
Building Reliable Cloud Services Using Coyote Actors

Pantazis Deligiannis
Microsoft Research, USA
pdeligia@microsoft.com

Narayanan Ganapathy∗
Facebook, USA
narg@fb.com

Akash Lal
Microsoft Research, India
akashl@microsoft.com

Shaz Qadeer†
Novi, USA

shaz@fb.com

ABSTRACT

Cloud services must typically be distributed across a large
number of machines in order to make use of multiple com-
pute and storage resources. This opens the programmer to
several sources of complexity such as concurrency, order of
message delivery, lossy network, timeouts and failures, all of
which impose a high cognitive burden. This paper presents
evidence that technology inspired by formal-methods, deliv-
ered as part of a programming framework, can help address
these challenges. In particular, we describe the experience
of several engineering teams inMicrosoft Azure that used
the open-source Coyote Actor programming framework to
build multiple reliable cloud services. Coyote Actors impose
a principled design pattern that allows writing formal specifi-
cations alongside production code that can be systematically
tested, without deviating from routine engineering practices.
Engineering teams that have been using Coyote have re-
ported dramatically increased productivity (in time taken
to push new features to production) as well as services that
have been running live for months without any issues in
features developed and tested with Coyote.

CCS CONCEPTS

• Software and its engineering → Software verifica-

tion; Cloud computing; Software fault tolerance;

KEYWORDS

Reliability, Cloud Services, Systematic Testing

∗This work was done while the author was at Microsoft.
†This work was done while the author was at Microsoft.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SoCC ’21, November 1–5, 2021, Seattle, WA, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486983

ACM Reference Format:

Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz
Qadeer. 2021. Building Reliable Cloud Services Using Coyote Ac-
tors. In ACM Symposium on Cloud Computing (SoCC ’21), November

1–5, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3472883.3486983

1 INTRODUCTION

The public cloud offers access to an easily-managed, pay-on-
use model of renting compute and storage resources. Increas-
ingly, many companies are moving their business workloads
to the cloud [11, 12]. This requires designing software ser-
vices that execute on the cloud, making effective use of the
available resources. However, developing such services is
challenging: service components are spread across multi-
ple virtual machines and data centers, and communication
must happen over the network. To build a reliable cloud
service, developers must defend against all common pitfalls
of distributed systems: the concurrency from multiple ex-
ecuting processes, unreliable networks (e.g., out-of-order
delivery, or message loss/duplication), as well as hardware/-
software failures. In this paper, we refer to these combined
challenges as sources of non-determinism. It is no surprise
that the presence of such non-determinism leads to bugs in
production, causing tangible loss of business and customer
trust [2, 38, 40].
The research community has made several attempts at

finding distributed-systems bugs, commonly through the
use of systematic testing tools. Examples include Chess [33,
34], MoDist [44], dBug [42] and SAMC [20]. These tools
take over the non-determinism in a test environment and
control it to exploremany different program executions. Both
exhaustive (up to a bound) and random explorations have
proven to be very effective at finding bugs. However, despite
of this success, there has been no visible change in software
development practices followed in the industry. Chances
are that the next time around a new system is built, it will
be built in the same manner as before, leading to the same
kinds of bugs seen in previous systems. Without a change in
the software development process, the likely impact of any
bug-finding technique will be limited.

https://doi.org/10.1145/3472883.3486983
https://doi.org/10.1145/3472883.3486983

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

This paper presents evidence that the situation is not as
grim as outlined above. Tools and techniques developed by
the research community can indeed have considerable im-
pact in the industry for engineering distributed systems.
We share experience from the adoption of the open-source
Coyote programming framework [37] inMicrosoft Azure
for building production cloud services using the actor style
of programming [1].1 Coyote Actors impose a principled
design pattern, allowing the implementation to closely re-
semble its high-level design. Coyote also provides mech-
anisms for programmatically expressing non-determinism
and writing detailed safety and liveness specifications. Fi-
nally,Coyote comes with automated testing capabilities that
encapsulate the state-of-the-art in systematic testing. This
enables high-coverage testing of the production code against
its specifications and provides deterministic reproducibility
of bugs. Putting these pieces together, Coyote allows devel-
opers to effectively iterate through the design-implement-test

cycle faster than otherwise, leading to accelerated develop-
ment.
To illustrate the benefits of using Coyote, we provide a

detailed description of PoolManager, one of three core com-
ponents of the Azure Batch service (ABS) [22] that was
written from scratch using Coyote actors. ABS is a popular
job scheduling and compute management service, offered
by Azure, managing over hundreds of thousands of VMs on
the cloud. ABS allows a user to create a collection of com-
pute nodes and schedule a parallel job across these nodes.
PoolManager is responsible for creating and managing the
collection of compute nodes (also called a pool). A previous
version of PoolManager, developed over several years using
standard engineering practices, had an outdated design that
was unable to manage the increasing demands of Azure
Batch. It was hard to maintain and test, making feature ad-
dition unacceptably slow. This prompted the ABS team to
rewrite the PoolManager, this time adopting Coyote.
The ABS engineers (both junior and senior) were able to

move faster and be more confident in their code changes be-
cause they could achieve high-coverage testing with Coyote.
Writing detailed specifications alongside production code be-
came an integral part of their daily development process. The
team reported that the coverage obtained with systematic
testing was much higher than even with days of stress test-
ing. Coyote found hundreds of bugs that were fixed fast, and
often without ever getting checked-in. For a few bugs that
we were able to snapshot, it was unlikely that they would
have been found using stress testing, or other conventional

1Coyote supports multiple programming frameworks, including Task-
based programming, but this report mainly focusses on the experience
with its Actor programming framework. Coyote’s Actor framework was
earlier called P# [7].

testing methods, because they required several failures and
timeout events to interleave.

