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Abstract
Transformer has been successfully applied to speech separation
recently with its strong long-dependency modeling capacity us-
ing a self-attention mechanism. However, Transformer tends to
have heavy run-time costs due to the deep encoder layers, which
hinders its deployment on edge devices. A small Transformer
model with fewer encoder layers is preferred for computational
efficiency, but it is prone to performance degradation. In this
paper, an ultra fast speech separation Transformer model is pro-
posed to achieve both better performance and efficiency with
teacher student learning (T-S learning). We introduce layer-
wise T-S learning and objective shifting mechanisms to guide
the small student model to learn intermediate representations
from the large teacher model. Compared with the small Trans-
former model trained from scratch, the proposed T-S learning
method reduces the word error rate (WER) by more than 5%
for both multi-channel and single-channel speech separation on
LibriCSS dataset. Utilizing more unlabeled speech data, our
ultra fast speech separation models achieve more than 10% rel-
ative WER reduction.
Index Terms: speech separation, Teacher Student Learning,
Transformer, deep learning

1. Introduction
Speech separation plays a vital role in front-end speech process-
ing, aiming to handle the cocktail party problem. Recently, with
the success of Transformer model in speech community [1, 2],
the Transformer [3, 4] and its variants [5] have successfully
achieved superior performance on this task. However, these
models tend to have heavy run-time costs due to the deep en-
coder layers, while the real-time inference is crucial for product
deployment especially on resource limited edge devices.

Given the great demand of better computational efficiency,
a small speech separation model is preferred for the deploy-
ment, with considerably fewer encoder layers and fast infer-
ence speed. Unfortunately, the use of the smaller model directly
tends to degrade the separation performance and thus hurts per-
formance of downstream tasks such as multi-speaker speech
recognition [5].

To build a small model with both fast inference speed while
maintaining the accuracy, teacher student learning (T-S learn-
ing) is a common strategy for model training, and has been
shown effective in various tasks [6, 7]. With the T-S learning, a
smaller Transformer based separation model (student) is trained
to mimic the behavior of a large pretrained model (teacher). In
this work, we apply the T-S learning to fast transformer based
separation network training, and introduce three updates to fur-
ther enhance the performance. Specifically, with the help of

Layer-wise T-S learning, not only the final prediction but also
the intermediate feature maps of the teacher model are lever-
aged. Since the teacher model is not perfect and may generate
results with noises and errors, we introduce an Objective Shift-
ing mechanism to let the learning objective gradually shift from
the teacher predictions to the golden predictions. Going beyond
the limitation of the labelled training data, large-scale unlabeled
speech separation data are used in our T-S learning, to allow the
student to better capture teacher’s behaviours. Different from
previous work applying T-S learning for speech enhancement
and separation, which train student models in the same model
size while operating at different input features [8, 9], this paper
aims to distill the teacher model’s knowledge to create a smaller
and faster student model. Besides, this paper is the first one to
use a large amount of unlabeled data in the T-S learning for
speech separation.

We conduct the experiment on the public LibriCSS dataset
[10]. The experimental results show that our ultra fast Trans-
former model can achieve more than 5% average relative WER
gains with our proposed T-S learning for both single-channel
and multi-channel speech separation, and the improvements are
more significant for the utterances with higher overlap ratio.
Several ablation experiments show that both Layer-wise T-S
learning and Objective Shifting mechanisms are crucial to the
performance improvements. Moreover, since annotated data
are not required for the Layer-wise T-S learning, pretraining
on large-scale unlabeled data enables our ultra fast Transformer
model achieve more than 10% average relative WER gains with
the proposed T-S learning methods.

2. Background
2.1. Problem Formulation

Continuous speech separation (CSS) aims to estimate individ-
ual speaker signals from a continuous speech input where the
source signals are fully or partially overlapped. Let y(t) de-
note the mixed signal and xs(t) the s-th individual target sig-
nal, where t is the time index. The mixed signal is modeled as
follows:

y(t) =

S∑
s=1

xs(t). (1)

Their short-time Fourier transforms (STFTs) are denoted as
Y(t, f) and Xs(t, f), respectively. f denotes frequency index.

Following [11, 12], instead of directly outputting the STFT
of the individual signals [X1(t, f) . . .XS(t, f)], we employ the
mask learning to recover the clean speech, where a group of
masks M(t, f) = [M1(t, f) . . .MS(t, f)] are firstly estimated
with a deep learning model F (·). Then, for the s-th individual
signal, Xs(t, f) is obtained either by mask-based beamforming



Figure 1: Layer-wise Teacher Student Learning of Transformer
model.
or by direct masking, i.e., Ms(t, f)�Y1(t, f) where � is the
element-wise product, Y1(t, f) is the first channel of Y(t, f).

