
Concordia: Teaching the 5G vRAN to Share Compute
Xenofon Foukas

Microsoft
Cambridge, United Kingdom

xefouk@microsoft.com

Bozidar Radunovic
Microsoft

Cambridge, United Kingdom
bozidar@microsoft.com

ABSTRACT
Virtualized Radio Access Network (vRAN) offers a cost-efficient
solution for running the 5G RAN as a virtualized network function
(VNF) on commodity hardware. The vRAN is more efficient than
traditional RANs, as it multiplexes several base station workloads on
the same compute hardware. Our measurements show that, whilst this
multiplexing provides efficiency gains, more than 50% of the CPU cy-
cles in typical vRAN settings still remain unused. A way to further im-
prove CPU utilization is to collocate the vRAN with general-purpose
workloads. However, to maintain performance, vRAN tasks have sub-
millisecond latency requirements that have to be met 99.999% of
times. We show that this is difficult to achieve with existing systems.
We propose Concordia, a userspace deadline scheduling framework
for the vRAN on Linux. Concordia builds prediction models using
quantile decision trees to predict the worst case execution times of
vRAN signal processing tasks.The Concordia scheduler is fast (runs
every 20 `s) and the prediction models are accurate, enabling the sys-
tem to reserve a minimum number of cores required for vRAN tasks,
leaving the rest for general-purpose workloads. We evaluate Concor-
dia on a commercial-grade reference vRAN platform. We show that
it meets the 99.999% reliability requirements and reclaims more than
70% of idle CPU cycles without affecting the RAN performance.

CCS CONCEPTS
• Networks→Mobile networks; Wireless access points, base sta-
tions and infrastructure; Network reliability; Cloud computing;
• Computer systems organization→ Real-time systems; • Com-
puting methodologies→Machine learning.

KEYWORDS
vRAN, 5G, mobile networks, edge computing, NFV, real-time sched-
uling, machine learning, prediction model

ACM Reference Format:
Xenofon Foukas and Bozidar Radunovic. 2021. Concordia: Teaching the 5G
vRAN to Share Compute. In ACM SIGCOMM 2021 Conference (SIGCOMM
’21), August 23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3452296.3472894

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472894

1 INTRODUCTION
The Radio Access Network (RAN) is a part of the cellular network
infrastructure that includes base stations (cells), and is responsible
for converting data packets into wireless radio waveforms and back.
It includes wireless physical layer operations that perform various
complex signal processing tasks. Conventional mobile base stations
include specialized hardware boxes called BaseBand processing
Units (BBUs), implementing the physical layer of each cell.

A forthcoming 5G trend is to extend network function virtualiza-
tion (NFV) to the radio access network (vRAN), to deploy RAN
workloads on commodity hardware. Many benefits of virtualization
apply to the vRAN: vendor lock-in mitigation, flexible upgrades,
rapid roll-out of new standards and services and a potential for cost
reduction. This trend is real and several operators have deployed
or are deploying vRANs [42, 84, 113, 114], creating a market for
hundreds of thousands of servers and millions of CPU cores [71],
that is projected to claim more than $3 billion by 2025 [95] and
more than $6 billion by 2030 [94]. A new cellular operator in Japan,
Rakuten, is running its entire vRAN for a national cellular network
on commodity hardware [19], and the new US green-field operator
Dish plans to do the same [34].

Unlike other virtualized network appliances, vRAN signal pro-
cessing algorithms are very compute intensive. Virtualized BBUs
running these algorithms can consume more than 60% of the overall
required compute resources of the vRAN [39, 107, 118]. Given the
huge scale of network deployments, it is important to reduce the
computational cost of virtualized BBUs.

A common way to increase vRAN efficiency is RAN pooling (or
BBU pooling), which involves sharing compute resources among sev-
eral cells. The virtualization and pooling of RAN tasks takes advan-
tage of the statistical multiplexing gains of cells [20, 104, 116]. For ex-
ample, one of the most demanding RAN tasks is decoding [72] and its
computational load is proportional to the wireless traffic volume. If a
RAN pool serves cells in both a residential and an office area, the peak
throughput (and thus the compute requirement) is likely to stay simi-
lar throughout the day, as users move between offices and homes [47].

However, existing RAN pooling schemes only leverage long-term
(e.g. diurnal) changes in traffic demand and other opportunities for
statistical multiplexing at much lower time scales are not yet explored.
For example, our measurements described in Section 2.2 look at a
RAN pool with 3 cells and show that the median traffic volume
per slot is 0.2KB. The 99th percentile traffic volume per slot is 2.5
KB, which is more than 10× larger than the median. As one needs to
provision the RAN pool compute capacity for the peak traffic, the pool
will be substantially underutilized for most of the time. Furthermore,
in a common example of a multi-cell 100MHz deployment configured
for time division multiplexing (discussed in Section 2.2), we see
more than 50% of the CPU cores assigned to the RAN pool being
left unutilized even at the peak cell traffic, due to the difference in the

580

https://doi.org/10.1145/3452296.3472894
https://doi.org/10.1145/3452296.3472894
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3452296.3472894&domain=pdf&date_stamp=2021-08-09

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

computational demands of uplink and downlink signal processing.
We observe similar sharing opportunities in other common use cases.

One obvious way to mitigate such inefficiencies would be to de-
ploy other general-purpose (and best-effort) workloads on the CPUs
when they are not fully utilized by the RAN. One such example is
ML training and classification workloads (e.g. video analytics) that
have to run at the edge due to privacy concerns or due to low latency
requirements [58, 108, 119, 120]. Another example are local con-
tent caching and delivery workloads, deployed by third-parties or
by the operators, with the goal of minimizing the user latency and
reducing the backhaul traffic strain [11, 77, 102, 109]. Furthermore,
in the context of cellular networks, example workloads could include
network functions relevant to the higher layers of the RAN protocol
stack and the cellular core (e.g. CU control and data plane, 5G UPF),
as well as management and control functions (e.g. for vRAN orches-
tration, monitoring and analytics) [54, 77, 85, 100]. Collocating such
functions at the vRAN edge instead of using the hyperscale cloud
could be particularly beneficial in the context of private LTE/5G
networks, to enable cost-efficient and autonomous edge deployments
and/or to mitigate privacy concerns regarding the cellular data of
users [30, 31, 54, 77].

The collocation problem and its performance effects has been stud-
ied extensively in the literature (e.g. [13, 65, 67, 68, 75, 78, 81, 83]).
The particular challenge with RAN tasks is their very stringent timing
constraints – with task deadlines in 10s or 100s of microseconds –
where every deadline violation can cause a service degradation to
the end user – imposing a standard requirement that deadlines have
to be met 99.999% of time. On the one hand, most of the existing
solutions have been designed with tail latencies that are insufficient
for the RAN [13, 65, 75, 81, 83]. On the other hand, solutions that do
provide microsecond level of control (e.g. [51]) require applications
to run in non-standard operating systems or using specific APIs, mak-
ing them incompatible with conventional workloads, like containers,
running alongside the RAN. As a result, and in order to mitigate the
problem of tail latency and achieve the desired RAN performance,
a standard practice is to isolate the RAN from other workloads as
much as possible by dedicating cores (c.f. [21, 74]) and effectively
waste idle CPU cycles.

To address this problem we built Concordia, a system that recovers
unused CPU cycles in vRAN pools for general workloads without
violating the strict timing requirements of vRAN pool tasks. The Con-
cordia design views the vRAN as the high priority workload, with a
maximum scheduling priority. All other workloads are considered as
best-effort and as such can be pre-empted by the vRAN at any point in
time. To achieve this, Concordia uses a userspace deadline scheduler
that leverages ideas from the mixed-criticality systems space [17].
The scheduler is fed with predictions of the worst-case execution
time (WCET) of each RAN task. It uses the predictions to calculate
and proactively reserve the least number of cores required to perform
the vRAN pool operation in the next slot (e.g. 1ms), releasing the
rest of the cores to the OS for other tasks. This is done at a 20 `s gran-
ularity, allowing Concordia to adjust the scheduling decision faster
than RAN traffic fluctuations and compensating for unpredictable OS
scheduling latencies that exist in a non real-time OS such as Linux.

A key requirement of Concordia is an accurate estimate of the
RAN tasks’ WCETs. Predicting WCETs has been extensively studied
in the context of both hard and soft real-time systems [18, 111]. A

common assumption of such works is that each task can be character-
ized with a single WCET prediction value, without any parameteriza-
tion. In contrast, the runtime of a RAN task (and thus its WCET) can
vary significantly depending on several tens of input parameters (e.g.
relevant to the traffic load, cell configuration, etc), as quantified in
Section 4. We show that previous works, ignoring this parameteriza-
tion, lead to overly pessimistic scheduling and poor CPU utilization.

To overcome this limitation, Concordia proposes a novel ML-
based WCET parameterization and prediction method that is com-
posed of an offline and an online phase. During the offline phase
(vRAN deployed in isolation), Concordia constructs a quantile deci-
sion tree for each RAN task, classifying different WCET predictions
into leaf nodes depending on the tasks’ input parameters to minimize
the variance of collected WCET samples in each leaf. The predictions
are further updated and improved online (in the presence of other
workloads), using a fast online approximation method that compen-
sates for the contention (e.g. on the cache) caused by the collocated
workloads. To our knowledge, this is the first work that provides such
a parametrized WCET prediction mechanism.

We implement Concordia on top of Intel FlexRAN v20.02 [48, 62],
a state-of-the-art 4G and 5G reference implementation that is used in
most of today’s commercial vRAN deployments (c.f. [84, 113, 114]).
We evaluate it by collocating various 5G RAN traffic workloads with
best-effort workloads that are representative of envisioned colloca-
tion scenarios (Nginx, Redis for content caching, SQL for cellular
core and content caching and MLPerf for ML training). We show
that we can recover up to 70% of unused CPU cycles while main-
taining the operational requirements of the RAN. To the best of our
knowledge, this is the first system that allows 5G vRAN to allow
other workloads to recover unused vRAN CPU cycles.

In summary, we make the following contributions:
(1) We design Concordia, a userspace vRAN task scheduling frame-
work that allows general purpose workloads to run in parallel without
affecting the RAN performance. The design leverages the observation
that the WCET of vRAN tasks can be predicted with high confidence
to estimate the required number of CPU cores. It also continuously
adapts its estimation to release unused cores for other workloads (§ 3).
(2) We develop a novel machine learning method for the parame-
terized prediction of the WCET of signal processing tasks using
quantile decision trees.The model further adapts its WCET predic-
tions at runtime to the observed RAN traffic load and the system-level
contention from other workloads (§ 4).
(3) We build Concordia based on the reference vRAN solution of In-
tel FlexRAN v20.02 [48, 62] (§ 5). Our evaluation on 5G vRAN cells
with realistic collocated workloads (§ 6) shows that Concordia can
provide 99.999% reliability in meeting RAN processing deadlines,
while reclaiming up to 70% of the CPU cores.
This work does not raise any ethical issues.

2 BACKGROUND & MOTIVATION
2.1 vRAN overview
vRAN operations and requirements: Radio transmissions and re-
ceptions in vRAN occur in regular Transmission Time Intervals
(TTIs) or slots. Depending on the cell configuration, a slot can last
between 62.5us and 1ms [1]. A set of signal processing tasks have
to be processed in each slot, starting at the beginning of the slot

581

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Figure 1: Example of uplink signal processing tasks DAG for 5G NR.

Figure 2: High-level overview of vRAN pool design.

and having to finish by the end of the same or a subsequent slot
(depending on the implementation).