The ABS team gained considerable confidence in Coyote
testing as the PoolManager development proceeded: once
a feature was tested with Coyote, it would just work when
put into production. The current state of practice in the team
is that each code check-in to the main branch must clear
all available Coyote tests. It was a unique experience for
the team to get exhaustive (in reality, high-coverage) testing
of their code changes readily available on their desktop as
they were developing a distributed system. The debugging
process was also significantly improved: each time Coyote
found a bug, engineers could deterministically replay the
buggy trace, attach a debugger, set breakpoints and step-into
the code. The majority of the new PoolManager development
took only six months, considerably faster than the previous
version. For some time, both versions of PoolManager ex-
isted simultaneously. During this time, the team had to add a
new feature (for supporting low priority preemptible VMs in
the pools) to both versions. The addition in the old PoolMan-
ager took six person months, whereas the addition in the
new Coyote version took just one person month. The new
PoolManager has now been operating for over a year with
no reported bugs in production for Coyote tested features.
There were occasional bugs, but they all pointed to features
outside the scope of their Coyote tests.
The Azure Batch PoolManager is the first production-

scale system, to the best of our knowledge, to have been
developed along with continuous validation of safety and
liveness specifications. The experience of the ABS team was
not isolated. Given their success, several other teams in
Azure adopted Coyote in their engineering process. Cur-
rently, Coyote actors have been used in Azure for building
nine production services, with several more services in the
planning stage (§6). Furthermore, Coyote has 100% user
retention so far: once a team started using it, they have con-
tinued to use it for writing new cloud services.

The main contributions of this paper are as follows:

• We present PoolManager, the first production-scale
system to have been developed simultaneously with
continuous validation of the actual code against its
safety and liveness specifications; both design and im-
plementation was done by engineers (not researchers)
to meet a specific business need.

• PoolManager is a stateful microservice that requires
storing its state reliably so that it can be restored after a
failure (known as a failover). Getting the failover logic
correct is often hard. We give a novel methodology for
failover testing (§4).

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

• We discuss the experience of several Azure engi-
neering teams with using Coyote actors, for building
highly-reliable cloud services (§6).

The rest of this paper is organized as follows: §2 provides
background; §3 outlines the design and implementation of
the PoolManager using Coyote; §4 focuses on testing of the
PoolManager; §5 lists the improvements made to Coyote
actors to support the development of production systems;
§6 summarizes the experience of several Azure engineering
teams with using Coyote; and finally §7 presents related
work.

2 OVERVIEW

2.1 The Azure Batch Service (ABS)

ABS is a popular generic job scheduling service offered by
Microsoft Azure [22]. ABS allows a user to execute a par-
allel job in the cloud. The job can consist of multiple tasks
with a given set of dependencies. ABS will execute the tasks
in dependency order while attempting to exploit as much
parallelism between independent tasks as possible. Unlike
distributed schedulers such as Apache Yarn [41] and Mesos
[17] that typically require to be installed on a pre-created set
of VMs, ABS integrates scheduling with VM management.
ABS can auto-scale (i.e., spin up and down) the number of
created VMs based on the needs of each job as well as a
variety of parameters such as CPU, memory and I/O metrics
on VMs, and preemption rate.
The high-level architecture of ABS is shown on the left

side of Figure 1. Each region (i.e., a geographical location that
hosts one or more data centers) has a resource provider and
several schedulers. A breakdown of the resource provider is
shown on the right side of Figure 1. The resource provider
has a front-end or gateway service that routes requests to
back-end managers that support the CRUD operations for
specific entities: user accounts, pools and jobs, with relevant
data stored in Azure Storage [27] for persistence.
ABS is a multi-tenant service and a user account is the

multi-tenant isolation boundary. Each account is associated
with a quota that limits the amount of compute resources
that can be allocated for a scheduled job. All resources used
by ABS for executing a job are billed to the corresponding
account. After creating and registering an account, a user
can create a pool that refers to a collection of compute nodes
(VMs). The sum total of cores of all VMs across all pools
associated with an account must be less than the correspond-
ing core quota limit of the account. The pool can be of fixed
size, or set to auto-scale. Once a pool is created, the user
can submit a job to schedule on the pool. Each of the ac-
count, pool and job managers are multi-instance partitioned
services (partitioned by account). The partitions themselves
are managed by the partition manager. The design of the

partition manager is out of scope for this paper but the var-
ious services have to honor partition manager requests to
start/stop/split/merge partitions.