2.2. Transformer Model

As shown in the Figure 1, The Transformer model [13] is com-
posed of a stack of identical Transformer encoder layers, each
of which consists of a multi-head self-attention module and a
position-wise fully connected feed-forward module.

Before sending to Transformer encoder, for both single and
multi channel separation network, the input feature Y(t, f) is
projected to representation h0 with fixed dimension, by a feed-
forward module FFN(·):

h0 = FFN(Y(t, f)). (2)

Given the input, hi−1, of the i-th layer, the output hi is
calculated as

h′i = layernorm(hi−1 + MultiHeadAttention(hi−1)) (3)

hi = layernorm(h′i + FFN(h′i)), (4)

where MultiHeadAttention(·) and layernorm(·) denote the
multi-head self-attention module and the layer normalization,
respectively. The multi-head self-attention module is imple-
mented with relative position embedding as [14, 5, 15].

Given hI , the output of the final layer, we obtain the masks
M(t, f) with Estimator(·), an estimator consisting of a feed-
forward module and a sigmoid activation function, i.e.,

M(t, f) = Estimator(hI) (5)
= sigmoid(FFN(hI)). (6)

2.3. Teacher Student Learning

Teacher student learning is a common training strategy for
model compression, where a smaller and faster student model is
trained to generate the same output as a more powerful teacher
model. Specifically, in separation task, the T-S learning can be
represented as the minimization of the mean square error (MSE)
between the estimated signals of the student and the teacher
model:

LTS =
1

T × F × S

S∑
s=1

||XStu
s (t, f)−XTea

s (t, f)||2 (7)

where T , F and S denote the number of the time frames, fre-
quency bins and target signals, respectively. The estimated sig-
nals XStu

s (t, f) and XTea
s (t, f) is calculated as:

XStu
s (t, f) = MStu

s (t, f)�Y1(t, f) (8)

XTea
s (t, f) = MTea

s (t, f)�Y1(t, f) (9)

where MStu
s (t, f) and MTea

s (t, f) are the estimated masks of the
student model and the teacher model.

3. Method
To further enhance the efficacy of knowledge distillation, two
mechanisms are introduced to baseline T-S learning, namely
Layer-wise T-S Learning and Objective Shifting, that allows
the student model to also benefit from Teacher’s intermediate
representation and oracle training label. In addition, to further
boost the performance of the student model, we leverage the
unlabeled data training in our T-S learning framework.

3.1. Layer-wise T-S Learning

We introduce the layer-wise T-S Learning mechanism to train
the student to reproduce not only the final prediction but also
the intermediate outputs of the teacher model [16].

As Figure 1 shows, given the IStu layer student model and
ITea layer teacher model, we minimize the mean square error
(MSE) between the output of i-th layer of the student model
and the corresponding g(i)-th output of the teacher model:

Li =
1

T × F ||h
Stu
i − hTea

g(i)||2 (10)

where g(·) is an uniform layer mapping function between in-
dices from student layers to teacher layers.

Then the objective function of layer-wise T-S Learning is
the weighted average function as:

LLTS =

∑IStu

i=0(i+ 1) · Li + (IStu + 1) · LTS∑IStu

i=0(i+ 1) + (IStu + 1)
(11)

where i+1∑IStu
i=0(i+1)+(IStu+1)

is the weight for Li. The loss of a

higher layer is assigned with a larger weight as [15].

3.2. Objective Shifting

Since the student model is trained to recover the predictions of
the teacher model, the performance of T-S learning would be
limited to the teacher’s capability. To avoid this limitation, we
introduce the Objective Shifting mechanism to train the student
with both the teacher’s prediction and training datasets [17, 18].

Specifically, an additional loss item LPIT in added to train-
ing objective, that minimizes the MSE between the estimated
signals of the student model and the references in the training
sets. The final loss function of layer-wise T-S learning with ob-
jective shifting is calculated as:

L = λ(t)LPIT + (1− λ(t))LLTS (12)

where t refers to the training timesteps, λ(t) = sigmoid(−k ·
(t− t0)) is set to the sigmoid annealing function.

It should be noted in LPIT, we apply permutation invariant
training (PIT) [19, 20] to remedy the source permutation prob-
lem, while the permutation in T-S LLTS loss is determined by
the teacher model.



