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Abstract— Brain-computer interfaces (BCls) using Electroen-
cephalography (EEG) have drawn attention to providing al-
ternative control pathways for users with motor disabilities or
even the general public in real-world environments due to their
robustness, relatively low cost, and high portability. However,
EEG still suffers from large variability between subjects or
between sessions of an individual subject. To obtain optimal
performance, a BCI usually requires a user to go through
a calibration process to fine-tune the model. This calibration
process is usually long and could hinder the practicality of a
BCI. In this study, we propose a closed-loop framework that
monitors the user EEG responses to the action of a BCL If
an Error-related Potential (ErrP) is detected in the response,
it is indicated that the BCI is making a wrong prediction.
By using the information from this ErrP detector, we can
include online testing trials into the training pool and further
fine-tune the model over the time the BCI is used. Results
suggest that the proposed framework can reach better results
with a few additional trials when compared to the model pre-
trained from some existing data. Also, the performance of the
proposed model can gradually converge to a fully calibrated
model, which suggests that the conventional calibration process
could be replaced by online training.

[. INTRODUCTION

A brain-computer interface (BCI) provides a pathway for
users to control computers or machines with their brain
activities. Among various types of BCI modalities, electroen-
cephalography (EEG) which measures voltage fluctuations
resulting from ionic current within the neurons of the brain
has been the most popular one due to its high temporal res-
olution, high portability, and relative straightforward set-up
process [1], [2]. Real-world applications for EEG-based BClIs
have been proposed previously. For example, P300-based
spellers [3] and SSVEP-based spellers [2] were built for
people with motor disability. Also, VR headsets combined
with EEG sensors were proposed to enhance user interfaces
in VR games [4]. These examples demonstrate the feasibility
of EEG-based BClIs in real life.

However, EEG-based BClIs are still impractical for many
application scenarios. One of the major challenges is that to
obtain a robust performance in decoding the EEG signals,
a calibration process is usually required to optimize the
statistical model because there is a large subject-to-subject
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variability or relatively small session-to-session variability
within an individual. This calibration process is usually time-
consuming which hinders the practicality of the BCIs.

In order to reduce the calibration time, transfer learning
approaches have been proposed to leverage existing data
from other users or data from previous sessions of the same
user [5]. Studies have shown that a BCI decoder can start
with a model trained with some existing data, and adaptive
learning methods can be used to progressively fine-tune the
model during the time the system is used [6]-[8]. In this
work, we propose a closed-loop adaptive BCI framework
that consists of two main components, a control classifier,
and an Error-related Potential (ErrP) detector. The control
classifier decodes the EEG signals of the user’s intention to
send commands as a regular BCI, while the ErrP detector
monitors the user’s EEG responses to the result the control
classifier outputs. We show that in this framework, a BCI
system is able to collect new training trials with their pseudo-
labels, and the performance of the control classifier improves
over the time the system is used.

II. METHOD
A. Framework

Our proposed framework consists of two main compo-
nents:

1) The SSVEP classifier: It serves as the control classi-
fier in a traditional BCI system which decodes user
SSVEP responses to the stimuli and translates them
into commands.

2) The ErrP detector: It is an additional component
compared to a traditional BCI system. This detector
decodes the EEG responses shortly after the output of
the SSVEP classifier is displayed to the user to detect
whether an ErrP exists.

We chose to use SSVEP as the BCI paradigm in our frame-
work because SSVEP decoding is relatively well developed
and studied. Thus, we could focus on studying the effects of
adaptive learning using the detection of ErrP as feedback to
the classifier.

The block diagram of the system is shown in Fig. 1.
The chain in the framework starts from a user using an
SSVEP-based BCI, whose SSVEP trial is fed to the SSVEP
classifier (arrow 1). Then the SSVEP classifier outputs the
predicted label of this trial (arrow 2), and the predicted label
is displayed on the screen to further stimulate the user (arrow
3). The ErrP trial which contains the user’s EEG response to
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Fig. 1. The block diagram of the proposed closed-loop framework.

the predicted result is then fed into the ErrP detector (arrow
4). Finally, the ErrP detector predicts whether the SSVEP
label matched the user’s expectation by monitoring whether
an ErrP exists in the ErrP trial. If no ErrP is detected, the
system assumes that the predicted SSVEP label is correct,
and uses the pair of the SSVEP trial and the predicted
label (pseudo-label) to further fine-tune the SSVEP classifier
(arrow 5, more details in section II-F).

Note that in this study, we focus on the improvement of the
SSVEP classifier. Although the ErrPs also have variability
across sessions, studies have shown that the detection of the
ErrPs can have comparable performance in a cross-session
scenario against a within-session scenario [9].

