

Towards Efficient Machine Learning for Speech and Music Applications

Xu Tan/谭旭 Senior Researcher Microsoft Research Asia

Background

•

- •
- ullet
 - •

 - •
 - •
 - ullet

Data/Memory/Computation/Time-Efficient machine learning is important

Techniques for efficient machine learning

- → • • • •
- ullet

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

ullet

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

\rightarrow \rightarrow

Text to speech synthesis

Time-efficient ML for TTS

You can call me directly at 4257037344 or my cell 4254447474 or send me a meeting request with all the appropriate information.

- •
- •
- •

- •
- Extremely fast 270x
- Robust
- Controllable
- Voice quality

https://speechresearch.github.io/fastspeech/

- •
- Training pipeline complicated
- Target is not good
- Duration is not accurate
- •
- Simplify training pipeline
- Use ground-truth speech as target
- Improve duration Introduce more variance information

one-to-many mapping

- more controllable

fast, robust and even

https://speechresearch.github.io/fastspeech2/

FastSpeech 1/2

Azure Speech Service (TTS)

70+ languages/locales

Languages	Locales	Languages Locales	Languages	Locales	Languages	Locales

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

ASR error correction

- •
- (S, T), M M(S) S M, C (M(S), T).
- •
- •
- ullet

Naïve NAR solution fails

- •
- - •
 - \bullet
 - •
 - •

 - \bullet

Our solution: FastCorrect


```
• 6x 11%
```

```
•
```


- - - \bullet
 - \bullet
- \bullet
- ullet

- •
- ullet
- \bullet
 - \bullet
- ullet

- •
- - •
 - •
- ullet
- •

AISHELL-1	Tes	st Set	De	v Set	Laten	cy (ms/sent) on [Test Set
	WER	WERR	WER	WERR	GPU	CPU*4	CPU
No correction AR model	4.83 4.08	- 15.53	4.46 3.80	- 14.80	- 149.5 (1×)	- 248.9 (1×)	- 531.3 (1×)
LevT (MIter=1) 9 LevT (MIter=3) 9 FELIX 21	4.73 4.74 4.63	2.07 1.86 4.14	4.37 4.38 4.26	2.02 1.79 4.48	54.0 (2.8×) 60.5 (2.5×) 23.8 (6.3×)	82.7 (3.0×) 83.9 (3.0×) 41.7 (6.0×)	158.1 (3.4×) 161.6 (3.3×) 85.7 (6.2×)
FastCorrect	4.16	13.87	3.89	13.3	21.2 (7.1×)	40.8 (6.1×)	82.3 (6.5×)
	1		I		1		
Internal Dataset	Tes	st Set	De	v Set	Laten	cy (ms/sent) on	Test Set
Internal Dataset	Tes WER	st Set WERR	De WER	v Set WERR	Latend GPU	cy (ms/sent) on CPU*4	Test Set CPU
Internal Dataset No correction AR model	Tes WER 11.17 10.22	st Set WERR - 8.50	De WER 11.24 10.31	v Set WERR - 8.27	Latend GPU - 191.5 (1×)	cy (ms/sent) on 7 CPU*4 - 336 (1×)	Test Set CPU - 657.7 (1×)
Internal Dataset No correction AR model LevT (MIter=1) 9 LevT (MIter=3) 9 FELIX 21	Tes WER 11.17 10.22 11.26 11.45 11.14	st Set WERR - 8.50 -0.80 -2.50 0.27	De WER 11.24 10.31 11.35 11.56 11.21	v Set WERR - 8.27 -0.98 -2.85 0.27	Latend GPU 191.5 (1×) 60.5 (3.2×) 75.6 (2.5×) 25.9 (7.4×)	cy (ms/sent) on 7 CPU*4 336 (1×) 102.6 (3.3×) 118.9 (2.8×) 43.0 (7.8×)	Test Set CPU 657.7 (1×) 196.5 (3.3×) 248.0 (2.7×) 90.9 (7.2×)

 \bullet

Model	Internal Dataset	AISHELL-1 Dataset
No correction	11.17	4.83
AR model	10.22	4.08
- Pre-training	10.26	16.01
- Fine-tuning	11.70	5.28
FastCorrect	10.27	4.16
- Pre-training	10.33	4.83
- Fine-tuning	11.74	5.19
- Edit Alignment	12.27	4.67