PoolManager. At the heart of the ABS functionality is
the microservice component called PoolManager. The Pool-
Manager interacts with many other components in the sys-
tem, such as the job manager, Azure Storage [27] for stor-
age, Virtual Machine Scale Sets (VMSS) [29] for VM
management and Azure Subscriptions [28] for billing ac-
counts. ABS needs to respond to auto-scale requirements
very rapidly. To achieve this, it must support functionality
to cancel outstanding operations so that further changes to
resources can be made. The functionality must be provided
with low latency, high throughput, high availability and scale.
Note that all services that ABS interacts with are publicly
available and ABS uses the same APIs that are published
externally. This implies that ABS must obey all the rules and
limitations enforced by these services. This point was an
important design consideration, especially for ABS quota
and billing management.
The PoolManager component had to be redesigned for a

variety of reasons. The old design split the work of creat-
ing pools between the PoolManager and the scheduler. The
PoolManager managed pool entities and quotas while the
scheduler cached a pool of VMs. Caching of VMs was no
longer feasible for ABS: as its usage increased, customers
wanted VMs of different sizes and OS images, etc., so it be-
came too costly to hold the VMs in the scheduler. The old
design made the scheduler very complicated. It was also
harder to dynamically scale up and down the number of
schedulers because they were involved in VM management.
The goal of the redesign was to move the quota manage-
ment and the actual VM allocation to a single component
(PoolManager) where it can be partitioned and scaled in-
dependently of the scheduler component. This helped the
scheduler become a very lightweight component that can
be spun up and down quickly, as it now only focuses on job
scheduling. The redesign also allowed the ABS team to easily
incorporate different types of scheduling policies.

The old PoolManager did have some unit and integration
tests but theABS team felt that the tests did not providemuch
confidence in the overall reliability of the PoolManager. It
was important to remedy this situation as well. The PoolMan-
ager is a stateful component that operates in a distributed-
systems environment. Testing of such components is chal-
lenging. For instance, the VM hosting a PoolManager in-
stance may fail or reboot without warning. Operations on
pools are long-running asynchronous activities, thus, the
developer must anticipate and account for failures that can
happen in the middle of such an operation. We refer to the
part of a program’s design that deals with recovery from

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

Figure 1: The Azure Batch service architecture on the left, and the Resource Provider architecture on the right.

failures as failover logic and testing for its correctness as
failover testing. Failovers are not the only challenge: onemust
also correctly deal with issues such as message re-orderings,
timeouts and error handling (when interacting with other
services). Due to inadequate testing technology, most often,
errors arising from these types of issues are discovered late
in the development cycle, or even after deployment when
they are very costly to debug and fix. Ideally, we should be
able to discover and fix these kinds of issues well before the
software is deployed in production.
A further requirement of the PoolManager design was

that the entire code base should be asynchronous and non-
blocking. This is to ensure that PoolManager remains re-
sponsive to cancellation requests: the user is allowed to can-
cel an outstanding operation at any time. In the old design,
there were dedicated threads that blocked synchronously
and when the process ran out of threads, the system could
not process more requests.

2.2 An Introduction to the Coyote Actor

Framework

Coyote [37] provides an open-source actor-based [1] .NET
programming framework. (As mentioned before, while
Coyote supports other programming models as well, we
only focus on actors in this paper.) We will refer to a
Coyote actor as a machine. A program can dynamically
create any number of Coyote actors that execute concur-
rently with each other and communicate via messages called
events. Each actor is equipped with an inbox where incom-
ing events get enqueued, and executes an event-handling
loop that waits for events to arrive and processes them se-
quentially one after the other. An actor can internally define
a state machine structure for programmatic convenience,
which happened to be the common use-case for the work
described in this paper. For this reason, we will term an actor
as a machine in this paper.

Coyote actors provides a higher-level concurrency model
compared to using threads and locks. A machine encapsu-
lates its own state that is not shared with other machines,
and synchronization is limited to sending events. This
means that all communication points between machines
are clearly marked in code.

Coyote is designed in a manner that allows robust testing
of non-deterministic systems. To this effect, Coyote requires
developers to declare all non-determinism present in their
code, after which they can use the Coyote tester to exercise
(in the limit) all possible behaviors of a given test case. The
tester understands the non-determinism that arises from con-
currency between machines. It uses hooks into the Coyote
runtime to control the scheduling of machines. There can
be other forms of non-determinism in the code. Coyote ex-
poses an API to generate unconstrained Boolean and integer
values. We refer to this API as RandomBoolean in the rest
of this paper. It is the responsibility of the programmer to
model the non-determinism in their code using this API. We
illustrate this point using an example.
Consider building an application that requires running

multiple Coyote machines distributed over a network. The
developer is interested in testing the implementation against
a lossy network, as the code must work correctly even
if the network arbitrarily drops messages. The developer
first writes a test that initializes all Coyote machines un-
der a mocked distributed environment so that the code
can execute in a single-process setting. This mocked en-
vironment can model the network to express its lossy be-
havior. Figure 2 shows an illustration for such a mock.
The application (not shown) is designed against an inter-
face of the network (INetworkingService), which is then
mocked (MockNetworkingService) for testing purposes.
The mocked method SendMessage calls RandomBoolean to
decide if it is going to deliver the event or not. When it
must deliver, it directly addresses the target machine and
delivers the event via a Coyote SendEvent. Once exter-
nal dependencies are substituted with mocks to make the

