0.988	0.999	0.651	0.211	0.625	0.812	0.965	0.663	0.448
PiRhDy _{GM}	0.971	0.950	0.995	0.998	0.999	0.567	0.184	0.540	0.718	0.919	0.668	0.471
MusicBERT _{small}	0.979	0.966	0.995	0.998	1.000	0.920	0.325	0.834	0.991	0.996	0.762	0.604
MusicBERT _{base}	0.984	0.973	0.997	0.999	1.000	0.945	0.333	0.856	0.995	0.998	0.784	0.651

MusicBERT

• Experiments

Ablation studies

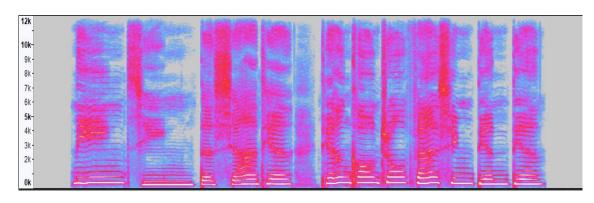
Encoding	Melody	Accom.	Genre	Style
CP-like	96.6	88.0	0.750	0.594
REMI-like	96.7	88.4	0.734	0.562
OctupleMIDI	96.9	88.7	0.762	0.604

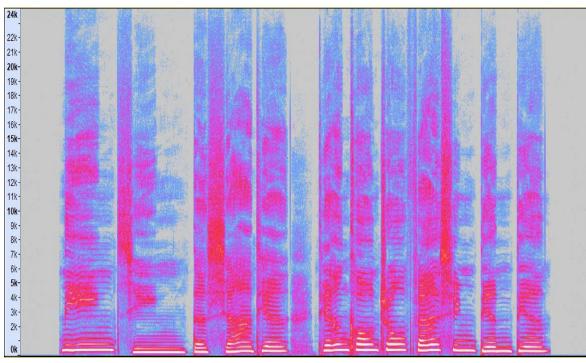
Mask	Melody	Accom.	Genre	Style
Random	96.7	88.1	0.753	0.602
Octuple	96.7	88.1	0.751	0.606
Bar	97.0	88.1	0.766	0.610

Model	Melody	Accom.	Genre	Style
No pre-train	93.7	77.4	0.677	0.450
MusicBERT	96.9	88.7	0.762	0.604

Our research work

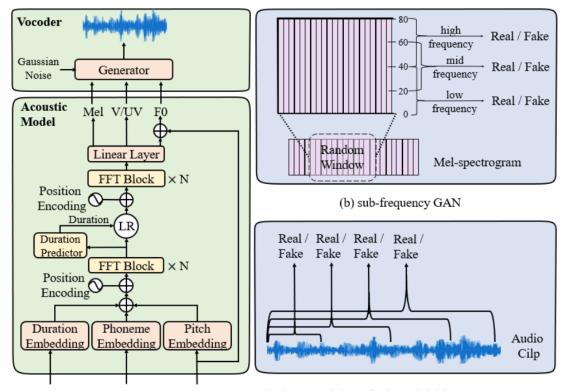
- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

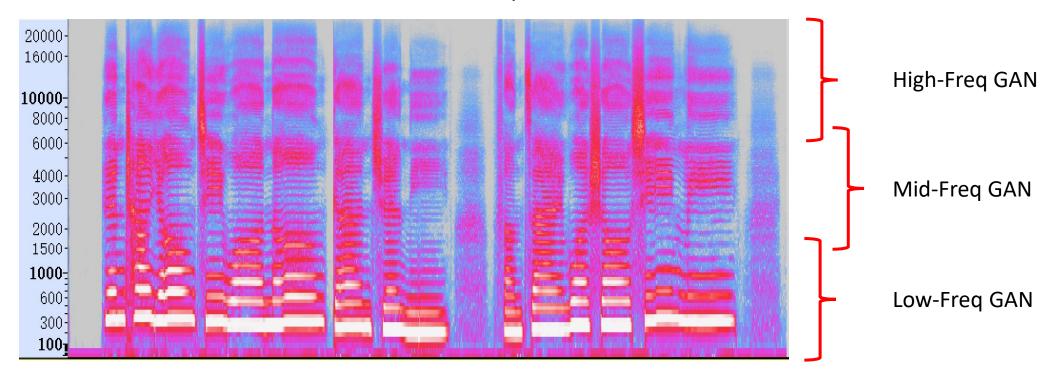



HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis

- Compared with speaking voice, singing voice need high-fidelity to convey expressiveness and emotion
- How to ensure high-fidelity? High sampling rate
 - Speaking voice in TTS: 16KHz or 24KHz
 - Human can perceive frequency 20~20K
 - According to Nyquist-Shannon frequency, 16KHz or 24KHz can convey 8KHz or 12KHz frequency
- Increase to 48KHz, can convey 24KHz frequency, fully satisfy human ear
- Challenges of 48KHz
 - 48KHz vs 24KHz, wide frequency cause challenges to acoustic model
 - 48KHz, 1s has 48000 waveform points, cause challenges to vocoder