With objective shifting, at the beginning of the training pro-
cess, the student model is solely guided with the teacher’s pre-
dictions, as soft label is believed to provide richer indication
of teacher’s behavior, thus leading to more efficient starting.
As training continues, the student gradually reduces the loss
weight from the teacher, with more emphasis on clean refer-
ence, until the end of the training process, where the student
completely learns from the clean target, to escape the limitation
of the teacher’s knowledge.

3.3. Unlabeled Data training

Training data for speech separation is generally artificially syn-
thesized, so it requires clean speech as well as various noises.
However, real overlapped data is slightly different from the ar-
tificially synthesized data, and it is hard to obtain the ground-
truth of the unmixing results. The gap between artificial training
data and the test data in the real scenario is a potential issue for
speech separation. In this paper, we aim to leverage large-scale
unlabeled mixing data in T-S learning. In this way, the stu-
dent model can approach the teacher model by mimicking the
teacher’s behaviours, not only on the limited annotated data but
also the large-scale unlabeled data.

Specifically, the student model is trained with T-S learn-
ing for two stages. In the first stage, we pretrain the student
model with the layer-wise T-S learning mechanism (Eq. 11) on
the large-scale unlabeled mixing data. The student model learns
to reproduce the final prediction and intermediate outputs of the
teacher’s model on the real overlapped data. In the second stage,
we train the student model with the layer-wise T-S learning and
objective shifting (Eq. 12) on the annotated training data. The
student model begins with mimicking the teacher’s behaviours
on the annotated data, and ends with learning from the golden
predictions of the annotated training data.

4. Experiment
4.1. Datasets

In this work, except the unlabeled learning part, all models are
trained with 219 hours of artificially reverberated and mixed
speech signals sampled randomly from WSJ1 [21]. Following
[22], we include four different mixture types in the training data.
Each training mixture is generated by randomly picking one or
two speakers from the WSJ1 dataset and convolving each with
a 7 channel room impulse response (RIR) simulated with the
image method [23]. Then, we rescale and combine them with
a source energy ratio between -5 and 5 dB. Simulated isotropic
noise [24] is also added at a 0–10 dB signal to noise ratio. The
average overlap ratio of the training set is around 50%. For the
unlabeled data training, we apply the LibriVox and a Microsoft
in-house dataset. LibriVox contains over 60k hours of audio
derived from open-source audio books [25]. The Microsoft in-
house dataset contains 564 hours recording of discussion from
Microsoft employees. We create 2k hours and 600 hours speech
mixtures for LibriVox and the in-house dataset, by simply mix-
ing two single speaker utterances. As in-house recording con-
tains a noticeable amount of noise, there is no clean reference
for mixtures derived from this dataset. We evaluate the mod-
els on the LibriCSS dataset [10], which consists of 10 hours
of concatenated and mixed LibriSpeech utterances played and
recorded in a meeting room. We test our model performance
for both single channel and seven-channel setting, with word
error rate(WER) as evaluation metric. We conducted both the
utterance-wise evaluation and continuous input evaluation (re-

fer to [10] for the two evaluation schemes).

4.2. Implementation Details

The teacher model is the Conformer model from [5] which con-
tains 16 encoder layers, 256 attention dimensions and 2048 FFN
dimensions, resulting in 26.49M and 26.09M parameters for
multi-channel and single-channel evaluation respectively. For
multi-channel evaluation, the student Transformer model with
3.89M parameters consists of 6 encoder layers with 2 atten-
tion heads, 128 attention dimensions and 2048 FFN dimensions.
The layer mapping function of the Layer-wise T-S learning is
defined as g(i) = max(3× i− 2, 0). For single-channel eval-
uation, the student Transformer model with 7.25M parameters
consists of 12 encoder layers with 4 attention heads, 128 at-
tention dimensions and 2048 FFN dimensions. The layer map-
ping function is defined as g(i) = min(2 × i, i + 4). The
models are trained with the AdamW optimizer [26] where the
weight decay is set to 1e-2, the learning rate is 1e-4. We use
the warm-up learning schedule with linear decay where the
warm-up step is 10k, and the training step is 260k. For Ob-
ject Shifting, we set t0 to 150k, and select the best k in {1e-4,
5e-4}. For the unlabeled data training, we select the best t0
in {10k, 20K}. The small Transformer trained from scratch,
denoted as Transformer-smallBaseline is used as baseline sys-
tem. The vanilla T-S learning, T-S learning with objective shift-
ing, and layer-wise T-S learning are denoted as Transformer-
smallvanilla TS, Transformer-smallOS, and Transformer-smallLTS

respectively.
We evaluate the speech separation accuracy with two ASR

models. One is a hybrid system with a BLSTM based acoustic
model and a 4-gram language model as used in the LibriCSS
paper [10]. The other is one of the best open source end-to-end
Transformer [27] based ASR models1 which achieves WERs
of 2.08% and 4.95% for LibriSpeech test-clean and test-other,
respectively. We follow the sliding window-based CSS process-
ing in continuous speech separation [10] where the window size
is set to 2.4s. As with [10], we generate the individual target sig-
nals with spectral masking and mask-based adaptive minimum
variance distortionless response (MVDR) beamforming for the
single-channel and seven-channel cases, respectively.