The dependencies of the signal processing tasks executed within
a slot can be described with Directed Acyclic Graphs (DAGs). Fig 1
illustrates such a (simplified) DAG for the case of 5G uplink, with
each shaded node corresponding to a different signal processing task
(see Appendix A.1 for a 5G downlink example and a brief description
of the most significant tasks). For example, LDPC decoding uses the
output of rate dematching and cannot start before the dematching has
finished. The exact DAG structure depends on various input param-
eters. There can be multiple active DAGs at any time (e.g. an Rx and
a Tx DAG, or DAGs from adjacent slots), and tasks from the same
DAG can run in parallel (e.g. multiple LDPC decoding operations
on different cores). These DAGs have deadlines and if a vRAN pool
fails to process a DAG by a given deadline, the packets transmitted
or received in the corresponding time slot are dropped. As some of
them can carry control information, the impact of a loss can also
affect a long term state of the user connection. For this reason, it is
standard practice to impose 99.999% of reliability [29, 112].
vRAN implementation: A typical vRAN implementation uses a
queue-based worker thread model (c.f. [75]) for processing signal
processing tasks (Fig 2). Such a design is used (in variations) in most
existing vRAN implementations, including Intel’s FlexRAN [48,
62], OpenAirInterface [43, 52] and Agora [28]. Here we describe
FlexRAN as a concrete example we use throughout the paper. The
vRAN pool is composed of a number of worker threads, each pinned
to a CPU core. Each signal processing task is assigned to a priority
queue, waiting to be processed by a worker thread. The vRAN pool
can support more than one priority queues and each worker thread
can be associated with one or more queues, allowing a fine-grained
control of the assignment of signal processing tasks to CPU cores. To
minimize the latency, the worker threads are typically configured to
use a high priority scheduling policy (e.g. SCHED_FIFO in Linux)
that can only be preempted by the highest priority kernel threads (e.g.
watchdog threads). Each worker thread checks the priority queue(s)

0 1 2 3 4
Traffic size for 1ms TTI (KB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

1 cell
3 cells

(a) CDF of single cell and 3 cells ag-
gregate

0 2000 4000 6000 8000 10000
Time(ms)

0

1

2

3

4

5

Tr
an

sf
er

 s
iz

e
fo

r
1

m
s

TT
I (

KB
)

600 650 7000

2

(b) Traffic fluctuation in 3 cells ag-
gregate

Figure 3: LTE cell traffic characteristics.

and picks the earliest deadline task (Earliest Deadline First - EDF).
Once the task processing is finished, the worker thread generates
zero or more new tasks according to the corresponding DAG model.
The worker thread can keep one of the generated tasks to process
next for improved cache efficiency, while the rest are placed back in
the priority queue to be picked up by another worker. If the queue is
empty, a worker thread can choose to either busy wait to minimize the
latency (leading to 100% core utilization) or to yield, allowing other
workloads to run. Once more tasks are generated (e.g. by another
worker thread), a sleeping thread is signaled to wake up and restart
processing.

2.2 Sharing opportunities
A common practice is to pool requests from multiple cells on the
same vRAN pool to exploit statistical multiplexing. However, cell
traffic is bursty in nature at much finer time scales, due to a number of
factors (e.g., number of active users, their signal quality, the behavior
of higher layer protocols, etc [6, 16, 53]). Therefore, pooled traffic
is bursty even when aggregated. This can be observed in Fig. 3, for
a 10s snippet of an 1 hour uplink traffic trace captured during rush
hour (around 12pm) from three neighboring LTE cells in the area
around the central train station of Cambridge UK, using the Falcon
sniffer [33]. We see that the changes in the traffic size happen at a
millisecond time scale. Moreover, a single cell is completely idle
75% of the TTI slots. If a vRAN pool aggregates 3 cells, it is only
idle 20% of the TTI slots, but still mostly processes short packets
and a median transfer size per slot is 0.2KB, which is 10× less than
the 95th percentile. If we provision the vRAN pool compute capacity
for peak traffic, it will be substantially underused most of the time.
We verify the same happens for the entire hour we measured. Similar
observations are drawn from the works and traffic traces in [6, 104].

582

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

Config # cores Avg CPU
util (%)

UL only
(3 cells) 4 42

TDD
(1 cell) 5 38

TDD
(2 cells) 12 33

(a) vRAN CPU utilization (UL – up-
link, TDD – standard 5G time divi-
sion between UL/DL)

UL only
(3 cells)

TDD
(1 cell)

TDD
(2 cells)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

99
.9

9%
 la

te
nc

y
(m

s)

UL deadline
Isolated
Nginx
Redis

(b) Slot processing deadline viola-
tions

Figure 4: vRAN CPU utilization and interference effects

To get an intuition of what happens with larger pool sizes, con-
sider 𝑛 cells, each with transfer sizes modeled as a simple Gaussian
N (`, 𝜎2). The aggregate traffic is then N (𝑛`, 𝑛𝜎2), with the average
traffic growing linearly and the variance growing as a square root. The
peak to average ratio diminishes with 𝑛, but the actual wasted CPU
cycles are proportional to the standard deviation (the difference be-
tween peak and average), and grow proportionally with

√
𝑛. Thus, the

problem persists even in the ideal pooling case with very large pools
and uniform traffic per cell, something that rarely happens in practice.

Further statistical multiplexing opportunities arise in the common
5G deployment scenario of time division multiplexing, due to the
significant difference in the compute requirements of the uplink and
downlink processing [72, 107]. To quantify this, we set up a vRAN
pool using Intel FlexRAN v20.02 on an optimized server (described
in Section 6). We deploy workloads similar to the one reported above,
varying the number of cells and the type of traffic. For each case we
measure the CPU utilization and the minimum number of CPU cores
required to process the peak traffic. As shown in Fig 4a, the average
utilization of the required cores for any of the scenarios under study
is at most 42%.

The aforementioned observations, along with the fact that the
traffic load of cells can greatly fluctuate throughout the day, as various
studies of real mobile networks have revealed [104, 117], creates
an opportunity for significantly improving the utilization of edge
servers, by sharing the compute resources left idle by the vRAN with
other collocated workloads.

2.3 Challenges in sharing vRAN
To exploit the sharing opportunities described above, a vRAN pool
has to meet deadlines with high reliability. This is challenging on
a general purpose compute environment, even optimized for low-
latency [21]. To illustrate this, we study the scenarios of Fig. 4a
and measure how the vRAN processing latency is affected by other
workloads. We consider three cases; (i) the vRAN pool is running
in isolation (recommended FlexRAN configuration [49]), (ii) two
Nginx servers are running in containers on the same CPU cores as
the vRAN pool, saturated with HTTP requests and (iii) two Redis
containers are running on the same cores as the vRAN pool, saturated
with GET/SET operations. In all cases, we use the default FlexRAN
setup where the vRAN workload is running with maximum real-time
priority and the other workloads are running only when a vRAN
pool worker thread is idle and yields.

Figure 5: High-level design of Concordia

For each case we run a 5 minutes experiment and measure the
99.99% processing latency of the signal processing tasks. The DAG
deadline is set to 1.5ms following the requirement of 5G enhanced
Mobile Broadband services (eMBB) for a one way processing de-
lay below 4ms [32], including MAC/RLC processing and fronthaul
transport delay. As shown in Fig 4b, the processing latency is below
the deadline for all the cell deployment scenarios in the isolated case.
However, the tail latency significantly increases with the introduction
of other workloads, violating the required 99.999% reliability.

The tail latency increase occurs for two main reasons:
Scheduling latency The Linux kernel can introduce latencies that,
depending on the kernel configuration, can vary from tens of mi-
croseconds to tens of milliseconds [66, 88]. The main reason is
that parts of the kernel are non-preemptible (even with real time
patches) [88]. Therefore, the high priority vRAN worker threads can
be delayed from reclaiming a CPU core once they yield if the kernel
has taken control (e.g. due to interrupts, RCU operations or system
calls from a workload sharing the core). We quantify these effects
in Section 6.2.
Cache interference Multiple studies have shown that the perfor-
mance of collocated workloads can be severely affected by uncon-
trolled cache interference [26, 27, 41, 56, 92]. In the case of the Last
Level Cache (LLC), which is shared among cores, workloads do not
even have to be collocated on the same core for performance degra-
dation to occur. We measure and discuss these effects in Section 6.2.

For these reasons, a standard operational practice is to isolate
the vRAN from other workloads as much as possible by dedicat-
ing cores and LLC cache (e.g. as recommended by the OpenNESS
project [74] for FlexRAN [21]) though most of today’s deployments
run on completely isolated servers.

3 SYSTEM DESIGN
An overview of Concordia is shown in Fig 5. It is composed of the
Concordia WCET predictor and the Concordia scheduler.
Concordia WCET predictor: The key component of Concordia
is a novel predictor that provides an accurate WCET prediction of
each RAN task in a DAG. At the beginning of each TTI slot, the
predictor takes as input a set of features 𝑋 describing the state of
the base station (e.g. number of scheduled UEs and their transport
block sizes, number of layers, etc.). For each signal processing task
that has to execute in the slot, the predictor evaluates its individual
prediction model and sends a WCET prediction to the Concordia
scheduler based on the input features 𝑋 . Once the tasks are executed,
the predictor uses the observed runtimes to improve the model for
subsequent slots by adjusting predictions depending on the impact of
collocated workloads, effectively dealing with the problem of cache
interference. All this is discussed in detail in Section 4.

583

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Concordia scheduler: Concordia leverages ideas from the mixed-
criticality literature to perform its scheduling(see [17] for a compre-
hensive survey). It treats the vRAN as the high-priority workload,
and all other workloads as best-effort. Such workloads are allowed to
use the CPU cores which have not been allocated to the vRAN DAGs,
or the ones released by the vRAN DAGs due to early completion.
Concordia uses the state-of-the-art federated scheduling algorithm for
parallel tasks (DAGs) from [61] to decide the number of cores to allo-
cate to the vRAN tasks. In a nutshell, the algorithm uses the longest
path of the DAG and the predicted WCET of each DAG task to esti-
mate the predicted execution time and whether to increase or decrease
the number of cores allocated to the RAN, based on the deadline of
the DAG. If the remaining time until the DAG deadline is too small,
the algorithm gets into a critical stage where it allocates all cores to
the RAN, evicting all best-effort workloads. We defer the reader to Ta-
ble 3 of [61] for details on the Concordia core allocation strategy. The
predicted WCETs are not always sufficiently accurate to ensure that a
RAN DAG will meet its deadline. Also, some CPU cores might take
longer to wake up when scheduled (e.g., due to the scheduling latency
issue discussed in Section 2.3). To improve on these mispredictions,
the Concordia scheduler updates its decisions every 20 `s.

4 CONCORDIA WCET PREDICTOR
We begin by discussing the challenges of parameterized prediction
for the vRAN tasks’ WCET. We then present the novel parameterized
WCET predictor we designed for Concordia.

4.1 vRAN tasks WCET prediction challenges
We illustrate and quantify the WCET prediction challenges on the ex-
ample of 5G (LDPC) decoding, since according to our measurements
(see Appendix A.1) it is the most expensive task and can consume
more than 60% of the total uplink processing time and more than 50%
of the total processing time (both uplink and downlink). However,
we have verified that the same observations and conclusions apply to
other significant tasks, like encoding (>40% of the downlink process-
ing), channel estimation (>8% of the uplink processing), equalization
(>5% of the uplink processing) and modulation/precoding (>25% of
the downlink processing). A holistic view of the system that includes
all the signal processing tasks is studied in more depth in Section 6.

1. Parameterized task runtime prediction is non-linear: Both the
average times and WCETs of signal processing tasks often linearly in-
crease with the input size [40, 103]. However, other parameters, such
as the number of CPU cores or the SNR and link adaptation of the
mobile users, may have a non-linear impact on the execution times.
This is illustrated in Fig. 6a for the case of 120K LDPC decoding
operations on a group of codeblocks (8448 bits per codeblock). All
operations are generated on a single CPU core. While the runtime de-
pends linearly on the number of LDPC codeblocks, the dependence
on the number of CPU cores is not linear. When the data is decoded
across multiple cores (cases of 4 and 6 CPU cores in Fig. 6a), the
decoding core needs to fetch the required data, causing CPU memory
stalls (Fig 6b). This can increase the WCET by up to 25% from the
single core case. The exact overhead depends on multiple factors,
including the number of UEs transmitting/receiving data, the trans-
port block size, the level of parallelization supported by the vRAN
implementation, the number of CPU cores etc. Similar observations

3 6 9 12 15
Number of codeblocks

100

200

300

400

500

Ru
nt

im
es

 (
us

)

Single CPU core
Four CPU cores
Six CPU cores

(a) Runtime violin plot

0 3 6 9 12 15
Number of LDPC codeblocks

0

1

2

3

M
em

or
y

st
al

ls
 p

er
 c

yc
le 1e−1

Single CPU core
Four CPU cores
Six CPU cores

(b) Memory stalls

Figure 6: Runtime characteristics for LDPC decoding for differ-
ent codeblock assignments.

have been made in the literature for the piecewise-linear effect of the
mobile user SNR and link adaptation to decoding (e.g. [5, 12, 89]).

2. vRAN task runtimes are affected by cache interference: The
cache interference caused by collocated workloads (Section 2.3) has a
direct impact on the runtime distribution of vRAN tasks. The change
of the distribution means that any model used for the prediction of
the WCETs must be retrained frequently (every few ms) using online
samples, to adapt to the various (and possibly unknown) collocated
workloads. To show this in practice, we repeat the previous exper-
iment over 4 CPU cores when the vRAN is running in isolation, as
well as with collocated workloads (Redis, SQL server). By running
the KS test [69] on our collected runtimes for the three cases (isolated,
Redis, SQL server), we obtain 𝑝-values << 0.001. This verifies that
the runtimes in the case of interfering workloads are not drawn from
the same distribution as in the isolated case, meaning that any model
trained against the isolated RAN samples will need to be retrained
online for improved accuracy.