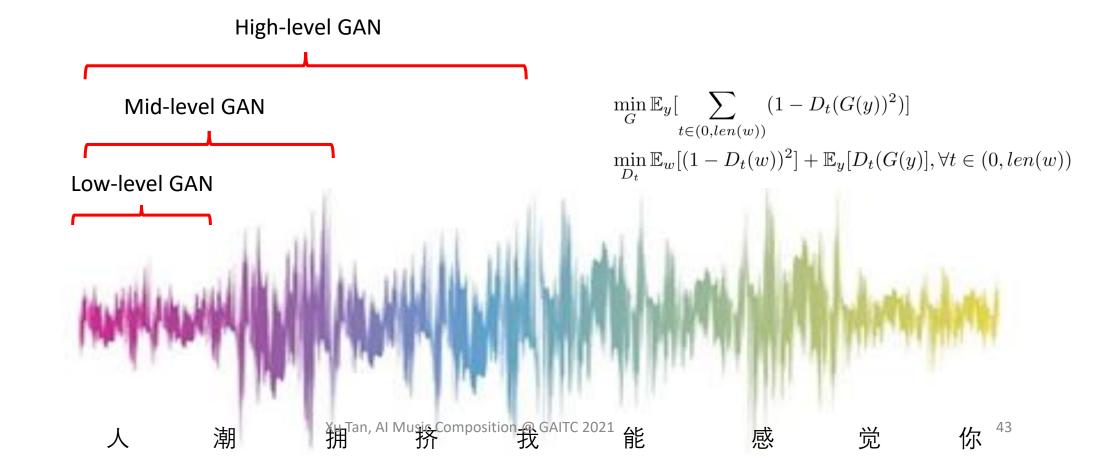
• Demo voice





- Model pipeline
 - Acoustic model: lyric + score → mel-spectrogram
 - Vocoder: mel-spectrogram → waveform

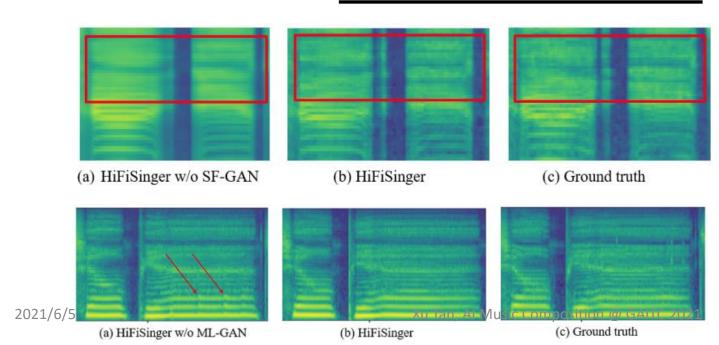
- Sub-frequency GAN
 - Use different GAN focus on different frequencies



$$\begin{split} & \min_{G} \mathbb{E}_{x} [\sum_{f \in \{\text{low}, \text{mid}, \text{high}\}} (1 - D_{f}(G(x))^{2})] \\ & \min_{D_{f}} \mathbb{E}_{y} [(1 - D_{f}(y))^{2}]^{\text{HTE}_{x}} [D_{f}^{\text{MC}}(G(x))]^{\text{high}} \\ & \text{which, nigh} \} \end{split}$$

2021/6/5

- Multi-length GAN
 - Use different GAN focus on different time resolution


- Systematic improvements
 - Hop size/window size tradeoff
 - Pitch/UV
 - Increase receptive field
 - Use long audio clips

- Experiments
 - Audio quality

Ablation study

Method	MOS	
Recording	4.03 ± 0.06	
Recording (24kHz)	3.70 ± 0.08	
XiaoiceSing (Lu et al., 2020)	2.93 ± 0.06	
Baseline (24kHz)	3.32 ± 0.09	
Baseline (24kHz upsample)	3.38 ± 0.08	
Baseline	3.44 ± 0.08	
HiFiSinger (24kHz)	3.47 ± 0.06	
HiFiSinger	3.76 ± 0.06	

https://speechresearch.github.io/hifisinger/

Our research work

- Song writing
 - SongMASS (AAAI 2021), for lyric and melody generation
 - StructMelody (ongoing), for melody generation
 - DeepRapper (ACL 2021), for lyric and rhythm generation
- Arrangement
 - PopMAG (ACM MM 2020), for accompaniment
 - MusicBERT (ACL 2021), for music structure understanding
- Singing voice synthesis
 - HiFiSinger (arXiv 2020), for high-fidelity singing voice synthesis
 - XiaoiceSing (INTERSPEECH 2020), DeepSinger (KDD 2020)

Research challenges

- Music structure
 - Clear theme and self-repetitive structure (Motif → Sequence)
 - Music form: rondo, variation, sonata, ternary, verse-chorus, Chinese
 - Arrangement: harmony, orchestration
- Emotion and Style
 - How to recognize emotion and style
 - How to control the emotion and style in generation
- Interaction
 - Retain a certain level of creative freedom when composing music with AI
- Originality
 - How to ensure innovation, instead of fitting data distribution

Thank You!

Xu Tan (谭旭) Senior Researcher @ Microsoft Research Asia xuta@microsoft.com

https://www.microsoft.com/en-us/research/people/xuta/ https://www.microsoft.com/en-us/research/project/ai-music/