		AISHELL	-1	Internal Dataset			
Model	WER	Latency	Latency (ms/sent)		Latency	(ms/sent)	
	%	GPU	CPU	%	GPU	CPU	
No Correction	4.83	-	-	11.17	-	-	
AR 6-6	4.08	149.5 (1×)	531.3 (1×)	10.26	190.6 (1×)	648.3 (1×)	
AR 8-4	4.14	120.5 (1.2×)	427.6 (1.2×)	10.28	144.1 (1.3×)	542.0 (1.2×)	
AR 10-2	4.23	84.0 (1.8×)	317.6 (1.5×)	10.33	100.8 (1.9×)	431.2 (1.5×)	
AR 11-1	4.30	66.5 (2.2×)	281.0 (1.7×)	10.44	79.1 (2.4×)	372.3 (1.7×)	
FastCorrect	4.16	21.2 (7.1×)	82.3 (6.5×)	10.33	21.4 (8.9×)	86.8 (7.5×)	

•	

Model		Interna	al Dataset			AISI	HELL-1	
	P_{edit}	R_{edit}	P_{right}	WERR	P_{edit}	R_{edit}	P_{right}	WERR
AR model	94.3	31.0	18.9	8.50	97.2	47.4	35.1	15.53
LevT	74.0	41.3	11.4	-0.80	91.6	26.1	20.3	2.07
FELIX	93.6	19.9	10.1	0.27	96.5	33.8	22.8	4.14
FastCorrect	95.0	27.6	16.2	8.06	96.8	48.1	26.4	13.87

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

ullet

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

\rightarrow \rightarrow

Diffusion model for TTS

۲

$$q(x_t|x_{t-1}) := \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I})$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t) \right) \qquad \sigma_{\theta}(x_t, t) = \tilde{\beta}_t^{\frac{1}{2}}$$

Time-efficient diffusion model for TTS

۲

Algorithm 2 Sampling of PriorGrad
$(\mu, \Sigma) = \text{data-dependent prior}$ Sample $x_T \sim \mathcal{N}(0, \Sigma)$ for $t = T, T - 1, \dots, 1$ do $x_{t-1} = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}}} \epsilon_{\theta}(x_t, c, t))$ if $t > 1$ then $x_{t-1} = x_{t-1} + \sigma_t \Sigma^{\frac{1}{2}}$ else $x_{t-1} = x_{t-1} + \mu$ end if end for return x_0

PriorGrad

Туре	Method	MOS	
	GT	4.31 ± 0.11	-
Vocoder	GT + WaveGrad [2] (1M) GT + PriorGrad (300K)	$\begin{array}{c} 4.01 \pm 0.11 \\ \textbf{4.06} \pm \textbf{0.11} \end{array}$	-
Text-to-speech	FastSpeech 2 [28] + WaveGrad [2] (1M) FastSpeech 2 [28] + PriorGrad (300K)	$\begin{array}{c} 4.01 \pm 0.14 \\ 3.97 \pm 0.12 \end{array}$	-

Method	100K	500K	1 M
WaveGrad	0	0	0
PriorGrad	0.297	0.224	0.333

PriorGrad

۲

Method	Small	Large	
GT (PWG [40])	4.12 =	± 0.17	
Baseline (300K) PriorGrad (60K)	$\begin{array}{c} 3.69 \pm 0.15 \\ 3.73 \pm 0.14 \end{array}$	$\begin{array}{c} \textbf{3.86} \pm \textbf{0.12} \\ \textbf{3.98} \pm \textbf{0.12} \end{array}$	

Model	Small	Large
Baseline (300K)	0	0
PriorGrad (60K)	0.145	0.408

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

Architecture of an NN is crucial to its performance

General framework of NAS

Train and Get Valid Performance

Our work on NAS

- - - •
 - •

 - LightSpeech

•

LightSpeech

 \bullet

- •
- - •

Model	#Paran	ns Com	pression Ratio	MACs	Ratio	Inference Speed (RTF)	Inference Speedup
FastSpeech 2	27.0N	1	/	12.50G	/	6.1×10^{-2}	/
LightSpeech	1.8 M	[15x	0.76G	16 x	$9.3 imes 10^{-3}$	6.5x
Model		#Params	CMOS				
FastSpee	ch 2	27.0M	0				1502
FastSpee	ch 2*	1.8M	-0.230				19962-2 1912-2
LightSpe	ech	1.8M	+0.04				E125.271

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

Background

- \bullet
- - •

Challenges and solutions

- ●
- AdaSpeech: Adaptive Text to Speech for Custom Voice
- AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data
- ullet