4.3. Evaluation Results

The result for utterance-wise and continuous separation are
shown in Table 1 and 2. We analyze the experiment results
from three aspects: comparison with the teacher model, base-
line small Transformer model, and models with unlabeled data
training.

A comparison with the teacher model. Compared to the
Conformer teacher model, the Transformer-small model with
much less parameters can achieve an ultra faster speech sep-
aration speed. We can obtain 21.5× and 11.4× speed-up for
seven-channel and single-channel continuous speech separation
with 2.4s window size. Even if the runtime cost is largely re-
duced, we observe performance degradation in all experiments,
but the seven channel degradation is not as serious as the single
channel. We guess the MVDR component bridges the gap be-
tween different models. To prove our hypothesis, we remove the
MVDR in seven channel, and observe the gap between teacher
and student becomes larger as shown in Table 2.

A comparison with training from scratch. We can
achieve significant improvements with the proposed T-S learn-

1https://github.com/MarkWuNLP/SemanticMask



Table 1: Utterance-wise evaluation for seven-channel and single-channel settings. Two numbers in a cell denote %WER of the hybrid
ASR model used in LibriCSS [10] and E2E Transformer based ASR model [27]. 0S and 0L are utterances with short/long inter-
utterance silence.

System Overlap ratio in % Avg gains0S 0L 10 20 30 40
Seven-channel Evaluation

Conformer (Teacher) 7.0/3.1 7.2/3.2 8.9/3.6 11.1/4.6 13.6/5.8 15.1/6.3 13.2%/15.4%
Transformer-small Baseline 8.1/3.4 8.5/3.4 10.6/4.3 12.4/5.3 15.2/6.6 17.8/8.0 0.0%/0.0%
Transformer-small vanilla TS 7.6/3.3 7.9/3.4 10.0/3.9 12.3/5.2 15.0/6.8 17.2/7.4 3.3%/3.8%
Transformer-small LTS 7.3/3.3 7.7/3.2 9.6/4.0 12.2/5.1 14.8/6.8 17.2/7.6 5.0%/3.8%
Transformer-small OS 7.4/3.3 7.7/3.3 10.1/4.0 12.2/5.1 14.8/6.6 17.0/7.4 5.0%/3.8%
Transformer-small LTS + OS 7.7/3.4 8.0/3.3 10.0/3.9 11.9/5.0 14.6/6.4 16.3/7.4 5.8%/5.8%
Transformer-small unlabeled LTS + OS 7.2/3.2 7.4/3.3 9.2/3.8 11.5/4.9 14.2/6.2 16.0/6.9 9.9%/9.6%

Single-channel Evaluation
Conformer (Teacher) 10.2/4.2 10.0/4.4 13.3/6.6 17.9/10.0 22.1/13.2 26.7/15.6 23.4%/28.6%
Transformer-small Baseline 12.5/4.8 12.0/4.4 17.0/8.5 23.8/13.7 30.0/19.3 35.5/25.1 0.0%/0.0%
Transformer-small vanilla TS 12.0/4.2 11.9/4.0 16.9/8.7 23.4/13.7 29.6/19.8 35.6/25.9 0.9%/-0.8%
Transformer-small LTS 12.0/4.1 11.8/4.1 16.7/8.6 22.6/13.8 29.0/19.7 35.0/25.3 2.8%/0.0%
Transformer-small OS 12.6/4.7 12.2/4.3 16.9/8.5 23.4/13.4 29.5/19.4 35.1/24.9 0.9%/0.8%
Transformer-small LTS + OS 12.2/4.4 12.0/4.5 16.1/8.3 22.0/13.1 27.7/18.1 33.4/23.1 5.5%/5.6%
Transformer-small unlabeled LTS + OS 11.0/4.3 10.8/4.5 15.0/7.6 20.6/11.6 25.6/16.3 31.1/20.2 12.8%/14.3%

Table 2: Continuous speech separation evaluation for seven-channel and single-channel settings.