4.2 Concordia WCET prediction model
We now present the detailed design of the WCET prediction model
of Concordia that, (i) makes parameterized WCET predictions con-
sidering the effect of the tasks’ inputs to their runtime, and (ii) takes
into account the challenges of Section 4.1.
High-level description of prediction mechanism: At a high level,
the Concordia predictor maintains a separate quantile decision tree [70,
93] for each vRAN task, with training runtime samples stored in its
leaf nodes. It provides a WCET prediction for the task with a given
set of input parameters (or features)𝑋 using the maximum of the run-
times stored in the corresponding leaf node. The predictor builds the
decision trees in an offline phase, using runtime samples measured
for test vRAN workloads running without other collocated workloads.
Then in an online phase, during regular operation, the predictor up-
dates the runtime samples in each leaf without changing the tree
structure. The intuition is that the tree splits the input feature space
for the training set so that each leaf node ends up having a set of simi-
lar runtime samples. This is because it uses the CART algorithm [57]
to minimize the variance among the samples that end up in the same
leaf. We can then build and maintain separate simple predictors for
each leaf online without having to retrain the trees, which is both com-
putationally more expensive, and we also observe that is not needed.

584

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

0 10 20 30
0

200 vRAN cell isolated

0 10 20 30
0

200
vRAN cell w/ tpcc

0.0 0.2 0.4 0.6 0.8 1.0
Leaf node ids

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

(u
s)

(a) Violin plots of runtime samples
used for each leaf node of the quan-
tile decision tree.

150 160 170 180 190
0

1
Leaf node 23

vRAN cell isolated
vRAN cell w/ tpcc

120 130 140 150 160 170
0

1
Leaf node 17

vRAN cell isolated
vRAN cell w/ redis

0.0 0.2 0.4 0.6 0.8 1.0
Runtime (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) CDFs of runtimes of most dis-
similar leaf nodes between isolated
case and TPCC/redis

Figure 7: Mapping of runtime samples to decision tree leaves
and effect of interference to their distribution (LDPC decoding).

To verify this intuition we first plot violin plots mapping the col-
lected FlexRAN runtime samples of 120K runs to leaf nodes of a
quantile decision tree used for the LDPC decoding task in the offline
case (in isolation). For each run, we vary the size of the inputs (num-
ber of UEs, packet sizes etc). As shown in the top part of Fig. 7a,
the variance of each violin plot is small compared to the overall
variance of the input samples. We next plot violin plots (bottom part
of Fig. 7a) representing the mapping of collected FlexRAN runtimes
for the same workload, but in the presence of a collocated TPCC
workload [80], and while still using the offline-trained decision tree.
The distributions are visually similar to the isolated case, showing
that the grouping of the online runtime samples remains similar when
using the offline trained tree. We further verify this observation by
zooming in and comparing the most distorted leaf node CDFs in
the presence of collocated workloads compared to the isolated case
(identified using the Wasserstein distance [105]). As shown in Fig. 7b
for TPCC and redis, the runtime samples in the presence of interfer-
ence result in heavier-tailed distributions, but the runtimes within the
leaf node are still located in the same region. We verify the same for
all other tasks and workloads we tried (e.g. redis, nginx, MLPerf).
Offline construction of quantile decision trees: The decision trees
are trained offline, using a dataset with samples collected by profiling
the vRAN in the absence of collocated workloads.Samples are col-
lected at a TTI granularity and each sample contains the state of the
vRAN and the runtime of the vRAN tasks. The state of the vRAN
contains a set of features 𝑋 , including data like the number of active
UEs, their transport block sizes, the transmission configurations etc.
To create a dataset with maximum coverage of the input space, the
profiling is performed using a set of transmission parameters that vary
for each TTI (e.g. 0 to 16 transmitting UEs, varying transport block
sizes, modulation and coding schemes etc). Using this dataset and for
each task 𝑡 , we perform feature selection to identify a subset of fea-
tures𝑋𝑡 ⊆ 𝑋 with the most significant impact to the task runtime. For
the feature selection, we combine hand-picked features based on do-
main expertise and automated feature selection methods (correlation
with the task runtime using the distance correlation metric [98, 99],
backwards elimination). All this is summarized in Algorithm 1.
Online training and prediction: We construct the online prediction
by simply replacing the offline samples in each leaf with online ones.
The online prediction runs every TTI (every 0.5-1ms depending on

Algorithm 1: Construction of quantile decision tree for a
signal processing task 𝑡

Input :vRAN state 𝑋 of current TTI, set of handpicked features 𝑋ℎ
𝑡 for

task 𝑡 , runtime 𝑅𝑡 of task in current TTI
Output :Feature vector 𝑋𝑡 of task 𝑡 , quantile decision tree𝑇𝑡
Tree Training (𝑋 , 𝑅𝑡 , 𝑋ℎ

𝑡)
/* Pick 𝑁 most highly correlated features using distance

correlation metric [98, 99] */

𝑋𝑑 ← 𝑑𝑐𝑜𝑟 (𝑋,𝑅𝑡 , 𝑁);
/* Pick 𝑀 features using backwards elimination feature

selection */

𝑋𝑑 ← 𝑏𝑎𝑐𝑘_𝑒𝑙𝑖𝑚(𝑋𝑑 , 𝑀);
/* Combine with hand-picked features */

𝑋𝑡 ← 𝑋ℎ
𝑡 ∪𝑋𝑑 ;

/* Train quantile decision tree */

𝑇𝑡 ← 𝑡𝑟𝑎𝑖𝑛(𝑋𝑡);

Algorithm 2: Quantile decision tree prediction model of a
signal processing task 𝑡

Input :Quantile decision tree𝑇𝑡 with ringbuffer 𝐵𝑖 for leaf node 𝑖,
features 𝑋𝑡 and runtime 𝑅𝑡 for task in current TTI

Output :WCET prediction𝑊𝐶𝐸𝑇𝑝
Training Step (𝑇𝑡 , 𝑋𝑡 , 𝑅)

/* Traverse 𝑇𝑡 to find the appropriate leaf node */

𝑖 ← 𝑇𝑡 (𝑋𝑡);
Store 𝑅 in 𝐵𝑖 ;

Prediction Step (𝐵, 𝑋𝑡)
/* Traverse 𝑇𝑡 to find the appropriate leaf node */

𝑖 ← 𝑇𝑡 (𝑋𝑡);
𝑊𝐶𝐸𝑇𝑝 ←𝑚𝑎𝑥 (𝐵𝑖)

the cell configuration) and has to be fast. For each leaf node 𝑖 in the de-
cision tree, we maintain a ring buffer 𝐵𝑖 of the most recently observed
execution times, which is updated at runtime in every TTI. Consider
a task 𝑡 assigned during a given TTI slot with parameters 𝑋𝑡 , and
whose observed runtime is 𝑅𝑡 . We first traverse the decision tree 𝑇𝑡
for that task and find the leaf node 𝑖 that maps the task parameters 𝑋𝑡 .
We add the observation 𝑅𝑡 to the buffer 𝐵𝑖 . To predict the runtime of a
task with parameters 𝑋𝑡 in a given execution slot, we first find the de-
cision tree node 𝑖 that corresponds to the parameters 𝑋𝑡 . We then use
the maximum of all the samples found in the ring buffer 𝐵𝑖 as an esti-
mated WCET for the task. All this is formally shown in Algorithm 2.
Comparison with other approaches: Due to its parameterized pre-
diction, Concordia offers more accurate WCET prediction than state-
of-the-art real-time systems predictors [18, 111] that do not consider
input parameters (see Section 6.3 for comparison). We also experi-
mented with such methods (e.g. [23]) to replace our online predictor
on each leaf node, but they provided similar accuracy while being
more computationally expensive. We further tried different param-
eterized prediction models (linear and non-linear regression) instead
of the decision tree, but they either provided lower prediction accu-
racy or reclaimed less CPU cores (results presented in Section 6).

5 IMPLEMENTATION
Here we describe the implementation of Concordia. We build our pro-
totype on standard Linux, on top of Intel’s FlexRAN v20.02 [48, 62],

585

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

the most mature 4G and 5G vRAN implementation on the Intel archi-
tecture. We note that the OpenAirInterface [43, 52] and Agora [28]
projects could also be used.

Following the FlexRAN recommendations [49], we use a number
of CPU cores in a vRAN pool to execute signal processing tasks (the
exact number of cores depends on the workload and is specified in
Section 6). As already mentioned, the Concordia design assumes that
the vRAN is the high priority workload and other workloads are best-
effort. As such, we set the threads of the vRAN pool to a real-time
scheduling policy (SCHED_FIFO, priority 94), meaning that they
can only be preempted by a few critical kernel threads (e.g. watchdog
thread). The only way that other workloads can run on the same cores
is if the Concordia scheduler decides that the vRAN pool threads must
yield. Moreover, we set the kernel parameter sched_rt_runtime_us to
-1 to prevent non real-time tasks from running on the same cores as
the vRAN pool while the vRAN worker threads have not yielded. We
use the Linux isolcpus boot kernel parameter to dedicate 1 CPU core
for the thread that maintains the time of the vRAN and periodically
runs the Concordia scheduler and 3 CPU cores for the tasks of the
MAC layer. Finally, we use a single core for OS management tasks.
We offload the RCU callbacks of the system to the OS management
core and migrate all the interrupts and kernel threads out of the used
by the MAC layer and the Concordia scheduler (also banning those
cores from irqbalance). However, unlike the isolated FlexRAN case,
we allow interrupts and kernel threads to be served by the vRAN
pool cores plus the OS management CPU core.

WCET Predictor implementation: The WCET predictor compo-
nent of Concordia is auto-generated using a collection of Python
scripts. During the offline tree construction phase we obtain 500K
training samples from synthetic workloads in the way described in
Section 4.2 and we automatically extract all relevant system parame-
ters and the task runtimes for each TTI slot. We then run Algorithm 1
in Python, built on the pandas framework [76] with R bindings1

for the use of the distance correlation algorithm [98, 99] and the
scikit-learn library for the backwards elimination feature selection
and the training of the decision trees [79]. Next, another Python
script takes the decision tree from the previous phase and generates
an optimized C code (about 6K lines of code) for traversing the tree
and storing/fetching runtime samples (Algorithm 2), with the ring
buffers of the leaf nodes having 5K entries. The predictor runs as a
task on a CPU of the RAN pool in the beginning of each TTI. The
predictor runtime is evaluated in Section 6.5.

Scheduler implementation: The Concordia scheduler is imple-
mented in C (about 2K lines of code) and is integrated in the vRAN
pool framework of FlexRAN as part of the timer thread, running on a
dedicated core that is never preempted. The scheduler uses a bitmap
with the ids of CPU cores in order to signal BBU worker threads
that they must yield their cores to the OS. Semaphores are used to
wake up the worker threads when scheduled. The scheduler changes
the order of cores that are used for vRAN pools every 2ms to avoid
constantly using the same cores. This allows other workloads that
cannot be migrated to get some CPU time (e.g. some kernel threads
and interrupts). The scheduler runtime is evaluated in Section 6.5.

1https://rdrr.io/cran/Rfast/man/dcor.html

Bandwidth # cells Avg DL cell
throughput

Avg UL cell
throughput

TTI processing
deadline

100MHz 2 750Mbps 80Mbps 1.5ms
20MHz 7 270Mbps 120Mbps 2ms

Table 1: Cell configuration for evaluation of Concordia

6 EXPERIMENTAL EVALUATION
Here we evaluate the performance of Concordia. We start by de-
scribing the setup for the evaluations. We focus our evaluation on
5G vRAN cell deployments, i.e., we use the 5G signal processing
chains of FlexRAN. As real-world 5G deployments are still at an
early stage, we do not have access to realistic traffic patterns from
real 5G cells and therefore we rely on emulated traces. The traces
are based on actual 5G radio samples, encoding a varying number
of 5G users, modulation and coding schemes, transport block sizes,
data rates, MIMO antenna layers etc. We implement a traffic gener-
ator that combines these samples to create uplink traffic benchmark
traces that are unique to each cell. The traces are based on the traffic
fluctuation patterns of the LTE traces presented in Section 2.2, but
with a volume of traffic that is scaled up to match that expected from
5G deployments (i.e., > ×10 increase in the aggregate traffic of each
cell). We create downlink traffic benchmarks in a similar way. While
we acknowledge that the traffic patterns from real 5G cells might
not fully match those of the traces used in this work, we believe that
our evaluation can still provide deep insights into the effectiveness
of Concordia, due to the randomness in the fluctuation of traffic for
each cell and the uniqueness of each cell’s trace.

For the experiments presented throughout this section and unless
stated otherwise, we deploy our vRAN on the first NUMA node of
a 48-core server (Intel Xeon Platinum 8168 @ 2.7GHz) running
Ubuntu Linux 18.04, with hyper-threading disabled and configured
for high performance as advised for FlexRAN [49]. This includes the
use of a low latency kernel, disabled power states/frequency scaling
and use of huge pages. Some experiments require servers with fewer
cores. In order to compare on the same CPU architecture, we deac-
tivate unneeded cores through the sysfs Linux virtual filesystem.