B. Experiments

The experiment consisted of a user interacting with
SSVEP targets as a BCI-controlled keyboard. There were
three square targets with texts, “Left/Enter/Right” on each
at the lower part of the screen of the experiment. At the
beginning of each SSVEP trial, a red arrow pointed at one
of the targets for 0.5 sec, and then all three targets started to
flicker at different frequencies (7.5, 10, and 12 Hz) for 2 secs.
The subject was asked to look at the highlighted target during
the flickering. A 1-sec pause followed the flashing in which
all three targets became black. After the pause, the ErrP trial
started. One of the targets turned green and a text “Result:
Left/Enter/Right” corresponding to the predicted result of the
SSVEP trial was displayed at the center of the screen for
another 0.5 sec. Finally, another 1-sec pause was presented
as a short break before the beginning of the next SSVEP
trial. The arrow pointed at each of the three targets for one
time every three SSVEP trials, but the order was randomized.
The EEG device used in this study was actiCap Xpress Twist
and the LiveAmp with a 500-Hz sampling rate from Brain
Products, Germany.

C. Datasets

Following state regulations for mitigating the infection
of covid-19, only two subjects participated in the study.
There were 8 recording sessions (id 1 to 8) evaluated for
a main participant (one of the authors) and 3 (id 1 to 3)
recording sessions for a secondary participant (a male from
the same household). For the main participant, there were
also three pilot ErrP sessions in which the predicted results
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Fig. 2. The structure of the CNN model for the SSVEP classification.

of the SSVEP were randomly generated with the probability
Pr(correct) = 0.7 and Pr(wrong) = 0.3 to stimulate the ErrP
responses. There was another pilot session, id 0, that included
both SSVEP trials and actual ErrP trials. Using sessions
id 1 to 8, before the experiment, an SSVEP classifier was
trained using the SSVEP trials from the previous session
(e.g. trained with session id O for session id 1, session id 1
for session id 2, and so on), and the SSVEP classifier was
used during the experiment to generate predicted results to
further induce ErrP. The ErrP detector was trained with the
four pilot sessions and classified the ErrP trials of sessions
id 1 to 8 offline.

As for the secondary subject, there was one session, id 1,
under the cross-subject scenario. In this session, the SSVEP
classifier was trained with the 8th session of the main subject
and the ErrP detector was trained with the four pilot sessions
of the main subject. There were two more sessions, id 2 and
3, under the cross-session scenario that the SSVEP classifier
was trained with his own first session, and the ErrP detector
was trained with the three pilot sessions from the main
subject plus the ErrP trials from his own first session.

D. The SSVEP Classifier

The raw SSVEP trials are epoched at 0.1 sec after the
stimulus onset with a duration of 2 secs. The trials are
preprocessed by selecting the channels Pz, P3, P4, Oz, Ol,
02, re-referencing to the channel Fz, filtered with a 6-40
Hz band-pass filter, and then down-sampled to a 125-Hz
sampling rate.

The SSVEP classifier used in this study is a Convolutional
Neural Network (CNN)-based model similar to [10], illus-
trated in Fig. 2. The model starts with a convolution layer
with the kernel size equal to the number of EEG channels x
1, and the number of the output convolution channels equal to
2. An input trial is first reshaped to dimension 1 (convolution
channel) x 6 (EEG channels) x 250 (timestamps) and
processed with the convolution layer. The purpose of this
process is to find the optimal spatial filters. The kernels of
the first convolution layer can be viewed as linear coefficients
of each channel, and therefore, the meaning of the output is
the projection of the trial from EEG-channel-domain to 2
spatial components. Then the output of the first convolution
layer is reshaped again to dimension 1 (convolution channel)
X 2 (spatial components) x 250 (timestamps) and processed
with a second convolution layer with the kernel size 2 x 125
and 9 output channels. The goal of the second convolution
layer is to find the temporal signatures within a sliding 1-sec
window. Finally, the output of the second convolution layer
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Fig. 3. The flow chart of how the training and testing data are prepared
in (a) the first evaluation scheme (b) the second evaluation scheme.

is connected with two linear layers with output dimensions
equal to 16 and 3 to project the tensor to class spaces.
When training the SSVEP classifier to classify the SSVEP
trials during a target session, the SSVEP trials in the previous
sessions were used. Ten percent of trials were randomly
preserved as validation trials. The maximum number of
epochs was set to 150 but the training could be stopped
earlier if the validation accuracy decreased for 4 consecutive
epochs. The batch size was set to 12, and the optimizer was
stochastic gradient descent (SGD) with the learning rate 0.1.

E. The ErrP detector

The raw ErrP trials are epoched with a 0.4-sec window
starting from 0.2 sec after the stimulus. Channels Fz, FC1,
FC2, Cz, C3, C4, CP1, CP2, and Pz are extracted and re-
referenced to the average of TP9 and TP10. Signals are
filtered with a 1-10 Hz band-pass filter and down-sampled
to a 250-Hz sampling rate.

The ErrP trials are first processed with XDAWN filters
to enhance the signal-to-noise ratio [11]. This process is
implemented with the Python package MNE [12]. Each
trial is projected into 4 XDAWN components, and each
component is further segmented into 2 windows (0-125 and
125-250 ms). Linear Discriminant Analysis (LDA) is applied
across each window of all trials, and an LDA index is
obtained for each window in each trial. Therefore, for each
trial, 8 total feature values—4 (XDAWN components) x 2
(windows)—are calculated. Finally, these features are used
to train a Logistic Regression (LR) classifier (implemented
using the Python package Scikit-learn [13]).