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

interface INetworkingService {
void SendMessage(string endPoint , Event msg);

}
class MockNetworkingService : INetworkingService {

// Map: Endpoint -> Machine hosted at the endpoint
Dictionary <string , ActorId > machineMap;
IActorRuntime CoyoteRuntime;

void SendMessage(string endPoint , Event msg) {
if(CoyoteRuntime.RandomBoolean ()) {

CoyoteRuntime.SendEvent(machineMap[endpoint], msg);
} } }

Figure 2: A mock for a lossy network.

test self-contained (as in standard unit-testing), the Coyote
tester repeatedly executes the test, each time exploring a dif-
ferent interleaving of concurrent actions as well as resolving
RandomBoolean calls with different values.

The Coyote tester supports many state-of-the-art search
strategies inspired from the systematic testing literature [5,
10, 31], and makes it easy to add new strategies as the re-
search community comes up with new algorithms. By de-
fault, the tool is configured to execute a portfolio of search
strategies in parallel to provide the best coverage to the user.
In addition, Coyote provides support for writing func-

tional specifications of the code. These specifications can be
written in the form of monitors. A monitor can only ob-
serve the execution of a program but cannot influence it.
Syntactically, this means that it can receive messages from
any machine, but cannot send messages. A monitor makes
it easy to assert conditions that span multiple machines. A
monitor can also encode liveness properties, commonly used
in distributed systems to assert for progress [19]. A typical
example is, for instance, asserting that a replication protocol
eventually creates the required number of replicas [8].
To summarize, a system developed using Coyote actors

typically implies three activities. First, the system itself must
be written using the Coyote actor concurrency model. The
Coyote runtime provides APIs to create machines and send
events. Second, external dependencies must be mocked
and all sources of non-determinism must be expressed via
RandomBoolean calls. Third, the user writes tests (exercising
the system under a workload) and specifications for asserting
correctness.

3 IMPLEMENTING THE POOLMANAGER

WITH COYOTE ACTORS

This section outlines the design of the ABS PoolManager
and how it is implemented using Coyote actors. The goal
is only to provide enough details to impress the complexity
of the service, justifying the need to use Coyote, and not
to give an exhaustive account of the system. We believe the

core reasons behind the complexity are common to many
cloud systems.
PoolManager exposes APIs for creating a pool, resizing

or deleting an existing pool, as well as canceling a previ-
ous resizing operation. We begin by explaining key external
services that PoolManager relies on for implementing its
functionality before getting into the PoolManager design.

3.1 External Services

Azure Storage. PoolManager operations are naturally
long-running because the creation or deletion of VMs takes
time (in the order of seconds to a few minutes). If PoolMan-
ager fails while creating, say, a pool of size 10 after it has
already allocated 3 VMs, then after restarting, it must re-
sume the pending operation and allocate only the remaining
7 VMs. It is important to not lose track of previously allo-
cated VMs (i.e., they must be part of some pool), else ABS
risks allocating resources that will never be subsequently
used.
Anticipating failures in the middle of an operation, the

PoolManager records its progress usingAzure Storage [27],
a highly available and reliable cloud-scale storage system.
Azure Storage offers a key-value storage interface. Pool-
Manager uses RESTAPIs to read andwrite information about
pools, VMs, jobs, tasks, quota management, etc., as entities
(rows) in storage. Azure Storage also provides opportunis-
tic concurrency control using entity tags or ETags. These are
metadata attached to each row (key-value pair). A client can
do a conditional write to a row: the row is updated only if the
user-provided ETag matches the current value in the row.

Azure Subscriptions. All Azure resources that a cus-
tomer allocates belong to a subscription, which is a billing
entity. Subscriptions, which are managed by the Azure Sub-
scriptions service, can contain accounts for services such
as Azure Batch and Azure Storage. Azure imposes limits
on how many operations a subscription can perform on re-
sources. Similarly, there are limits on the number of cores
one can allocate via VMs in a single subscription. The pro-
vided limits are too restricting for running ABS workloads.
As ABS is built on public Azure services and needs to allo-
cate resources, it has to own a set of subscriptions (with fairly
large limits) and use them to manage resources. By spread-
ing resources across many internal subscriptions, ABS scales
beyond what can be achieved with a single subscription.

VMSS. ABS uses VMSS [29] in order to allocate VMs for
creating a pool. VMSS offers a service for allocating a collec-
tion of VMs, which ABS further wraps into the concept of a
pool, for the following reasons:

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

(1) ABS ties scheduling with resource provisioning. If ABS
has a pending request to shrink a pool, and a VM fin-
ishes running a task, then ABS proceeds to collect and
free the VM. This tight coupling between scheduling
and resource provisioning is an important value propo-
sition of ABS.

(2) VMSS imposes VM creation limits per subscription.
ABS pools can be much larger than these limits. VMSS
also limits the number of operations per subscription.
ABS spreads out pool creations across many subscrip-
tions to speed up deployment.