We consider the 2 cell configurations of Table 1 and 5 types of
workloads collocated on the vRAN pool cores, that stress various
parts of the server (CPU, memory, network, disk):
Redis We deploy 8 containers, each with a single Redis server. We
saturate the servers using 8 remote instances of the Redis bench-
mark tool [87], connected over a 40G link and performing GET/SET
requests over a set of 100K keys.
Nginx We deploy 5 Nginx containers and an external client, con-
nected over a 40G link that fully saturates Nginx, fetching 612B-large
HTTP files.
TPCC We deploy 1 container of a MySQL server and run a TPCC
benchmark [80] using a remote client (1000 warehouses and 32
simultaneous connections).
MLPerf We deploy 1 container running MLPerf [86] to train ResNet50-
v1.5 [45, 46] for image classification using the ImageNet 1K dataset2.
Mix We deploy a mix of the above workloads at the same time. The
workloads are turned on and off at random time intervals ranging
from 10 to 70 seconds.

2http://www.image-net.org/

586

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

5 25 50 75 100
Cell traffic load (%)

0

20

40

60

80

100

Re
cl

ai
m

ed
 C

PU
 (

%
)

Upper bound - 100MHz
Upper bound - 20MHz
Concordia - 100MHz
Concordia - 20MHz

(a) CPU cores reclaimed by Concor-
dia vs ideal case

5 25 50 75 100
0

5

1e6 GET Operations
No vRAN (8 cores)
No vRAN (12 cores)
100MHz vRAN
20MHz vRAN

5 25 50 75 100
0

5
1e6 SET Operations

0.0 0.2 0.4 0.6 0.8 1.0
Cell traffic load (%)

0.0

0.2

0.4

0.6

0.8

1.0

Re
qu

es
ts

 p
er

 s
ec

on
d

(b) Redis benchmark performance
(8 Docker containers)

5 25 50 75 100
Cell traffic load (%)

0

1

2

3

4

5

6

H
TT

P
re

qu
es

ts
 p

er
 s

ec
on

d 1e4

No vRAN (8 cores)
No vRAN (12 cores)
100MHz vRAN
20MHz vRAN

(c) Nginx benchmark performance
(5 Docker containers)

5 25 50 75 100
Cell traffic load (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

1e3

No vRAN (8 cores)
No vRAN (12 cores)
100MHz vRAN
20MHz vRAN

(d) TPCC benchmark performance
(1 Docker container)

Figure 8: Reclaimed vRAN pool CPU cores for vRAN with 20MHz (7 cells) and 100MHz (2 cells) configurations and performance of
collocated workloads for various cell traffic loads.

Unless stated otherwise, we allocate 8 CPU cores for the vRAN
pool and run 15 minutes experiments, following the Intel recom-
mendation for quick performance validation [49]. This corresponds
to a number of scheduling events ranging between 3.6 × 106 and
6.3 × 106 depending on the cell configuration. We further validate
the 99.999% reliability of Concordia by running 8 hours tests with
the mixed workload (between 1.152 × 108 and 2.016 × 108 schedul-
ing events). No performance or reliability differences were observed
between the long and the short tests. We compare Concordia with
the baseline FlexRAN scheduler, as it is the most intuitive queue-
based design. It acquires more cores when there are tasks waiting
in the queues and relinquishes them when the queues are empty. In
Section 6.3 we compare against other scheduler designs.

6.1 High-level benefits of Concordia
One of the main goals of Concordia is to improve CPU utilization on
vRAN servers running BBU tasks. To this end, we start by evaluating
the benefits of Concordia for the vRAN collocated workloads. We
vary the traffic load up to the peak traffic listed in Table 2 for different
cell configurations, and for each load we generate random traffic as
described above. To make the comparison fair, we use the minimum
number of cores required to meet the vRAN processing deadline.

We begin by measuring the percentage of CPU cores that are made
available by Concordia to other workloads and we compare this to
the ideal case where every idle CPU cycle is reclaimed. As it can be
seen in Fig. 8a, Concordia can reclaim more than 70% of the CPU
cores for low cell traffic loads both for 20MHz and 100MHz cell
configurations. The percentage drops to 0% and 38% correspondingly
for cells operating at the max allowed average load. We observe that
Concordia is slightly more efficient for low cell workloads, because
there are many idle TTI slots whose duration is easy to predict.

We next study the performance of different workloads collocated
with the vRAN. As a reference, we measure the maximum achievable
performance of those workloads in the ideal case, when running on
the same cores without the vRAN workload. As shown in Fig. 8b-8d,

Bandwidth # cells Peak DL cell
throughput

Peak UL cell
throughput

of CPU
cores

100MHz 2 1.5Gbps 160Mbps 12
20MHz 7 380Mbps 160Mbps 8

Table 2: Cell configuration and minimum number of CPU cores
required for evaluation of Section 6.1 .

the achieved performance varies depending on the workload. For ex-
ample, in the case of the 100MHz cell configuration and for low cell
traffic load (83.3% of the cores reclaimed), TPCC achieves 72% of
the ideal performance (without the vRAN), Redis achieves 76.6% and
Nginx achieves 82.2%. The MLPerf workload figure is omitted due to
lack of space, but similar results were obtained (78% of the ideal per-
formance achieved for low cell traffic load in the 100MHz case). The
reason for the lower yield compared to the theoretical max expected
performance is related to the effects that the collocated workloads
have on cache pollution, preemption, scheduling latencies, etc (as
also observed in [56]). We next study these effects in detail. It should
be noted that throughout these experiments, Concordia provided
99.999% reliability to the TTI processing latency of the vRAN pool.

Overall, we conclude that Concordia is able to recover a large
fraction of CPU cycles unused by vRAN. This is in contrast with
the current operators’ best practice which does not attempt any load
sharing on servers with vRAN pools.

6.2 Effects of collocation on the vRAN
One of the key benefits of Concordia is its ability to predict task
execution times. Because of this, it can minimize the number of
cores it uses at any time. This increases cache locality, reduces cache
pollution and reduces OS scheduler calls, making the system more
efficient while leaving unneeded cores to the collocated workloads.
The vanilla FlexRAN scheduler does not have an estimate of the
traffic and has to be more conservative in allocating more cores than
necessary. It also has to acquire and release the cores back to the OS
more frequently in order to be able to share. This reduces the locality
and increases cache trashing on the cores used by the vRAN pools.
We next quantify these effects with experiments.
Cache efficiency: To measure the cache efficiency, we use the Linux
perf tool [25] to profile the vRAN pool worker threads. We measure
the change in the cache efficiency observed by the worker threads
with a collocated workload compared to the baseline isolated vRAN
case. Here, we present results for 100MHz cell configuration and
the Redis workload (the other results are similar and we omit them
due to lack of space). As it can be seen in Fig. 9, vanilla FlexRAN
has a 25% increase in the stall cycles per instruction due to L1 cache
misses compared to the baseline isolated vRAN case. This leads
to an increase in the runtime of the signal processing tasks of the
vRAN pool and thus directly affects the tail TTI processing latency.

587

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0

5

10

15

20

25

St
al

l c
yc

le
s

pe
r

in
st

ru
ct

io
n

in
cr

ea
se

 (
%

)

0

2

4

6

8

10

12

14

16

L1
 c

ac
he

 m
is

se
s

pe
r

in
st

ru
ct

io
n

in
cr

ea
se

 (
%

)

0

5

10

15

20

LL
C

lo
ad

s
pe

r
in

st
ru

ct
io

n
in

cr
ea

se
 (

%
)

Concordia
FlexRAN

Figure 9: Latency effects of cache from collocated workload (Re-
dis) interference for 2 100MHz cells

In contrast, Concordia is able to predict well the number of required
cores and thus limits the increase in the stall cycles caused by cache
misses due to collocation to less than 2%.
OS scheduling latency: We use the runqlat tool that is part of the
BCC toolkit [63] to measure the OS scheduling latency of the vRAN
pool worker threads once they have yielded and have been signaled
to wake up (from the Concordia scheduler or from the generation of
more signal processing tasks in the case of vanilla FlexRAN). We
collect scheduling latency measurements for 1 minute. As shown in
Fig. 10 (log scale), the total number of scheduling events of vanilla
FlexRAN is significantly higher compared to that of Concordia (about
230% higher in both the isolated and interfering case), leading to
higher scheduling latency per slot and thus more deadline violations.
The reduced number of OS scheduling calls in the case of Concordia
is due to the proactive allocation of cores, which does not allow
worker threads to yield while more signal processing tasks are ex-
pected during a TTI slot. A side-effect of this is that Concordia has a
higher number of scheduling events with high tail latency (>63 `s) in
the presence of other workloads compared to FlexRAN. We believe
this is because the CPU cores of the vRAN pool are retained by the
worker threads longer, leading to the queuing of OS tasks that cannot
be migrated (e.g. interrupts) and increasing the chances of some
kernel thread entering a non-preemptible section when the worker
threads yield. This effect is mitigated by the fine-grained scheduling
of cores by Concordia every 20 `s, since more cores can be allocated
to the vRAN if a scheduled core fails to wake up in time.
Tail latency: We next compare the effects of collocated workload
interference to the tail processing latency of Concordia vs vanilla
FlexRAN. For each cell configuration considered in Table 1 and
different workloads we run experiments measuring the 99.99% and
99.999% TTI processing latency of the vRAN pool. The results are il-
lustrated in Fig. 11. Without other workloads, both FlexRAN and Con-
cordia can meet the processing deadline with 99.999% reliability for
both configurations. Once we introduce any other workload, the tail
latency of vanilla FlexRAN increases significantly and it is no longer
possible to provide 99.999% of reliability or even 99.99%, with the
exception of MLPerf. However, Concordia is not affected and main-
tains 99.999% of reliability in all cases. The same observations apply
for the mixed workload test (figure omitted due to lack of space).

0-1 2-3 4-7
8-15

16-31
32-63

64-127

103

FlexRAN

0-1 2-3 4-7
8-15

16-31
32-63

64-127

Scheduling latency (us)

104

Concordia

Sc
he

du
lin

g
ev

en
ts

(a) Isolated vRAN

0-1 2-3 4-7
8-15

16-31
32-63

64-127

128-255

104

FlexRAN

0-1 2-3 4-7
8-15

16-31
32-63

64-127

128-255

Scheduling latency (us)

103

105
Concordia

Sc
he

du
lin

g
ev

en
ts

(b) vRAN with Redis

Figure 10: Scheduling latency of vRAN pool worker threads (8
CPU cores) for 2 100MHz cells with and without workload in-
terference (Redis). Y-axis in log scale.

Number of vRAN pool cores: Adding more CPU cores to the vRAN
pool helps Concordia to meet deadlines. We see that in Fig 12 for
a test using a constantly running mixed workload. The 20MHz cell
configuration achieves 99.999% of reliability with 8 cores (Fig. 12a),
but the 100MHz case achieves only 99.99% (Fig. 12b). However, by
adding one more CPU core to the vRAN pool, the reliability goes
back to 99.999%. This is because the more CPU cores we assign to
the vRAN pool, the more chances Concordia will have to schedule
an extra core if the vRAN is on track of missing a deadline and an
already scheduled core takes a long time to wake up (e.g. due to a
non-preemptive kernel task occupying it), as described in Section 3.

6.3 Comparison with alternative schedulers
Conventional WCET prediction method: We compare the effec-
tiveness of the Concordia predictor against a well-known method [23]
that is representative of the probabilistic WCET prediction litera-
ture [18]. The method in [23] uses Extreme Value Theory and predicts
a single WCET per signal processing task regardless of its input with
a confidence of 0.99999. As shown in Fig 13 for the 20MHz cell
configuration, Concordia outperforms the conventional model (up
to 20% difference in reclaimed cycles). This is because the conven-
tional WCET model makes more pessimistic predictions compared
to Concordia. At the same time, the tail latency reduction achieved by
the conventional model is marginal (about 5 `s in all cases), further
incentivizing our use of a parametrized WCET prediction model.
We make similar observations for the 100MHz case, with the results
omitted due to lack of space.
Schedulers not considering the WCET: Next, we compare the re-
liability of Concordia to two schedulers that do not take into account
the WCET of tasks: (i) a variant of Shenango [75] (also used in
Snap [68]) and (ii) a utilization-based scheduler. Our Shenango-
variant increases the number of cores allocated to the vRAN by one
every time that a signal processing task remains in the priority queue
for more than a predefined amount of time, and we vary this threshold.
The utilization-based scheduler adjusts the number of cores based on
the utilization of the vRAN in the past few TTIs. Once the utilization
surpasses a threshold (60% and 30% for the 20MHz and 100MHz
cell configurations), an additional worker thread is woken up.