•

• AdaSpeech 3: Adaptive Text to Speech for Spontaneous Styles

AdaSpeech: Adaptive Text to Speech for Custom Voice

- \bullet
- \bullet

- •
- ullet

 - •

AdaSpeech ——Key designs

AdaSpeech——Experiments

•

•

Metric	Setting	# Params/Speaker	LJSpeech	VCTK	LibriTTS
MOS	GT GT mel + Vocoder	/ /	$\begin{vmatrix} 3.98 \pm 0.12 \\ 3.75 \pm 0.10 \end{vmatrix}$	3.87 ± 0.11 3.74 ± 0.11	$3.72 \pm 0.12 \\ 3.65 \pm 0.12$
	Baseline (spk emb) Baseline (decoder)	256 (256) 14.1M (14.1M)	$\begin{vmatrix} 2.37 \pm 0.14 \\ 3.44 \pm 0.13 \end{vmatrix}$	$\begin{array}{c} 2.36 \pm 0.10 \\ 3.35 \pm 0.12 \end{array}$	$\begin{array}{c} 3.02 \pm 0.13 \\ 3.51 \pm 0.11 \end{array}$
	AdaSpeech	1.2M (4.9K)	$ 3.45 \pm 0.11$	3.39 ± 0.10	3.55 ± 0.12
	GT GT mel + Vocoder	/ /	$\begin{vmatrix} 4.36 \pm 0.11 \\ 4.29 \pm 0.11 \end{vmatrix}$	$\begin{array}{c} 4.44 \pm 0.10 \\ 4.36 \pm 0.11 \end{array}$	$\begin{array}{c} 4.31 \pm 0.07 \\ 4.31 \pm 0.07 \end{array}$
SMOS	Baseline (spk emb) Baseline (decoder)	256 (256) 14.1M (14.1M)	$\begin{vmatrix} 2.79 \pm 0.19 \\ 3.57 \pm 0.12 \end{vmatrix}$	$\begin{array}{c} 3.34 \pm 0.19 \\ 3.90 \pm 0.12 \end{array}$	$ \begin{vmatrix} 4.00 \pm 0.12 \\ 4.10 \pm 0.10 \end{vmatrix} $
	AdaSpeech	1.2M (4.9K)	3.59 ± 0.15	3.96 ± 0.15	4.13 ± 0.09

Microsoft Azure Speech (TTS)

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

- •
- •

AdaSpeech 2——Experiments

•

•

Metric	Setting	VCTK	LJSpeech
	GT	3.58 ± 0.12	3.63 ± 0.11
	GT mel+Vocoder	3.42 ± 0.12	3.49 ± 0.11
MOS	Joint-training	2.91 ± 0.09	2.89 ± 0.12
	PPG-based	3.39 ± 0.11	3.44 ± 0.12
	AdaSpeech	3.39 ± 0.10	3.45 ± 0.11
	AdaSpeech 2	3.38 ± 0.12	3.42 ± 0.12
	GT	4.20 ± 0.12	4.24 ± 0.09
	GT mel+Vocoder	4.06 ± 0.08	4.02 ± 0.11
SMOS	Joint-training	3.71 ± 0.13	3.19 ± 0.16
	PPG-based	3.82 ± 0.11	3.51 ± 0.15
	AdaSpeech	3.94 ± 0.12	3.59 ± 0.12
	AdaSpeech 2	3.84 ± 0.08	3.51 ± 0.12

AdaSpeech 3: Adaptive Text to Speech for Spontaneous Style

•

AdaSpeech 3: Adaptive Text to Speech for Spontaneous Style

-

Setting	Naturalness	Pause	Speaking Rate	Setting	SMOS
GT GT mel+Voc AdaSpeech	4.14 ± 0.06 3.84 ± 0.06 3.21 ± 0.06	4.01 ± 0.06 3.78 ± 0.06 3.36 ± 0.06	3.04 ± 0.06 3.06 ± 0.08 2.66 ± 0.08	GT GT mel+Vocoder AdaSpeech	4.33 ± 0.14 4.07 ± 0.14 3.45 ± 0.18
AdaSpeech 3	3.45 ± 0.06	3.53 ± 0.06	2.79 ± 0.06	AdaSpeech 3	3.75 ± 0.16

Cecily package in all of that um yeah so ...

Six spoons of fresh snow peas, **um**, five thick slabs of blue cheese, and maybe a snack for her brother Bob.