(3) ABS supports pool operations such as stop-resize that
are not supported by VMSS. When a user issues a stop-
resize operation, ABS moves the corresponding VMSS
operations to the background (the customer is not
charged) and deletes the extra VMs allocated. The stop
operation allows ABS to respond to compute demand
more quickly.

The DeploymentManager (which is also written using
Coyote actors) is a microservice component of ABS that
interfaces with VMSS. PoolManager uses the Deployment-
Manager service to create, grow, shrink and delete individual
VMSS collections, also called deployments in the rest of the
paper.

3.2 PoolManager Design

Design requirements. Central to the PoolManager is the
need to manage quotas. Each user has a quota on the maxi-
mum number of VMs they can allocate for running their jobs.
Further, ABS internally manages multiple Azure subscrip-
tions, each one tied to one region, which limits the number of
VMs that can be allocated in that region. Thus, a VM can be
allocated for a user only when the user-quota has not been
exceeded, and there is some subscription (in some region)
whose quota has not been exceeded.

In addition to pool operations such as create and resize,
PoolManager can recover VMs that are determined to be un-
healthy. The unhealthy signal comes from the ABS scheduler
and the PoolManager, in response, deletes the unhealthy VM
(by signalling to VMSS) and allocates a new one.

Actors. The PoolManager implementation has over 30

types of Coyote machines, totalling over 60K lines of code.
Each machine is designed to manage the lifetime of a par-
ticular resource or to execute a workflow that implements a
sub-operation. For example, the Pool machinemanages a sin-
gle pool, the PoolServer machine manages a collection of
Pool machines, the PoolFlow machine allocates resources
for a pool, the Deployment machine manages a single de-
ployment, the Account machine manages a single account,
the QuotaManager machine manages quota requirements
and decides how to allocate across subscriptions.

3.3 PoolManager Operations

CreatePool. To create a pool, PoolManager goes through
the following steps: (1) persists the pool properties and puts
the pool in resizing state, (2) checks if enough quota is avail-
able and tentatively reserves it, (3) allocates resources and
creates VMs to match the required pool size, (4) persists
deployment and VM information, (5) informs the scheduler
about the created VMs so that it can start scheduling job
tasks on the VMs, (6) commits the revised leftover quota,
(7) updates the pool properties to the final count of resources
and puts the pool in steady state. An operation is deemed
completed once the pool reaches steady state.
Figure 3 shows the workflow that implements this op-

eration to highlight its complexity. Each vertical line corre-
sponds to a Coyote machine and arrows represent exchange
of events. The AzureStorage machine wraps calls to the
Azure Storage service. Arrows to AzureStorage repre-
sent a read or write of persistent data. DeploymentManager
wraps VMSS and arrows to this machine represent VMSS
operations.

In reality, the workflow executes concurrently, responses
can arrive in different orders, and timeouts can fire at any
time. Due to these reasons, the asynchronous programming
model of actors fits naturally with the PoolManager require-
ments: the machines send out requests and field responses
as they arrive asynchronously, instead of blocking each time
for a response.

ResizePool. A resize-pool operation is similar to creating
a pool, except that it may have to grow or shrink existing
deployments, in addition to creating new ones. The resize-
pool workflow goes through the following steps: (1) persists
the new target values and puts the pool in resizing state,
(2) checks quotas, if the resize involves growing the pool,
(3) for grow operations: allocates resources and creates or
grows deployments, then persists the updated information,
(4) for shrink operations: works with scheduler instances to
identify VMs that can be deleted, (5) commits the revised
quota, (6) updates pool properties to reflect final counts and
puts the pool in steady state.

CancelResize. The PoolManager allows only one resize or
delete operation per pool at a time. To stop this operation, the
user can issue a cancellation that goes through the following
steps: (1) stopping operations that were creating or resizing
deployments, (2) updating the pool size to the previous size
plus (minus) any deployments whose creation (deletion) has
already committed, and (3) putting the pool in steady state.
After a cancellation is carried out, there may be deploy-

ments with extra VMs that have not been freed. These are
termed rogue VMs. After the pool goes to steady state, a
stabilize deployment operation starts in the background that

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

Figure 3: The PoolManager workflow for creating a pool.

asynchronously removes any rogue VMs. This operation first
identifies such deployments and puts them in a stabilizing
state (subsequent resize operations skip deployments that
are in this state). It then waits for pending operations on the
deployment to complete before issuing fresh operations to
remove the rogue VMs. The stabilize-deployment operation
also needs to persist progress to storage in order to survive
restarts.
An additional requirement is to limit the total number

of rogue VMs across all deployments. The QuotaManager
machine aggregates the rogue-VM count across all deploy-
ments. If this number exceeds a threshold, the PoolManager
stops new cancellation requests until the rogue-VM count
comes down.

4 TESTING THE POOLMANAGERWITH

Coyote

As illustrated in §3, PoolManager involves multiple different
operations that can be running concurrently at any point in
time. Furthermore, PoolManager has to deal with failures
that can happen unexpectedly, and has to correctly resume all
pending operations after a failover. Testing such a complex
system is where using Coyote makes a difference.