In the case of the Shenango-based scheduler, it was very challeng-
ing to identify the queuing time threshold that would both satisfy
the vRAN deadlines and would allow other workloads to share the

588

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

Average 99.99% 99.999%0.0

0.5

1.0

1.5

2.0

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
Isolated
Nginx
Redis
TPCC
MLPerf

(a) Concordia with 7 FDD cells of
20MHz

Average 99.99% 99.999%0.0

0.5

1.0

1.5

2.0

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
Isolated
Nginx
Redis
TPCC
MLPerf

(b) FlexRAN with 7 FDD cells of
20MHz

Average 99.99% 99.999%0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
Isolated
Nginx
Redis
TPCC
MLPerf

(c) Concordia with 2 TDD cells of
100MHz

Average 99.99% 99.999%0.0

0.5

1.0

1.5

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
Isolated
Nginx
Redis
TPCC
MLPerf

(d) FlexRAN with 2 TDD cells of
100MHz

Figure 11: Tail TTI processing latency (99.99% and 99.999%) of Concordia vs vanilla FlexRAN in the presence of various workloads.
All experiments are performed on with a vRAN pool of 8 CPU cores.

99.99% 99.999%0.0

0.5

1.0

1.5

2.0

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
8 CPU cores
9 CPU cores

(a) 7 cells of 20MHz

99.99% 99.999%0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
8 CPU cores
9 CPU cores

(b) 2 cells of 100MHz

Figure 12: Concordia tail TTI processing latency for mixture of
Nginx, Redis, TPCC workloads

5 25 50 75 100
Cell traffic load (%)

0

20

40

60

80

100

Re
cl

ai
m

ed
 C

PU
 (

%
) Concordia

pWCET

(a) Reclaimed CPU

Concordia pWCET0.0

0.5

1.0

1.5

2.0

Sl
ot

 p
ro

ce
ss

in
g

la
te

nc
y

(m
s)

Deadline
Isolated
Nginx
Redis
TPCC
MLPerf

(b) Latency impact

Figure 13: WCET prediction accuracy effect of various predic-
tion methods for LDPC decoding task.

vRAN pool cores. Setting to a high value (200 `s) made the scheduler
react slowly to delays in the processing of vRAN tasks, with less
than 99.99% deadlines met. Setting to a low value (5 `s), similar to
Shenango, led to the vRAN utilizing all of the CPU resources, never
allowing other workloads to run. Different values ranging from 5 `s
to 200 `s provided better results for different vRAN traffic loads, but
no single value always met deadlines with ≥ 99.99% reliability.

In the case of the utilization-based scheduler, the vRAN traffic
burstiness could not be captured by observing the past utilization of
the vRAN pool cores. This led to less than 99.99% reliability in the
presence of collocated workloads, since the scheduler often under-
estimated the amount of CPU resources required for processing the
upcoming TTI slot. These results reinforce our finding that having

Linear
regression

Gradient
boosting

Quantile
DT

Full DAG
Quantile DT

10−3

10−2

10−1

100

101

102

D
ea

dl
in

es
 m

is
se

d
(%

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(a) Percentage of slots where the
processing deadline was violated.
Y-axis in log scale.

Linear
regression

Gradient
boosting

Quantile
DT

102

103

Av
g

pr
ed

ic
ti

on
 e

rr
or

 (
us

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(b) Average WCET prediction er-
ror for successfully met deadline. Y-
axis in log scale.

Figure 14: WCET prediction accuracy effect of various predic-
tion methods for LDPC decoding task.

predictions of task execution times is instrumental for efficient CPU
sharing in the vRAN.

6.4 Accuracy of other prediction models
Here, we compare the accuracy of Concordia’s quantile decision tree
against other prediction models we explored. We consider a linear re-
gression and a (non-linear) gradient boosting model. For the training
of the models, we collected the vRAN state and runtimes offline in the
same way as described in Section 4.2 for the quantile decision tree and
selected training features according to Algorithm 1. We also adapted
the models to take into account the online runtime samples, like in the
quantile decision tree case (we omit the details due to lack of space).

We perform probabilistic WCET predictions using a prediction
interval of 0.99999. To evaluate the prediction accuracy we use two
metrics; (i) the percentage of missed deadlines (i.e. times that the run-
time of the task exceeded the predicted WCET) and (ii) the average
WCET prediction error for successfully met deadlines. The intuition
behind the second metric is that the closer a successful WCET pre-
diction is to the actual runtime, the less cores would be dedicated to
the vRAN by Concordia, freeing up cycles for other workloads.

We generate randomly fluctuating traffic for the 20MHz cell con-
figuration of Table 1, varying the number of UEs (0 to 8). We consider
deployment scenarios with 1 or 2 cells and different types of collo-
cated workloads (none, Redis, TPCC benchmark) on 4 CPU cores.
For each scenario we ran a 5 minutes test. As it can be seen in Fig. 14a
for the LDPC decoding task, the non-linear gradient boosting model

589

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

2 4 6
Number of cells

0

5

10

15

20

25

Pr
oc

es
si

ng
 t

im
e

(u
s)

Concordia Scheduler
Concordia WCET Predictor

(a) Processing overhead of Concor-
dia WCET predictor and scheduler
for a varying number of cells

1600 1800 2000
TTI Deadline (us)

1.60

1.62

1.64

99
.9

99
%

 p
ro

ce
ss

in
g

la
te

nc
y

1e3

0

10

20

30

40

50

60

Re
cl

ai
m

ed
 C

PU
 (

%
)

(b) Effect of TTI deadline param-
eter on tail latency and reclaimed
cores (20MHz cell configuration)

Figure 15: Characteristics of Concordia scheduler

is almost equally effective to the quantile decision tree in predicting
deadlines, and much better than the linear model. However, as shown
in Fig. 14a, the quantile decision tree has the smallest average WCET
prediction error when deadlines are met (43us), making it the most
efficient of all studied algorithms. Given the lack of space, please see
Appendix A.2 for additional prediction accuracy results of other com-
putationally intensive signal processing tasks. It should be noted that
while the prediction accuracy for individual tasks is not 0.99999, the
Concordia scheduler compensates for any misprediction by updating
its scheduling decision every 20 `s. This results in 99.999 reliability
for the full DAG execution, as shown if Fig. 14a and in Section 6.2.

6.5 Concordia scheduler characteristics

Execution times: The Concordia scheduler runs once every 20 `s
and the WCET predictor once every TTI slot, so they have to be very
fast. We evaluate their execution time while varying the number of
cells from 1 to 7. As shown in Fig. 15a, their overhead increases
linearly with the number of cells, since the number of tasks being pro-
cessed scales the same way. The scheduler runs on the timer thread,
but as its overhead for up to 7 cells remains always below 2 `s, it can
run every 20 `s without any issues (it is also possible to multiplex
the scheduler with other tasks on the timer core, such as processing
the incoming fronthaul packets). The total overhead of the WCET
predictions grows from 4 `s for 1 cell to 24 `s for 7 cells. This is less
than 0.2% of the overall vRAN pool processing time per TTI slot
(and as it runs on the vRAN pool cores as discussed in Section 5, it
doesn’t block the timer thread).

Effect of TTI deadline: Next, we study the effect of the signal pro-
cessing DAG deadline to the performance of the vRAN and the
number of reclaimed cores. We consider as an example the 20MHz
7 cell configuration of Table 2, with a cell traffic load of 25% of the
max designated capacity. As it can be seen in Fig. 15b, the shorter
the deadline is, the lower the tail TTI processing latency gets at the
expense of a lower number of reclaimed CPU cores. Similar obser-
vations can be made for other cell configurations (omitted due to
lack of space). The DAG deadline can therefore be used to tune the
performance of the vRAN with different values providing a tradeoff
between the vRAN reliability (e.g. 99.99% or 99.999%) and the
percentage of reclaimed vRAN pool CPU cycles.

7 CONCORDIA EXTENSIONS
Offloading vRAN tasks to hardware accelerators: The focus of
this paper has been on vRAN deployments that fully rely on CPUs
for signal processing. However, in many practical scenarios hardware
accelerators (e.g. FPGAs, GPUs) could be used to offload heavy tasks
like LDPC encoding/decoding [48] to reduce processing latency and
to improve energy efficiency.

cells Minimum # CPU cores Average CPU utilization
1 1 58.2%
2 3 46.6%
3 4 58.7%

Table 3: vRAN pool CPU requirements for 100MHz TDD cell
configuration (1.6Gbps DL, 150Mbps UL per cell) and FPGA
LDPC acceleration

To understand the impact of accelerators to the benefits of Con-
cordia, we extended our FlexRAN testbed with a server (Intel Xeon
W-2295 @ 3GHz, Ubuntu 18.04 lowlatency kernel) equipped with an
FPGA (Terasic DE5-Net) for offloading LDPC encoding/decoding
tasks. We profile the vRAN performance for peak traffic and measure
the minimum number of vRAN pool cores required to support the
vRAN, as well as their utilization for a varying number of 100MHz
TDD cells. As shown in Table 3, the FPGA use enables support for
more cells with higher traffic loads on the same number of CPU cores
compared to the scenarios studied in Section 6. However, the CPU

Average processing time
of non-offloaded tasks (`s)

Average total processing
time of single slot (`s)

Uplink 515 1414
Downlink 196 366

Table 4: Average processing times for uplink/downlink slot of
single cell (including FPGA acceleration) and for non-offloaded
tasks (excluding FPGA acceleration) on 1 CPU core.

utilization still remains below 60% in all cases. This underutilization
of the cores even at peak capacity happens for two main reasons:
• Time division multiplexing As in the case of non-accelerated

configurations, the time division multiplexing of cells creates idle
periods for the vRAN pool cores, since the downlink processing time
is significantly lower compared to the uplink for the non-offloaded
tasks. This can be seen in Table 4 for the single cell case of the
scenario under study, where the average total pool CPU core time
spent on the non-offloaded uplink processing tasks is more than 2.5
times higher than the downlink, even though the downlink traffic
volume is an order of magnitude higher.
• Offload processing wait times Due to the dependencies of

the tasks in the DAG structures of the signal processing chains, the
worker threads running on the vRAN pool cores have periods when
they cannot make any progress and therefore have to block, waiting
for the completion of FPGA offloaded tasks. As shown in Table 4,
the average total processing time of a single uplink slot (including
the FPGA processing time) is ∼2.5 times higher than the average
processing time for the non-offloaded tasks executed on the allocated
vRAN pool core. Their difference matches the time that the vRAN
pool worker thread had to block, waiting for the offloaded tasks to
be completed. Similar observations can be made for the downlink,
where the total slot processing time is ∼1.9 times higher than the
processing time of the non-offloaded tasks.

590

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

The aforementioned observations demonstrate that there are signif-
icant opportunities for reclaiming vRAN CPU cores even in the
presence of hardware accelerators. We plan to extend Concordia to
accommodate such scenarios. This can be achieved by extending Con-
cordia’s WCET predictor to also predict the WCET of the offloaded
tasks, as well as by adapting Concordia’s scheduler to factor in the
idle periods arising from the offloading of the tasks, e.g., by creating
separate DAGs for the tasks running before/after the offloaded tasks
and adjusting the deadlines of those DAGs appropriately.
Extending Concordia for other workloads: Throughout this work,
we assumed that the vRAN is the high priority workload, with a
maximum scheduling priority. All other workloads are considered as
best-effort and as such can be pre-empted by the vRAN at any point
in time. Based on this, the focus of this work has been on providing
predictions specifically targeting the physical layer signal processing
vRAN tasks. However, the techniques used by Concordia could be
generalized to also apply to other task-based deadline-constrained
workloads across the protocol stack of the vRAN, as well as to applica-
tions running as part of a (near) real-time RAN intelligent controller
for the optimization of the RAN radio resources [2, 36, 38, 73].

One characteristic example is the MAC layer of the vRAN, which
is responsible for the scheduling of radio resources to mobile devices.
The schedulers of the MAC layer (e.g. uplink, downlink, broadcast
etc.) can be viewed as deadline tasks that can be processed by a
vRAN pool, similar to the signal processing tasks of the physical
layer. In fact, this is the approach proposed by Intel as a best practice
for the L2 of FlexRAN [62]. Moving towards 5G networks and be-
yond, the processing requirements of the MAC layer increase. For
example, the introduction of Massive MIMO increases the schedul-
ing complexity, which can greatly fluctuate depending on the number
of scheduled users and their mapping to antennas [14]. The WCET
prediction capabilities of Concordia could allow the vRAN MAC to
be multiplexed with other workloads.

The proposed schemes of Concordia could be extended and ap-
plied to other domains with latency sensitive characteristics, like
AR/VR workloads [55, 64] and video analytics [3], where the pro-
cessing time of frames needs to be minimized to provide the optimal
experience and/or to actuate some other system (e.g. traffic lights).