System Overlap ratio in % Avg gains0S 0L 10 20 30 40
Seven-channel Evaluation

Conformer (Teacher) 11.8/5.7 9.0/4.1 13.2/6.3 14.1/7.1 18.6/9.8 20.3/10.8 9.9%/18.9%
Transformer-small Baseline 12.7/6.6 10.1/5.5 15.1/8.1 15.7/9.0 21.0/12.3 22.2/12.6 0.0%/0.0%
Transformer-small LTS + OS 12.3/6.6 9.6/5.1 14.6/7.2 15.5/8.7 20.1/11.6 22.7/12.9 1.9%/3.3%
Transformer-small unlabeled LTS + OS 12.2/6.1 9.2/4.6 14.1/7.2 14.7/7.8 20.1/11.1 21.0/12.3 5.6%/8.9%

Seven-channel Evaluation (w/o MVDR)
Conformer (Teacher) 13.9/6.3 11.7/5.1 15.2/8.1 19.1/10.3 24.0/14.5 27.5/16.4 21.5%/30.3%
Transformer-small Baseline 18.0/9.4 15.3/8.5 20.5/11.6 24.4/14.9 30.0/19.1 33.9/23.2 0.0%/0.0%
Transformer-small LTS + OS 16.4/8.9 14.0/8.1 18.2/10.4 22.5/13.7 27.4/18.1 32.0/21.8 8.0%/6.9%
Transformer-small unlabeled LTS + OS 14.0/7.5 12.2/6.5 16.0/9.5 19.6/12.1 24.9/16.6 29.0/19.7 18.6%/17.2%

Single-channel Evaluation
Conformer (Teacher) 16.4/9.6 15.0/9.0 19.3/12.1 24.3/15.6 29.1/20.5 32.4/23.5 36.1%/49.0%
Transformer-small Baseline 30.7/23.0 28.5/25.3 31.3/25.2 37.0/29.6 41.3/34.4 45.4/40.1 0.0%/0.0%
Transformer-small LTS + OS 28.5/23.2 25.5/22.4 28.9/23.5 34.5/28.4 38.0/32.6 42.5/36.6 7.6%/6.1%
Transformer-small unlabeled LTS + OS 22.9/17.8 21.0/20.0 24.0/19.0 28.8/22.1 33.1/26.6 37.2/29.5 22.1%/24.0%

ing method, compared to training from scratch, especially on
the highly overlapped cases. For the seven-channel settings, we
can obtain 5.8% average relative WER gains with both the hy-
brid and E2E ASR systems for the utterance-wise evaluation.
If we remove either the Layer-wise T-S Learning or Objec-
tive Shifting mechanism, performance drops are witnessed. It
shows that the student model can benefit from the intermediate
knowledge from the teacher model and more knowledge from
the training datasets.

For the single-channel settings, due to the limited input in-
formation, we experiment with the deeper Transformer-small
model with more parameters. Similar to the seven-channel
cases, our T-S learning method can consistently outperform the
baseline by a large margin, and achieve over 5% relative WER
gains for utterance-wise evaluation and over 6% relative WER
gains for continuous evaluation on average.

Leveraging more unlabeled data. By leveraging more un-
labeled data, we can further boost the performance improve-
ments of our proposed T-S learning methods. For the single-
channel settings, with the student model pretrained on the large-
scale unlabeled data and shifted learning objective on the anno-
tated training data, we can obtain 14.3% and 24.0% average

relative WER gains for utterance-wise evaluation and continu-
ous evaluation with E2E ASR systems. For the seven-channel
evaluation, utilizing more unlabeled data, we can obtain 9.6%
and 8.9% average relative WER gains for utterance-wise eval-
uation and continuous evaluation with E2E ASR systems. If
we remove MVDR in seven-channel settings, our T-S learning
methods can bring more significant improvements and 17.2%
average relative WER gains can be witnessed.

5. Conclusions
Because of the ultra fast inference speed, the small speech sep-
aration Transformer model is preferred for the deployment on
devices. In this work, we elaborate Teacher Student learning
for better training of the ultra fast speech separation model. The
small student model is trained to reproduce the separation re-
sults of a large pretrained teacher model. We also introduce
Layer-wise Teacher Student Learning and Objective Shifting
mechanisms to benefit the Teacher Student learning with more
transferred knowledge. The experimental results show the pro-
posed methods can successfully improve the separation results
of the small Transformer model. Furthermore, pretraining on
unlabeled data can further enhance the improvement.
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