4.1 PoolManager Specifications

The PoolManager specification is around 1, 700 LoC, writ-
ten as a Coyote monitor (§2.2) that checks the following
properties for each pool.
Liveness properties

(1) If the last client operation was a resize to size 𝑁 , then
the pool eventually reaches steady state with size 𝑁 .

(2) If the last client operation was a delete, then the pool
is eventually removed and all its allocated VMs are
returned back to VMSS.

(3) For a given pool, all pending stabilization, delete and
recovery operations must eventually complete.

Safety properties

(1) If a pool contains a VM 𝑣 , then VMSSmust have indeed
allocated 𝑣 to the PoolManager.

(2) For every successful create-pool request, a pool entry
is created in Azure Storage.

(3) For every successful resize-pool request, the pool tar-
get matches what is requested in the corresponding
Azure Storage entry.

(4) For every successful delete-pool request, the pool entry
is deleted from Azure Storage.

(5) Every deployment enumerated in the Azure Storage
pool entry is present in the Azure Storage deploy-
ment entry.

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

(6) Every deployment in the Azure Storage deployment
entry belongs to a pool.

(7) Every VM in the Azure Storage VM entry belongs
to a pool.

Importantly, the above properties must hold even after a
failover. Checking the PoolManager against this specifica-
tion, especially to get coverage of corner-case behaviors, is
a challenging task for several reasons. For instance:
(1) The PoolManager is a concurrent program; its various

operations may interleave in many different ways.
(2) The PoolManager interacts with multiple external ser-

vices and it must be able to handle any valid response
from those services. Responses that return error codes
(e.g., failure to write to storage) happen rarely, thus
are hard to cover during testing. Interactions with ex-
ternal services may time out. The dependence on time
further adds complexity.

(3) Failures are non-deterministic events that may happen
at any time. Failure-injection tools are often hard to
setup.

(4) The specification requires consistency between the
PoolManager in-memory state, state stored in Azure
Storage and VMSS. Writing such an assertion can be
very cumbersome with traditional means because it
spans multiple services.

(5) The specification is a liveness property that requires
the pool to eventually reach steady state. Executions
that get stuck in a loop without making progress are
violations of this property and hard to capture using
plain assertions.

The Coyote tester was used to continuously test these spec-
ifications against production code during its development.

4.2 Mocking External Dependencies

As mentioned in §2, writing Coyote tests requires mocks

of external dependencies. The ABS engineering team wrote
mocks for Azure Storage, VMSS, the ABS scheduler, and a
basic system timer (used for encoding timeouts).

Mock Azure Storage. Writing a mock forAzure Storage
was easy. It consists of roughly 800 lines of code. The mock
has no internal concurrency (i.e., it executes sequentially)
but makes non-deterministic choices to expose various error
modes. Figure 4 shows a simple illustration of the mock
with a Write operation. The entire store is modeled as an
in-memory dictionary (store). The Write operation can, for
instance, either succeed and write to storage, or it may return
one of several error codes. It can return an error code even
after writing to the store successfully: a possibility that can
indeed happen with the real Azure Storage service. The
mock also implements the ETag matching logic (§3.1).

class MockAzureStorage {
// Map: StoreName -> PartitionName -> RowKey -> Entity
Dictionary <string , Dictionary <string ,

Dictionary <string , Entity >>> Store;

Response Write(WriteContext context , Entity entity) {
// Does entity size exceed maximum allowed?
if (IsEntityTooLarge(entity , context.StoreName)) {

// Raise an error , PoolManager should never do this
CoyoteRuntime.Assert(false);

} else if (CoyoteRuntime.RandomBoolean ()) {
return ErrorCode.TIMEOUT;

} else if (CoyoteRuntime.RandomBoolean ()) {
return ErrorCode.STORAGE_ERROR;

} else if (! IsEtagMatched(context)) {
return ErrorCode.ETAG_CHECK_FAILED;

} else {
// Perform the write
Store[context.StoreName] [context.PartitionName]

[context.Key] = entity;
if (CoyoteRuntime.RandomBoolean ()) {

// Return failure even when the write is done
return ErrorCode.STORAGE_ERROR;

} else {
return StatusCode.OK;

} } } }

Figure 4: A code snippet of the Azure Storagemock.

Mock DeploymentManager. The mock for Deployment-
Manager, which wraps VMSS, is around 1, 200 LoC. This ser-
vice has to handle requests for creating, growing and deleting
deployments, as well as for deleting specific VMs. The mock
uses an in-memory dictionary to track the deployments and
the VM instance names. The mock non-deterministically re-
turns HTTP errors including timeouts. Like the real VMSS
service, the mock supports multiple levels of failure (e.g., at
the operation or HTTP level). One key requirement was to
ensure that the mock respects idempotency when the real
service guaranteed it. For example, once the mock returns
success for an operation, then it has to return success if the
same operation request is issued again.