8 RELATED WORK
vRAN resource management: A number of works have focused
on the problem of vRAN resource pooling to optimize the allocation
of compute resources across BBUs [15, 40, 115]. Going one step
beyond, vrAIn [5] proposes a joint compute and radio resource allo-
cation framework for the vRAN based on reinforcement learning. In
contrast to Concordia, the aforementioned works assume an isolated
vRAN and do not consider the effects of scheduling latency and cache
interference to the WCET of signal processing tasks. The problem
of controlled tail latency for signal processing tasks has been studied
both in the context of general purpose processors (e.g. [101]) and
DSPs (e.g. [7]). However, such works do not consider the presence
of collocated workloads as in the case of Concordia. Finally, a num-
ber of ML-based techniques have been proposed for the intelligent
allocation of resources to the RAN (e.g., [10, 37, 97]). However, the
focus of such works has been on the radio resources and not on the
optimization of compute.

Real-time scheduling: Real-time scheduling has been studied ex-
tensively in the literature [24]. Relevant to Concordia, a plethora
of works focus on mixed-criticality systems[17] and on the sched-
uling of parallel task DAG models similar to that of the vRAN
(e.g., [8, 9, 50, 59–61, 82, 91]). Concordia builds on the work in [61],
which proposes the most relevant state-of-the art mixed-criticality
deadline scheduler.
An integral requirement of real-time schedulers is the knowledge of
task WCETs. As such, there exists a large volume of work on WCET
prediction for hard real-time systems [111]. More recent approaches
have focused on providing probabilistic WCET bounds (e.g. with
4 or 5 nines) through distributions obtained using static analysis,
measurements or a combination of both [18]. However, in all such
works, the WCET prediction does not adjust dynamically at runtime
based on the input, leading to underutilization of the compute re-
sources. Moreover, most such works target embedded systems and
therefore assume that real-time tasks operate without the presence
of other interfering non real-time workloads. Concordia overcomes
this limitation through the introduction of its novel parameterized
WCET predictor and its offline and constant online training phases.
Low-latency scheduling frameworks: Workload interference is a
well-known problem. As such, various resource allocation and sched-
uling optimization frameworks have been proposed (e.g. [13, 65, 81,
83]). While the goal of such frameworks is to mitigate the effects
of interference, they operate at a coarse time granularity, which is
not suitable to deal with the sub-millisecond requirements of the
vRAN. Shinjuku [51] enables scheduling for microsecond-scale tail
latencies. However, its design as a single-address space OS does not
allow the deployment of conventional applications. Shenango [75]
and Snap [68] bear the most similarities to Concordia. However, nei-
ther provides mechanisms to predict the (varying) WCETs of tasks,
nor is able to provide 99.999 reliability. Moreover, Shenango requires
from applications to implement a specific API and to avoid the use
of system calls. In contrast, Concordia allows the collocation of the
vRAN with conventional applications (e.g. running in containers).

9 CONCLUSIONS
In this work we presented Concordia, a userspace deadline-aware
scheduling framework for the sharing of compute resources between
the vRAN and best-effort workloads. Concordia allocates CPU re-
sources among the vRAN physical layer and other workloads at a
granularity of 20 `s, ensuring that the vRAN meets its real-time
signal processing deadlines. The scheduling decisions of Concordia
are powered by a prediction mechanism based on quantile decision
trees that predicts the WCET of signal processing tasks in the pres-
ence of interference from other workloads. Experimental results on
a prototype based on the commercial Intel FlexRAN vRAN solution
demonstrate the ability of Concordia to reclaim more than 70% of
the vRAN’s compute resources, while providing 99.999% reliability
in meeting vRAN signal processing deadlines.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our shepherd
Muhammad Shahbaz for their valuable feedback that helped us im-
prove this work.

591

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] 3GPP. 2019. 5G NR Physical Channels and Modulation, document 38.211.
[2] ORAN Alliance. 2020. O-RAN Use Cases and Deployment Scenarios. White

Paper, Feb (2020).
[3] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,

Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-time video
analytics: The killer app for edge computing. computer 50, 10 (2017), 58–67.

[4] Erdal Arikan. 2009. Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE Trans-
actions on information Theory 55, 7 (2009), 3051–3073.

[5] Jose A Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-
Perez, Albert Banchs, and Juan J Alcaraz. 2019. vrAIn: A Deep Learning Ap-
proach Tailoring Computing and Radio Resources in Virtualized RANs. In The
25th Annual International Conference on Mobile Computing and Networking.
1–16.

[6] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul Tandra,
Sachin Katti, and Aaron Schulman. 2019. Detecting if LTE is the Bottleneck with
BurstTracker. In The 25th Annual International Conference on Mobile Computing
and Networking. 1–15.

[7] Manu Bansal, Aaron Schulman, and Sachin Katti. 2015. Atomix: A framework
for deploying signal processing applications on wireless infrastructure. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). 173–188.

[8] Sanjoy Baruah. 2016. The federated scheduling of systems of mixed-criticality
sporadic DAG tasks. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE,
227–236.

[9] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie,
and Andreas Wiese. 2012. A generalized parallel task model for recurrent real-
time processes. In 2012 IEEE 33rd Real-Time Systems Symposium. IEEE, 63–72.

[10] Ali Kashif Bashir, Rajakumar Arul, Shakila Basheer, Gunasekaran Raja, Ramku-
mar Jayaraman, and Nawab Muhammad Faseeh Qureshi. 2019. An optimal
multitier resource allocation of cloud RAN in 5G using machine learning. Trans-
actions on emerging telecommunications technologies 30, 8 (2019), e3627.

[11] Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. 2014. Living on the edge:
The role of proactive caching in 5G wireless networks. IEEE Communications
Magazine 52, 8 (2014), 82–89.

[12] Dario Bega, Albert Banchs, Marco Gramaglia, Xavier Costa-Pérez, and Peter
Rost. 2018. CARES: Computation-aware scheduling in virtualized radio access
networks. IEEE Transactions on Wireless Communications 17, 12 (2018), 7993–
8006.

[13] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. {IX}: A Protected Dataplane Operating
System for High Throughput and Low Latency. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14). 49–65.

[14] Mouncef Benmimoune, Elmahdi Driouch, Wessam Ajib, and Daniel Massicotte.
2015. Joint transmit antenna selection and user scheduling for massive MIMO
systems. In 2015 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 381–386.

[15] Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap Jataprolu,
Gautam Kumar, Anand Muralidhar, Paul Polakos, Vikram Srinivasan, and Thomas
Woo. 2012. CloudIQ: A framework for processing base stations in a data center.
In Proceedings of the 18th annual international conference on Mobile computing
and networking. 125–136.

[16] Nicola Bui and Joerg Widmer. 2016. OWL: A reliable online watcher for LTE
control channel measurements. In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges. 25–30.

[17] Alan Burns and Robert I Davis. 2017. A survey of research into mixed criticality
systems. ACM Computing Surveys (CSUR) 50, 6 (2017), 1–37.

[18] Francisco J Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez,
Jaume Abella, and Tullio Vardanega. 2019. Probabilistic worst-case timing
analysis: Taxonomy and comprehensive survey. ACM Computing Surveys (CSUR)
52, 1 (2019), 1–35.

[19] SDX Central. 2020. Rakuten Mobile Delivers Its Virtualized Reality. Retrieved
2021-06-21 from https://www.sdxcentral.com/articles/news/rakuten-mobile-
delivers-its-virtualized-reality/2020/04/

[20] Aleksandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Georgios
Kardaras, Michael S Berger, and Lars Dittmann. 2014. Cloud RAN for mobile
networksA technology overview. IEEE Communications surveys & tutorials 17,
1 (2014), 405–426.

[21] Intel Corporation. 2020. OpenNESS Radio Access Network configuration. https:
//github.com/open-ness/specs/blob/master/doc/ran/opennessran.md Accessed:
2020-06-02.

[22] Max Costa. 1983. Writing on dirty paper (corresp.). IEEE transactions on
information theory 29, 3 (1983), 439–441.

[23] Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Code Lo, Tullio Var-
danega, Leonidas Kosmidis, Jaume Abella, Enrico Mezzetti, Eduardo Quiñones,
and Francisco J Cazorla. 2012. Measurement-based probabilistic timing analysis

for multi-path programs. In 2012 24th euromicro conference on real-time systems.
IEEE, 91–101.

[24] Robert I Davis and Alan Burns. 2011. A survey of hard real-time scheduling for
multiprocessor systems. ACM computing surveys (CSUR) 43, 4 (2011), 1–44.

[25] Arnaldo Carvalho De Melo. 2010. The new Linux ‘perf’ tools. In Slides from
Linux Kongress, Vol. 18. 1–42.

[26] Christina Delimitrou and Christos Kozyrakis. 2013. QoS-aware scheduling in
heterogeneous datacenters with paragon. ACM Transactions on Computer Systems
(TOCS) 31, 4 (2013), 1–34.

[27] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. ACM SIGPLAN Notices 49, 4 (2014),
127–144.

[28] Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong. 2020. Agora:
Real-time massive MIMO baseband processing in software. In Proceedings of
the 16th International Conference on emerging Networking EXperiments and
Technologies. 232–244.

[29] Ericsson. 2016. How cloud and networks achieve 99.999in different ways. Re-
trieved 2021-01-21 from https://www.ericsson.com/en/blog/2016/9/how-cloud-
and-networks-achieve-99.999-availability-in-different-ways

[30] Ericsson. 2019. Critical capabilities for private 5G networks. Retrieved 2021-06-
4 from https://www.ericsson.com/en/reports-and-papers/white-papers/private-
5g-networks

[31] Ericsson. 2020. 5G private network operations: What do you need to know?
Retrieved 2021-06-4 from https://www.ericsson.com/en/blog/2020/7/5g-private-
network-operations

[32] TR ETSI. 2018. 138 913 V15. 0.0 (2018-09) 5G," Study on scenarios and
requirements for next generation access technologies (3GPP TR 38.913 version
15.0. 0 Release 15)".

[33] Robert Falkenberg and Christian Wietfeld. 2019. FALCON: An Accurate Real-
time Monitor for Client-based Mobile Network Data Analytics. In 2019 IEEE
Global Communications Conference (GLOBECOM). IEEE, Waikoloa, Hawaii,
USA. ht tps://doi.org/10.1109/GLOBECOM38437.2019.9014096
arXiv:1907.10110

[34] Fierce Wireless. 2020. Dish names Intel as vRAN network supplier. https://ww
w.fiercewireless.com/operators/dish-names-intel-as-vran-network-supplier
Accessed: 2021-06-4.

[35] Alexander Fish, Shamgar Gurevich, Ronny Hadani, Akbar M Sayeed, and Oded
Schwartz. 2013. Delay-Doppler channel estimation in almost linear complexity.
IEEE Transactions on Information Theory 59, 11 (2013), 7632–7644.

[36] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2017. Orion: RAN
slicing for a flexible and cost-effective multi-service mobile network architecture.
In Proceedings of the 23rd annual international conference on mobile computing
and networking. 127–140.

[37] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. 2019. Iris: Deep
reinforcement learning driven shared spectrum access architecture for indoor
neutral-host small cells. IEEE Journal on Selected Areas in Communications 37,
8 (2019), 1820–1837.

[38] Xenofon Foukas, Navid Nikaein, Mohamed M Kassem, Mahesh K Marina, and
Kimon Kontovasilis. 2016. FlexRAN: A flexible and programmable platform for
software-defined radio access networks. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 427–441.

[39] Andres Garcia-Saavedra, Xavier Costa-Perez, Douglas J Leith, and George Iosi-
fidis. 2018. Fluidran: Optimized vran/mec orchestration. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2366–2374.

[40] Krishna C Garikipati, Kassem Fawaz, and Kang G Shin. 2016. RT-OPEX: Flexible
scheduling for cloud-ran processing. In Proceedings of the 12th International on
Conference on emerging Networking EXperiments and Technologies. 267–280.

[41] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. 2011.
Cuanta: quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines. In Proceedings of the 2nd ACM Symposium on Cloud
Computing. 1–14.

[42] GSMA. 2019. Vodafone starts trials of OpenRAN in Europe and Africa. Re-
trieved 2020-07-14 from https://www.gsma.com/futurenetworks/digest/vodafon
e-starts-trials-of-openran-in-europe-and-africa

[43] Wang Tsu Han and Raymond Knopp. 2018. OpenAirInterface: A pipeline struc-
ture for 5G. In 2018 IEEE 23rd International Conference on Digital Signal
Processing (DSP). IEEE, 1–4.

[44] Lajos Hanzo, Tong Hooi Liew, and Bee Leong Yeap. 2002. Turbo coding, turbo
equalisation, and space-time coding. Wiley Online Library.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity map-
pings in deep residual networks. In European conference on computer vision.
Springer, 630–645.