Before FP insertion

After FP insertion

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

Low-resource TTS

• 7,000+

 \bullet

•

dozens of

Low-resource TTS——LRSpeech

- Step 1
 - ٠
- Step 2
 - ٠
- Step 3
 - •
 - •

Low-resource TTS——LRSpeech

Language Intelligibility Rate (IR) Mean Opinion Score (MOS) Image: Image of the second se

high IR score (>98%)

MOS score (>3.5)

•

Data Resource	Full-Resource	Speech Chain [36]	Almost Unsup [29]	SeqRQ-AE [20]	Our Method
Text normalization rule	$ $ \checkmark	?	\checkmark	\checkmark	\checkmark
Pronunciation lexicon	\checkmark	×	\checkmark	\checkmark	×
Paired data (single-speaker, high)	dozens of hours	20 hours	200 sentences	200 sentences	50 sentences
Paired data (multi-speaker, low)	hundreds of hours	×	×	×	1000 sentences
Unpaired speech (single-speaker, high)	×	80 hours	13000 sentences	13000 sentences	×
Unpaired speech (multi-speaker, low)	×	×	×	×	13000 sentences
Unpaired text	×	\checkmark	\checkmark	\checkmark	\checkmark
Total Data Cost	312000	120000	74000	74000	833

,

Low-resource TTS——LRSpeech

	7	

Locale	Language (Region)	Average MOS	Intelligibility

Outline

ullet

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

- - •
 - - •
 - •

 - •
 - •

•

•

۲

٠

Dataset	Songs	Notes (Millions)
MAESTRO	1,184	6
GiantMIDI-Piano	10,854	39
LMD	148,403	535
MMD	1,524,557	2,075

•

EncodingOctupleMIDICP-likeREMI-likeTokens3607690615679

- - •
 - •

 - •

۲

	Melody Completion						Accompa	Classification				
Model	ΜΔΡ	HITS	HITS	HITS	HITS	ΜΔΡ	HITS	HITS	HITS	HITS	Genre	Style
	(MAA) @	@1	@5	@10	@25	MAI	@1	@5	@20	@25	F1	F1
melody2vec _F	0.646	0.578	0.717	0.774	0.867	-	-	-	-	-	0.649	0.299
melody2vec _B	0.641	0.571	0.712	0.772	0.866	-	-	-	-	-	0.647	0.293
tonnetz	0.683	0.545	0.865	0.946	0.993	0.423	0.101	0.407	0.628	0.897	0.627	0.253
pianoroll	0.762	0.645	0.916	0.967	0.995	0.567	0.166	0.541	0.720	0.921	0.640	0.365
PiRhDy _{GH}	0.858	0.775	0.966	0.988	0.999	0.651	0.211	0.625	0.812	0.965	0.663	0.448
PiRhDy _{GM}	0.971	0.950	0.995	0.998	0.999	0.567	0.184	0.540	0.718	0.919	0.668	0.471
MusicBERT _{small}	0.979 0.966 0.995 0.998 1.000 0.92		0.920	0.325	0.834	0.991	0.996	0.762	0.604			
MusicBERT _{base}	0.984	0.973	0.997	0.999	1.000	0.945	0.333	0.856	0.995	0.998	0.784	0.651

SOTA accuracy on various music understanding tasks

SongMASS: Automatic Song Writing with Masked Sequence to Sequence Pre-training, AAAI 2021

Paired Aligned Data :

Lyric	Another			day	has	gone	Ľ	m	still	alo	one	
Pitch	R G3 E4 D4		C4	B3	C4	R	E4	C4	B3	C4		
Duration	$\frac{7}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$

SongMASS

•

SongMASS

- - •
 - •

SongMASS

•

you have loved lots of girls 1 1 7 in the sweet long ago -and each one has meant heaven to you you have vowed your affection 6 5 3 each one in turn to 3 2 and have sworn to them be true have kissed the moon vou while the world seemed in tune then left her to hunt a new game 3 5 3 does it ever occur to you later 1 2 1 3 my boy 1 2 1 3 2 1 3 that doing the i wonder kissing her now wonder teaching her wonder looking into her eyes breathing sighs telling lies i wonder buying the wine