Mock scheduler. The mock scheduler is roughly 600 LoC
and mimics the ABS scheduler. The job of the scheduler
is to schedule tasks onto VMs. From the perspective of the
PoolManager, the scheduler has to handle requests for adding
or removing VMs and getting VMs that need recovery. The
mock scheduler has internal data structures that track pools
and VMs (essentially, a struct with multiple fields). The
mock scheduler can non-deterministically return failures or
remove a subset of VMs for a remove-VM request. The mock
is required to update the corresponding Azure Storage
entries as it accepts or removes VMs. This helps expose
possible race conditions in the PoolManager, when a VM
that is picked for recovery is also removed during a shrink
operation in the PoolManager. (The ETag logic of Azure
Storage helps discover and guard against such races.)

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

Figure 5: An illustration of failover testing for the PoolManager.

Mock timers. All timers used in the PoolManager were
also mocked. ABS engineers wrote an abstract Timer class.
During testing, Timer is implemented using a Coyote non-
deterministic choice that can fire the timeout at any point.
This helps abstract away time, expressing the fact that cor-
rectness of the service does not rely on the particular time-
out values chosen. During production runs, an actual system
timer is used for implementing Timer. Therefore, timeout
values can be freely manipulated in the production service
in order to optimize performance.

As opposed to testing the PoolManager against production
services (e.g., Azure Storage and VMSS), creating mocks is
additional engineering cost for using Coyote testing. How-
ever, it also has several advantages. First, it clearly lays down
the assumptions that the PoolManager is making of these
external services. Any deviation from reality can be captured
and fixed in the mocks in order to avoid further regressions.
Second, all failure modes are made explicit in the mocks us-
ing non-deterministic choices. This provides Coyote tester
with the hooks necessary to explore rare or exceptional be-
haviors. Third, the state stored in the external services is
captured in the (in-memory) mocks. Thus, asserting for con-
sistency between multiple distributed services is much easier.
Furthermore, the use of mocks allows testing to be fast: there
is no need to wait on wall-clock time in order to fire timers;
no need to go over the network to talk to external services,
no need to write to disk to survive (hard) failures, etc.

ABS has various Coyote tests that each exercise different
APIs of the PoolManager. All these tests work against the
same monitor that captures the specification of the system
(§4.1). It is then up to the Coyote tester to find a violation of
the safety and liveness properties specified by the monitor.

4.3 Failover Testing Technique

The PoolManager failover logic is checked programmatically
by mocking failures themselves. The Coyote tests and spec-
ifications do not change. The ABS team modeled failures
by creating an event called Terminate (from the perspec-
tive of Coyote, this is just a user-defined event with no
special meaning). Figure 5 provides an illustration of the
PoolManager execution when a Terminate event is injected
by the test harness during a CreatePool operation. When
each machine in PoolManager receives a Terminate event
(at an arbitrary point), it forwards the event to its children
machines (forwarding of Terminate is not shown in the fig-
ure for simplicity), waits for them to send a response and once
all responses are received, it halts itself. This way, sending
a Terminate event to the top-level machine (PoolServer)
ends up terminating the entire PoolManager. The Terminate
event is only forwarded to the PoolManager machines (in
red), not the external services (because the test is for the
PoolManager failover logic). The failure injection, i.e., the
action of sending a Terminate event, is non-deterministic,
thus the Coyote tester will provide coverage by exploring
many different possibilities.
After all of the PoolManager machines halt, the test har-

ness restarts the service by re-creating the PoolServer
machine. When the PoolServer starts, it will read its state
from storage, where it will find the state from before the fail-
ure (because the mock Azure Storage machine survived
the “failure”). Thus, the failover logic—the same logic writ-

ten to handle real failures in production—kicks in and the
PoolManager resumes the CreatePool operation.
For most part, the relationship of a machine to its chil-

dren machines is obvious and follows the creation hierar-
chy: if machine 𝐴 created machine 𝐵 then 𝐵 is 𝐴’s child. In
some cases, this is more involved, especially when machines
(legally) halt. In this case, if a machine, say 𝐴, wishes to halt,
then it must first delegate the responsibility of terminating

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

its children machines to some other machine. This was done
using custom logic that the ABS team designed for the Pool-
Manager. The same termination code is also used for legal
teardown of a PoolManager instance, so the team did not see
this effort as a test-only overhead.
A key advantage of this technique is that failovers are

simply tested at the level of program semantics. It does not
require an actual setup with hard failure injection that must
crash and re-start the process. The complete engineering of
the tests simply becomes a programming activity. It is then
much easier for a developer to control and observe failover
coverage. For instance, a few lines of code are enough to limit
failover testing to one particular region of code. There is no
need of resorting to fuzzing or failure-injections tools or a
stress-test environment. Debugging is much easier as well
because the programmer is given a fully-replayable trace
by the Coyote tester, consisting of the actions taken by the
system both before and after the failure injection.

5 IMPROVEMENTS IN USING COYOTE

Supporting the development of production services required
several engineering enhancements to improve the program-
ming, testing and debugging experience of using Coyote.