[47] China Mobile Research Institute. 2011. C-RAN the road towards green ran.
[48] Intel. 2018. An Overview of FlexRAN Software Wireless Access Solutions.

Retrieved 2020-07-15 from https://software.intel.com/content/www/us/en/devel

592

https://www.sdxcentral.com/articles/news/rakuten-mobile-delivers-its-virtualized-reality/2020/04/
https://www.sdxcentral.com/articles/news/rakuten-mobile-delivers-its-virtualized-reality/2020/04/
https://github.com/open-ness/specs/blob/master/doc/ran/openness_ran.md
https://github.com/open-ness/specs/blob/master/doc/ran/openness_ran.md
https://www.ericsson.com/en/blog/2016/9/how-cloud-and-networks-achieve-99.999-availability-in-different-ways
https://www.ericsson.com/en/blog/2016/9/how-cloud-and-networks-achieve-99.999-availability-in-different-ways
https://www.ericsson.com/en/reports-and-papers/white-papers/private-5g-networks
https://www.ericsson.com/en/reports-and-papers/white-papers/private-5g-networks
https://www.ericsson.com/en/blog/2020/7/5g-private-network-operations
https://www.ericsson.com/en/blog/2020/7/5g-private-network-operations
https://doi.org/10.1109/GLOBECOM38437.2019.9014096
https://arxiv.org/abs/1907.10110
https://www.fiercewireless.com/operators/dish-names-intel-as-vran-network-supplier
https://www.fiercewireless.com/operators/dish-names-intel-as-vran-network-supplier
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa
https://www.gsma.com/futurenetworks/digest/vodafone-starts-trials-of-openran-in-europe-and-africa
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

op/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
[49] Intel. 2020. FlexRAN. https://github.com/intel/FlexRAN Accessed: 2020-09-

03.
[50] Xu Jiang, Nan Guan, Di Liu, and Weichen Liu. 2019. Analyzing GEDF Sched-

uling for Parallel Real-Time Tasks with Arbitrary Deadlines. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1537–
1542.

[51] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive scheduling for
`second-scale tail latency. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19). 345–360.

[52] Florian Kaltenberger, Aloizio P Silva, Abhimanyu Gosain, Luhan Wang, and
Tien-Thinh Nguyen. 2020. OpenAirInterface: Democratizing Innovation in the
5G Era. Computer Networks (2020), 107284.

[53] Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE radio
analytics made easy and accessible. ACM SIGCOMM Computer Communication
Review 44, 4 (2014), 211–222.

[54] Altice labs. 2021. Towards autonomous private 5G networks. Altice labs. White
Paper.

[55] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng
Lee. 2019. Furion: Engineering high-quality immersive virtual reality on today’s
mobile devices. IEEE Transactions on Mobile Computing 19, 7 (2019), 1586–
1602.

[56] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling high server utilization
and sub-millisecond quality-of-service. In Proceedings of the Ninth European
Conference on Computer Systems. 1–14.

[57] Roger J Lewis. 2000. An introduction to classification and regression tree (CART)
analysis. In Annual meeting of the society for academic emergency medicine in
San Francisco, California, Vol. 14.

[58] He Li, Kaoru Ota, and Mianxiong Dong. 2018. Learning IoT in edge: Deep
learning for the Internet of Things with edge computing. IEEE network 32, 1
(2018), 96–101.

[59] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. 2013. Outstanding
paper award: Analysis of global edf for parallel tasks. In 2013 25th Euromicro
Conference on Real-Time Systems. IEEE, 3–13.

[60] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed
Saifullah. 2014. Analysis of federated and global scheduling for parallel real-time
tasks. In 2014 26th Euromicro Conference on Real-Time Systems. IEEE, 85–96.

[61] Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and
Chenyang Lu. 2017. Mixed-criticality federated scheduling for parallel real-time
tasks. Real-time systems 53, 5 (2017), 760–811.

[62] Ziyi Li, Fan He, Peng Huang, Minjun Li, Leifeng Ruan, and Yao Dong. 2018.
5G L2 SW Architecture Best Practice on IA. Intel Corporation. White Paper.

[63] Linux. 2015. BCC: Dynamic Tracing Tools for Linux. https://iovisor.github.io/
bcc/ Accessed: 2020-08-05.

[64] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[65] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving resource efficiency at scale. In
Proceedings of the 42nd Annual International Symposium on Computer Architec-
ture. 450–462.

[66] Michael M Madden. 2019. Challenges Using Linux as a Real-Time Operating
System. In AIAA Scitech 2019 Forum. 0502.

[67] Antonis Manousis, Rahul Anand Sharma, Vyas Sekar, and Justine Sherry. 2020.
Contention-Aware Performance Prediction For Virtualized Network Functions. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols
for computer communication. 270–282.

[68] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve
Gribble, et al. 2019. Snap: a microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles. 399–413.

[69] Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association 46, 253 (1951), 68–78.

[70] Nicolai Meinshausen. 2006. Quantile regression forests. Journal of Machine
Learning Research 7, Jun (2006), 983–999.

[71] RRCWireless News. 2019. Rakuten to deploy 4,000 edge servers for virtualized
mobile network. Retrieved 2020-07-14 from https://www.rcrwireless.com/20
190806/5g/rakuten-deploy-4000-edge-servers-virtualized-mobile-network-
report

[72] Navid Nikaein. 2015. Processing radio access network functions in the cloud:
Critical issues and modeling. In Proceedings of the 6th International Workshop
on Mobile Cloud Computing and Services. 36–43.

[73] ONF. 2020. SD-RAN: ONF’s Software-Defined RAN Platform Consistent with
the O-RAN Architecture. ONF. White Paper.

[74] OpenNESS. 2020. Open Network Edge Services Software. https://www.openne
ss.org/ Accessed: 2020-06-02.

[75] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High {CPU} Efficiency for Latency-sensitive
Datacenter Workloads. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19). 361–378.

[76] Pandas. 2019. pandas - Python Data Analysis Library. Retrieved 2020-07-27
from https://pandas.pydata.org/

[77] STL Partners. 2020. Building Telco Edge Infrastructure: MEC, Private LTE &
vRAN. Technical Report. STL Partners, Executive Briefing.

[78] Georgios Patounas, Xenofon Foukas, Ahmed Elmokashfi, and Mahesh K Marina.
2020. Characterization and Identification of Cloudified Mobile Network Perfor-
mance Bottlenecks. IEEE Transactions on Network and Service Management 17,
4 (2020), 2567–2583.

[79] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[80] Percona. 2008. TPCC benchmark. https://github.com/Percona-Lab/tpcc-mysql
Accessed: 2020-08-05.

[81] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In Proceedings of the
26th Symposium on Operating Systems Principles. 325–341.

[82] Manar Qamhieh, Frédéric Fauberteau, Laurent George, and Serge Midonnet. 2013.
Global EDF scheduling of directed acyclic graphs on multiprocessor systems.
In Proceedings of the 21st International conference on Real-Time Networks and
Systems. 287–296.

[83] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: core-aware thread management. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18). 145–160.

[84] Rakuten. 2019. Rakuten Mobile and NEC to Build Open vRAN Architecture in
Japan. Retrieved 2020-07-14 from https://global.rakuten.com/corp/news/press
/2019/060501.html

[85] Heavy Reading. 2019. New Transport Network Architectures for 5G RAN. Fujitsu.
White Paper.

[86] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 446–459.

[87] Redis. 2019. How fast is Redis? Retrieved 2020-08-05 from https://redis.io/top
ics/benchmarks

[88] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. 2019. The
real-time linux kernel: A survey on preempt_rt. ACM Computing Surveys (CSUR)
52, 1 (2019), 1–36.

[89] Peter Rost, Salvatore Talarico, and Matthew C Valenti. 2015. The complexity–rate
tradeoff of centralized radio access networks. IEEE Transactions on Wireless
Communications 14, 11 (2015), 6164–6176.

[90] William E Ryan et al. 2004. An introduction to LDPC codes. , 23 pages.
[91] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher

Gill. 2013. Multi-core real-time scheduling for generalized parallel task models.
Real-Time Systems 49, 4 (2013), 404–435.

[92] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: scalable and efficient
fine-grain cache partitioning. In Proceedings of the 38th annual international
symposium on Computer architecture. 57–68.

[93] scikit-garden. 2017. Quantile Decision Trees. https://scikit-garden.github.
io/examples/QuantileRegressionForests/#quantile-decision-trees Accessed:
2020-07-27.

[94] SDKI. 2021. Virtualized RAN (vRAN) Market Size, Share & Forecast. https:
//www.marketwatch.com/press-release/virtualized-ran-vran-market-size-
share-forecast-2025-2021-04-20 Accessed: 2021-06-4.

[95] SDXCentral. 2021. VMware Tilts Into vRAN Telco Cloud, Dish Gets First Dibs.
https://www.sdxcentral.com/articles/news/vmware-tilts- into-vran-telco-
cloud-dish-gets-first-dibs/2021/04/ Accessed: 2021-06-4.

[96] Xun Shao, Jinhong Yuan, and Yubin Shao. 2007. Error performance analysis
of linear zero forcing and MMSE precoders for MIMO broadcast channels. IET
communications 1, 5 (2007), 1067–1074.

[97] Xuemin Shen, Jie Gao, Wen Wu, Kangjia Lyu, Mushu Li, Weihua Zhuang, Xu Li,
and Jaya Rao. 2020. AI-assisted network-slicing based next-generation wireless
networks. IEEE Open Journal of Vehicular Technology 1 (2020), 45–66.

[98] Gábor J Székely and Maria L Rizzo. 2009. Brownian distance covariance. The
annals of applied statistics (2009), 1236–1265.

[99] Gábor J Székely, Maria L Rizzo, Nail K Bakirov, et al. 2007. Measuring and
testing dependence by correlation of distances. The annals of statistics 35, 6
(2007), 2769–2794.

[100] Tarik Taleb, Rui Luis Aguiar, I Grida Ben Yahia, Bruno Chatras, Gerry Chris-
tensen, Uma Chunduri, Alexander Clemm, Xavier Costa, Lijun Dong, Jaafar
Elmirghani, et al. 2020. White paper on 6G networking. (2020).

[101] Kun Tan, He Liu, Jiansong Zhang, Yongguang Zhang, Ji Fang, and Geoffrey M
Voelker. 2011. Sora: high-performance software radio using general-purpose

593

https://software.intel.com/content/www/us/en/develop/videos/an-overview-of-flexran-sw-wireless-access-solutions.html
https://github.com/intel/FlexRAN
https://iovisor.github.io/bcc/
https://iovisor.github.io/bcc/
https://www.rcrwireless.com/20190806/5g/rakuten-deploy-4000-edge-servers-virtualized-mobile-network-report
https://www.rcrwireless.com/20190806/5g/rakuten-deploy-4000-edge-servers-virtualized-mobile-network-report
https://www.rcrwireless.com/20190806/5g/rakuten-deploy-4000-edge-servers-virtualized-mobile-network-report
https://www.openness.org/
https://www.openness.org/
https://pandas.pydata.org/
https://github.com/Percona-Lab/tpcc-mysql
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://global.rakuten.com/corp/news/press/2019/0605_01.html
https://redis.io/topics/benchmarks
https://redis.io/topics/benchmarks
https://scikit-garden.github.io/examples/QuantileRegressionForests/#quantile-decision-trees
https://scikit-garden.github.io/examples/QuantileRegressionForests/#quantile-decision-trees
https://www.marketwatch.com/press-release/virtualized-ran-vran-market-size-share-forecast-2025-2021-04-20
https://www.marketwatch.com/press-release/virtualized-ran-vran-market-size-share-forecast-2025-2021-04-20
https://www.marketwatch.com/press-release/virtualized-ran-vran-market-size-share-forecast-2025-2021-04-20
https://www.sdxcentral.com/articles/news/vmware-tilts-into-vran-telco-cloud-dish-gets-first-dibs/2021/04/
https://www.sdxcentral.com/articles/news/vmware-tilts-into-vran-telco-cloud-dish-gets-first-dibs/2021/04/

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

multi-core processors. Commun. ACM 54, 1 (2011), 99–107.
[102] Tuyen X Tran, Abolfazl Hajisami, Parul Pandey, and Dario Pompili. 2017. Col-

laborative mobile edge computing in 5G networks: New paradigms, scenarios,
and challenges. IEEE Communications Magazine 55, 4 (2017), 54–61.

[103] Tuyen X Tran, Ayman Younis, and Dario Pompili. 2017. Understanding the
computational requirements of virtualized baseband units using a programmable
cloud radio access network testbed. In 2017 IEEE International Conference on
Autonomic Computing (ICAC). IEEE, 221–226.