F. Adaptive Learning

In this work, we use two evaluation schemes to simulate
the effects of the adaptive learning process as the BCI system
is being used. These two schemes are illustrated in Fig.
3. The first scheme allows us to compare the performance
between our adaptive model and the model gone through a
full calibration process conventionally. In the first scheme,
the data of the previous session is used to train the pre-
trained model as described in section II-D. The target
session is divided into calibration data and testing data with

a ratio of 1:3. The calibration data (with the ground-truth
labels) are used to fine-tune the pre-trained model to obtain
the fully-calibrated model. The fine-tuning process consists
of training 10 more epochs using the new data with a batch
size of 12 and the learning rate and the momentum set to 0.1
and 0.01 respectively for the SGD optimizer. The calibration
data are further split into 4 blocks. These blocks of trials are
gradually added into the training pool as adapted trials to
fine-tune the pre-trained model in the chronological order,
which simulates that the system is progressively fine-tuned
during the online usage. Starting from the first block, for
every ErrP trial in the block, the ErrP detector makes a
prediction of whether there exists an ErrP in this trial, if
the ErrP detector has more than 0.75 confidence that an
ErrP doesn’t exist, then the corresponding SSVEP trial and
predicted label are added into the adapted pool. Every time
a new block of trials are partially added into the adapted
pool, a new adaptive model is trained by fine-tuning the
pre-trained model with the adapted trials in the pool, and
all models are evaluated using the testing data.

In the second scheme, the pre-trained model is acquired
in the same way, but the target session is no longer divided
into calibration data and testing data. The target session
is directly split into 16 blocks instead. Similar to the first
scheme, each block is also added to the adapted pool in
order. However, in the second scheme, models are evaluated
with the new block before it is added into the pool. Also,
there is no fully-calibrated model to compare. This scheme
allows us to simulate the online performance the adaptive
model could achieve.

III. RESULTS

The average results across the eight sessions of the main
subject in two evaluation schemes are shown in Fig. 4. The
shaded areas indicate the standard error of the accuracy of
pre-trained model and adaptive model across the eight
sessions. Several additional curves are added as comparisons
in different scenarios which are explained in the legend area.
The p-value of the Wilcoxon signed-rank test between the
pre-trained model and the adaptive model is 0.027.

Fig. 5 shows the results of the three sessions of the
secondary subject. In the top row, the data used to train the
pre-trained model are from the last session of the main
subject, while in the bottom two rows, the ones are from the
first session of the secondary subject as described in II-C.

IV. DISCUSSIONS

As shown in Fig. 4, the pre-trained model has the
lowest accuracy in most circumstances when other models
are fine-tuned with the trials within the target session. The
performance of our proposed method, the adaptive model
increases as new blocks of trials come in, and its accuracy
gradually converges to the one of the fully-calibrated model
with a similar increasing rate compared to the model with
true labels. This suggests the calibration period for obtaining
the model with true labels and the fully-calibrated model
could be replaced with the period of online use. Furthermore,
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Fig. 4. The results of the main subject under two evaluation schemes. The
top left panel shows the accuracy of different models evaluated under the
first scheme. The shaded areas indicate the standard error. The top right
panel further highlight the accuracy at the point after the fourth block is
adapted from the top left panel. The bottom left panel shows the accuracy
within each block under the second scheme.

the comparable growth in accuracy between the adaptive
model and the model with perfect ErrP implies that the
performance of the cross-session ErrP detection (around
87%) is good enough. In the bottom left panel, we can
see that the pre-trained model fails to maintain the good
performance especially at later blocks potentially due to
the fatigue making the signal quality worse. However, the
adaptive model is capable of keeping decent performance.
Also, the similarity in performance between the adaptive
model and the model with true labels validates the success
of the ErrP detector. Finally, the semi-supervised model
which progressively fine-tunes the model with the SSVEP
trials and their predicted labels is also compared, and its
performance tends to be worse than the adaptive model.

In Fig. 5, the results of the secondary subject show lower
overall accuracy. The reason for the overall lower accuracy
could be subject-variability. However, the trend is similar to
the main subject. When looking at the left panels in Fig. 5,
the adaptive model has comparable performance with the
pre-trained model after four blocks of trials are adapted.
Yet, if the adapting process is prolonged (the right panels
in Fig. 5), the performance of the adaptive model starts to
diverge from the pre-trained model. Also, after the fifth
block is adapted, we can see a clearer trend that adaptive
model has increasingly better performance as the model with
true labels and the model with perfect ErrP do, especially
in the cross-session scenarios.

The limitations of this study are that the size of the dataset
is small, and the performance in the cross-subject scenario
can be improved. Still, this work proposes an adaptive
framework that could facilitate plug-and-play BCls.
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