6 5

-

DeepRapper

- •
- •
- - •
- •
- - •
 - •
 - •
 - •

DeepRapper

- •
- •
- •
- - •
 - •

DeepRapper

Output	望	仰	[BEAT]	头	抬	[BEAT]	我	[SEP]	茫	[BEAT]	苍	的	[BEAT]	空	天	[SEP]	
Uvowel Embeddings		F ang	F ang	F _[BEAT]	Fou	F _{ai}	F _[BEAT]	F _o	F _[SEP]	F ang	F _[BEAT]	F _{ang}	F _e	F _[BEAT]	F ong	F an	F _[SEP]
Intra-sentence Positional Embeddings	T R _[start]	+	+	T R _[BEAT]	+	+	T R _[BEAT]	+ R ₄ +	T R _[SEP]	+	T R _[BEAT]	+	+ R ₂ +	T R _[BEAT]	+	+	T R _[SEP]
Sentence Embeddings		S ₀	S ₀	S ₀	S ₀	S ₀	S ₀	S ₀	S ₀	S ₁	S ₁	S ₁	S ₁	S ₁	S ₁	S ₁	S ₁
Positional Embeddings	τ P ₀	т Р1	т Р2	т Р3	т Р4	т Р5	т Р6	т Р7	т Р8	т Р9	т Р ₁₀	т Р ₁₁	т Р ₁₂	т Р ₁₃	т Р ₁₄	т Р ₁₅	т Р ₁₆
Token Embeddings	+ E _[start]	+ E _望	+ E仰	+ E _(BEAT)	+ E _头	十 E _抬	+ E _[BEAT]	+ E _我	+ E _[SEP]	+ E _茫	+ E _(BEAT)	十 E _苍	十 E _的	+ E _[BEAT]	十 E _空	+ E _天	+ E _[SEP]
Input	[START]	望	仰	[BEAT]	头	抬	[BEAT]	我	[SEP]	茫	[BEAT]	苍	的	[BEAT]	空	天	[SEP]
1 rhyme repr	rhyme representations								Lyri	cs: 我 <u>拃</u>	头仰望。	,天空	的苍茫。	(I looke	ed up. T	he sky i	is vast.)

Dataset	#Songs	#Sentences						
D-RAP	16,246	832,646						
D-SONG	52,737	2,083,143						
D-LYRIC	272,839	9,659,503						

				-			-	-			-	-			-	
				我	长	大	的	地	放	像	_	个	简	朴	的	寨
	ong	i	e	i	a	e	an	ang	an	i	i	e	ao	ao	е	ai
	公	里	也	许	大	的	远	方	简	直	是	个	小	小	的	寨
					ou	er	an	an	ao	i	a	ang	i	en	е	ai
					偶	尔	穿	件	毛	衣	那	样	子	很	可	爱
			an	ang	e	an	en	 e	u	ang	ai	i	an	en	е	ai
			远	方	可	单	纯	的	姑	娘	还	是	单	纯	的	孩
			~	1	i	ang	u	a	e	u	i	a	eng	e	e	ai
					是	放	不	下	的	故	事	大	声	的	喝	彩
-15 -17					ang	ai	e	e	ao	ai	0	ing	é e	ang	e	ai
氏 松					像	快	乐	的	小	孩	茣	名	的	敞	着	怀
						i	ai	ong	i	0	en	ang	ue	ao	ei	ai
						Л.	百	公	里	我	们	相	约	到	未	来
						-		ai	a	u	in	e	a	0	е	ai
								在	那	无	尽	的	沙	漠	和	海
										-	an	e	en	an	a	ai
											看	着	温	暖	花	开
												а	i	ang	е	ai
												花		样	的	在
											ie	ong	en	е	an	ai
											写	动	人	的	天	籁
											en	e	i	ou	i	ai
											跟	着	自	由	自	在
											ao	en	ai	a	an	ai
											消	沉	在	那	片	海
				u	ong	er	i	e	а	en	u	ong	en	е	i	ai
				不	懂	儿	时	的	他	们	不	懂	仕	么	是	爱
											ao	an	ai	i	an	ai
											到	现	在	你	看	来
											-	ei	en	е	i	ai
												最	真	的	迷	彩

o ang

a

e iangang

i

e an

u

ai e

DeepRapper

- 下苦功 练武功 变武
- ٠

۲

٠

Summary

•

- FastSpeech 1/2
- FastCorrect 1/2
- PriorGrad

ullet

- LightSpeech
- AdaSpeech

ullet

- AdaSpeech 2/3
- LRSpeech
- MixSpeech
- SongMASS
- MusicBERT
- DeepRapper

\rightarrow \rightarrow

Summary

- ۲
- \bullet
- \bullet

Summary

- •
- •
- •
- •
- •

Homepage

Speech Research Demo