[104] Hoang Duy Trinh, Nicola Bui, Joerg Widmer, Lorenza Giupponi, and Paolo Dini.
2017. Analysis and modeling of mobile traffic using real traces. In 2017 IEEE
28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC). IEEE, 1–6.

[105] SS Vallender. 1974. Calculation of the Wasserstein distance between probability
distributions on the line. Theory of Probability & Its Applications 18, 4 (1974),
784–786.

[106] J-J Van De Beek, Ove Edfors, Magnus Sandell, Sarah Kate Wilson, and P Ola
Borjesson. 1995. On channel estimation in OFDM systems. In 1995 IEEE
45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First
Century, Vol. 2. IEEE, 815–819.

[107] Jianda Wang and Yang Hu. 2019. Characterizing and Understanding the Ar-
chitectural Implications of Cloudnative Edge NFV Workloads. In 2019 IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). IEEE, 1–7.

[108] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2018. When edge meets learning: Adaptive
control for resource-constrained distributed machine learning. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 63–71.

[109] Xiaofei Wang, Min Chen, Tarik Taleb, Adlen Ksentini, and Victor CM Leung.
2014. Cache in the air: Exploiting content caching and delivery techniques for
5G systems. IEEE Communications Magazine 52, 2 (2014), 131–139.

[110] Ami Wiesel, Yonina C Eldar, and Shlomo Shamai. 2008. Zero-forcing precoding
and generalized inverses. IEEE Transactions on Signal Processing 56, 9 (2008),
4409–4418.

[111] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, et al. 2008. The worst-case execution-time problemoverview
of methods and survey of tools. ACM Transactions on Embedded Computing
Systems (TECS) 7, 3 (2008), 1–53.

[112] Wind. 2017. Carrier Grade Performance and Reliability in Network Virtualiza-
tion. Technical Report. Wind, Whitepaper.

[113] Fierce Wireless. 2019. Telefonica invests in vRAN vendor Altiostar. Retrieved
2020-07-14 from https://www.fiercewireless.com/tech/telefonica-invests-vran-
vendor-altiostar

[114] Fierce Wireless. 2020. Dish selects Fujitsu, Altiostar for 5G radios, Open vRAN.
Retrieved 2020-08-24 from https://www.fiercewireless.com/operators/dish-
selects-fujitsu-altiostar-for-5g-radios-open-vran

[115] Wenfei Wu, Li Erran Li, Aurojit Panda, and Scott Shenker. 2014. PRAN: Pro-
grammable radio access networks. In Proceedings of the 13th ACM Workshop on
Hot topics in Networks. 1–7.

[116] Dirk Wubben, Peter Rost, Jens Steven Bartelt, Massinissa Lalam, Valentin Savin,
Matteo Gorgoglione, Armin Dekorsy, and Gerhard Fettweis. 2014. Benefits
and impact of cloud computing on 5G signal processing: Flexible centralization
through cloud-RAN. IEEE signal processing magazine 31, 6 (2014), 35–44.

[117] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin. 2016.
Understanding mobile traffic patterns of large scale cellular towers in urban
environment. IEEE/ACM transactions on networking 25, 2 (2016), 1147–1161.

[118] Chun Yeow Yeoh, Mohammad Harris Mokhtar, Abdul Aziz Abdul Rahman,
and Ahmad Kamsani Samingan. 2016. Performance study of LTE experimen-
tal testbed using OpenAirInterface. In 2016 18th International Conference on
Advanced Communication Technology (ICACT). IEEE, 617–622.

[119] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
Proc. IEEE 107, 8 (2019), 1738–1762.

[120] Guangxu Zhu, Dongzhu Liu, Yuqing Du, Changsheng You, Jun Zhang, and
Kaibin Huang. 2020. Toward an intelligent edge: Wireless communication meets
machine learning. IEEE communications magazine 58, 1 (2020), 19–25.

A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A.1 List of most significant vRAN signal
processing tasks

For the completeness of this work and to complement the uplink
DAG that was presented in Fig. 1, this appendix provides an example

of a (simplified) downlink signal processing tasks DAG for 5G NR
in Fig. 16. To ease the understanding of the reader, we also provide
a brief description of the most significant tasks composing the up-
link and downlink DAGs of the 4G and 5G vRAN. Given the large
number of involved tasks (>40 in total), we only focus on describing
the most computationally demanding tasks according to our own
measurements and other related works [28, 72, 107]. A breakdown
of the costs of the described tasks is listed in Table 5. It should be
noted that the percentages of the total processing time of the tasks
listed on the table are approximate. The exact compute requirements
of each task depends on a number of parameters, including the cell
configuration (e.g., bandwidth, number of antennas), the number of
users, their transmission modes (MIMO vs SISO) etc.

Uplink tasks
Task Uplink processing time %

Decoding More than 60%
Channel estimation More than 8%

Equalization More than 5%
Demodulation More than 6%

Downlink tasks
Task Downlink processing time %

Encoding More than 40%
Precoding More than 15%

Modulation More than 10%
Table 5: Breakdown of the percentage of processing time spent
on the most expensive tasks for the uplink/downlink signal pro-
cessing DAGs. The values show an approximate percentage for
each task and in practice could differ based on the scenario.

Encoding & decoding: The encoding task is used to improve the
reliability of the downlink vRAN transmissions. At a high level, this
is achieved by appending redundancy bits to the original transmitted
data. The proportion of the data-stream that is non-redundant des-
ignates the code rate of a transmission. For higher code rates, the
utilization of the spectrum is more efficient and the computational
load for generating the redundancy bits is lower. However, higher
code rates also make it more difficult to recover from errors when
the signal quality is low.

The decoding task is used in the uplink vRAN transmissions and
it performs the exact opposite operation to the encoding task for the
downlink, i.e., it uses the redundancy bits to verify the correctness of
the transmitted data and, if possible, to correct any discovered errors.
The decoding process in 4G and 5G is iterative and typically it stops
when there is a verification of the correctness of the received data or
when a certain threshold (number of iterations) is reached. Similar to
the encoding, higher code rates mean lower computational cost for
decoding the received data. Moreover, low signal quality can lead
to a higher rate of errors on the received data and therefore more
decoding iterations might be required, increasing the computational
demands of the decoding task.

The encoding and decoding algorithms differ between the 4G
and the 5G RAN. In the case of 4G, the algorithm used is Turbo
coding [44], while in the case of 5G, LDPC coding [90] is used

594

https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/tech/telefonica-invests-vran-vendor-altiostar
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran
https://www.fiercewireless.com/operators/dish-selects-fujitsu-altiostar-for-5g-radios-open-vran

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA Xenofon Foukas and Bozidar Radunovic

Figure 16: Example of downlink signal processing tasks DAG for 5G NR

for the user data transmissions and Polar coding [4] is used for the
control data.
Channel estimation: The channel estimation task is used to estimate
the properties of the channel used for the transmissions/receptions.
At a high level, channel estimation is performed by inserting known
reference pilot symbols into a transmission and then interpolating
the rest of the channel response through those pilot symbols. The
computational complexity of the channel estimation task can vary
depending on the algorithm used [35, 106] as well as the transmission
scheme (e.g., Massive MIMO vs SISO).
Precoding & Equalization: Precoding is a downlink task that is
used to realize spatial multiplexing, i.e. multi-user MIMO. The idea
behind precoding is that the data streams of users are combined
through a mathematical transformation and are sent out simulta-
neously through multiple antenna ports. This transformation relies
a matrix called the precoder that is computed using channel state
information obtained through the channel estimation task. Precod-
ing algorithms can be divided to non-linear (e.g., DPC [22]) and
linear (e.g. MMSE and Zero-Forcing [96, 110]). Linear precoding
algorithms are the ones that are currently used in practice, since
they provide a reasonable performance, while having a much lower

complexity. Generally, the computational load of the precoding task
depends on the number of transmitting antenna ports, the number of
data streams and the bandwidth of the vRAN cell.

On the other hand, equalization is an uplink task that is used to
demultiplex user data received from multiple antenna ports, i.e., undo
the effects of the channel at the receiver side. Similar to the case of
the precoding task, many different algorithms can be used for the
equalization (e.g. MMSE and Zero-Forcing), each with a different
complexity and performance. Also, as in the case of the precoding
task, the computational load of the equalization task depends on the
number of the receiving antennas, the number of data streams and
the bandwidth of the vRAN cell.
Modulation & Demodulation: Modulation is a downlink signal
processing task that is used to encode a sequence of bits onto the
carrier signal, by adjusting the signal’s amplitude and/or initial phase.
Different modulation schemes exist, depending on the number of bits
that can be encoded on the carrier signal at a time. For example, the
binary phase shift keying (BSK) modulation scheme takes one bit at
a time and transmits it using a carrier wave that can have two differ-
ent states (0 or 1), while the quadrature phase shift keying (QPSK)
scheme allows the transmission of two bits on the carrier wave. The

Linear
regression

Gradient
boosting

Quantile
DT

Full DAG
Quantile DT

10−3

10−2

10−1

100

101

102

D
ea

dl
in

es
 m

is
se

d
(%

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(a) LDPC encoding

Linear
regression

Gradient
boosting

Quantile
DT

Full DAG
Quantile DT

10−3

10−2

10−1

100

101

102

D
ea

dl
in

es
 m

is
se

d
(%

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(b) Precoding

Linear
regression

Gradient
boosting

Quantile
DT

Full DAG
Quantile DT

10−3

10−2

10−1

100

101

102

D
ea

dl
in

es
 m

is
se

d
(%

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(c) Channel estimation

Linear
regression

Gradient
boosting

Quantile
DT

Full DAG
Quantile DT

10−3

10−2

10−1

100

101

102

D
ea

dl
in

es
 m

is
se

d
(%

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(d) Equalization

Figure 17: Percentage of slots where the processing deadline was violated. Y-axis in log scale.

Linear
regression

Gradient
boosting

Quantile
DT

102

Av
g

pr
ed

ic
ti

on
 e

rr
or

 (
us

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(a) LDPC encoding

Linear
regression

Gradient
boosting

Quantile
DT

102

3 × 101

4 × 101

6 × 101

Av
g

pr
ed

ic
ti

on
 e

rr
or

 (
us

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(b) Precoding

Linear
regression

Gradient
boosting

Quantile
DT

102

Av
g

pr
ed

ic
ti

on
 e

rr
or

 (
us

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(c) Channel estimation

Linear
regression

Gradient
boosting

Quantile
DT

102

Av
g

pr
ed

ic
ti

on
 e

rr
or

 (
us

)

1 cell - FD
2 cells - FD
1 cell - FD & redis
2 cells - FD & redis
1 cell - FD & TPCC
2 cells - FD & TPCC

(d) Equalization

Figure 18: Average WCET prediction error for successfully met deadline. Y-axis in log scale.

595

Concordia: Teaching 5G vRAN to Share Compute SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

higher the modulation scheme, the more bits are transmitted on a
radio resource block (leading to a higher user throughput), but also
the higher the computational cost for performing the modulation
becomes.

Demodulation is an uplink task, that performs the opposite op-
eration to the downlink modulation, i.e., it extracts the bits that are
modulated on the received radio wave. Similar to the modulation, the
computational complexity of the demodulation depends on the mod-
ulation scheme, with higher schemes being more computationally
demanding.

A.2 Further results on prediction model accuracy
Here, we expand the evaluation of Section 6.4 and we present addi-
tional prediction accuracy results for other computationally intensive

5G vRAN signal processing tasks; namely LDPC encoding, precod-
ing, channel estimation and equalization. As shown in Fig. 17 and
similarly to the case of LDPC decoding presented in Section 6.4,
Concordia’s quantile decision tree provides consistently much higher
deadline prediction accuracy compared to the simpler linear regres-
sion model for all the tasks. The gradient boosting model has compa-
rable prediction accuracy to the quantile decision tree, except for the
case of the channel estimation task shown in Fig. 17c. However, as in
the case of LDPC decoding, the quantile decision tree has a consis-
tently small average WCET prediction error for all tasks, as shown in
Fig 17, making it the most efficient of all studied algorithms. Similar
observations are also made for all the remaining signal processing
tasks.

596

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 vRAN overview
	2.2 Sharing opportunities
	2.3 Challenges in sharing vRAN

	3 System Design
	4 Concordia WCET predictor
	4.1 vRAN tasks WCET prediction challenges
	4.2 Concordia WCET prediction model

	5 Implementation
	6 Experimental Evaluation
	6.1 High-level benefits of Concordia
	6.2 Effects of collocation on the vRAN
	6.3 Comparison with alternative schedulers
	6.4 Accuracy of other prediction models
	6.5 Concordia scheduler characteristics

	7 Concordia Extensions
	8 Related Work
	9 Conclusions
	References
	A Appendix
	A.1 List of most significant vRAN signal processing tasks
	A.2 Further results on prediction model accuracy