Programming improvements. The C# language includes
async and await keywords that make it easy to write asyn-
chronous code [21]. Awaiting on an async call packages
the current task as a continuation and releases it from the
executing thread, so that other tasks can be scheduled. We
enhanced Coyote to allow actor event handlers to be async:
this, in turn, allows handlers to call asyncAPIs and await on
their result without blocking the underlying thread, enabling
other actors to be scheduled.
The actor programming model discourages sharing of

objects between actors. Message transfers are the only way
for actors to synchronize, which can be cumbersome for some
tasks, compared to other forms of concurrency. For example,
consider the PoolManager task of maintaining the total rogue
VM count (§3.3). To maintain this count, the QuotaManager
machine must communicate with all Deployment machines
in the system and aggregate their individual counts. Getting
a count from each machine requires sending an event to
it, waiting for a response, and defining a handler for the
response. This not only increases the programming burden
but is not efficient for a simple task such as aggregating
counts.

To remedy this situation, we developed a library [36] that
allows a Coyote actor to create a shared object and freely
pass its reference to other actors. These shared objects ex-
pose a linearizable [16] interface so that multiple actors can
issue operations on the (same) shared object without concur-
rency issues. In production, shared objects are implemented

using an efficient lock-free data structure. When running
under the Coyote tester, they automatically resort to using
actors with message transfers so that the tester does not
have to understand any additional form of synchronization.
We implemented shared objects for common types such as
counters and dictionaries. The design of shared objects show-
cases the power of mocking: the Coyote actor programming
model is not in conflict with low-level or efficient concur-
rent programming, it simply requires that any concurrency
outside of Coyote actors be mocked for testing.

Testing improvements. Even the smallest of concurrent pro-
grams can have an astronomically large state space. There
are several search strategies developed in the research com-
munity that target finding common bug patterns fast. Many
of these strategies have complementary strengths [10, 39].
The Coyote tester includes multiple search strategies and
makes it easy to include new ones. We enhanced the tester
to run a portfolio of search strategies in parallel so that en-
gineers, who are likely unaware of these search algorithms,
do not have to worry about making the choice.

It is interesting to note that one particular strategy, called
PCT [5], worked best for testing the PoolManager. We found
that among the various strategies, PCT was able to get the
best coverage for failure injection points, which is the place
where the Terminate (§4.3) event is generated. There are
recent additions to search strategies in Coyote that hold
further promise in offering even better coverage than PCT
[32]. It is an important advantage of Coyote that all users
get such advancements for free.

We further enhanced the Coyote tester to parallelize it on
the cloud. We used ABS itself: one can create a pool of VMs
and run the Coyote tester in parallel on each VM. Coyote
testing parallelizes easily: each instance of the tester simply
runs a different search strategy (with different parameters
and seeds). The typical requirement for many teams was to
run the tester for 10, 000 iterations, which could be easily
achieved on a developer laptop in a manner of minutes. How-
ever, occasionally teams chose to run millions of iterations
for which cloud-scale testing was important.

Debugging improvements. When the Coyote tester finds
a bug, it generates a trace file consisting of all scheduling
decisions as well as non-deterministic choices that it made.
This trace can be fed back to the tester, in which case, it
reproduces the same sequence of choices. To improve the
debugging experience, we enhanced the Coyote tester by
allowing it to attach a debugger when replaying a trace.
Deterministically reproducing reported bugs in a concur-
rent and non-deterministic system while being able to set
breakpoints and step-into the code, was a key value addition
that has been appreciated by all developers who have used
Coyote so far.

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

6 EXPERIENCEWITH USING Coyote

ACTORS IN PRODUCTION

The positive experience of the ABS team using Coyote in-
vited attention from other teams in Azure. In the two years
after the ABS team shared its PoolManager experience with
other teams, eight other services built with Coyote actors
have gone into production, and several more are in the plan-
ning stage. Many of these services share common character-
istics with PoolManager: asynchronously arriving requests
that must be processed concurrently in a non-blocking fash-
ion, multiple distributed data sources that must be kept con-
sistent with each other, and interaction with several other
services.
Each team echoed two key advantages of using Coyote

actors: (1) the programming model allowed them to imple-
ment a service at a higher-level of abstraction, resulting in
a cleaner design and code that is easier to maintain, extend
and explain to new team members; and (2) the high-coverage
testing allowed them to exercise many corner cases and find
several high-severity bugs before deployment. The rest of
this section summarizes the experience of all these teams
from using Coyote actors to design, implement and test
their cloud services.

Benefits in design and implementation. Several teams re-
ported that using the Coyote actor programming model
helped them implement services that closely match their
initial high-level (whiteboard) design. A senior Azure en-
gineer said: “the design maps very closely to the actual code,

usually I see a much bigger delta between design and finished

product”. Closing the gap between design and implemen-
tation, allowed teams to easily create diagrams such as in
Figure 3 that provide not only a detailed understanding of
the workflow implementing each operation, but also the
expected communication between Coyote actors. These di-
agrams were useful in explaining the design to other team
members. Other benefits of using the actor-based approach
of Coyote include:

• The events sent between actors have to be clearly
defined in the implementation. Further, no data can be
shared between machines unless explicitly sent via an
event. Both of these helped improve code abstraction
and readability.

• Coyote actor code is naturally non-blocking (asyn-
chronous), so there is no need for explicitly locking
resources or managing a thread pool. These benefits
together were a welcomed relief over typical multi-
threaded code with threads and locks.

• Actors are lightweight and event-based, which can
lead to significant performance gains. One of the teams
reported that their previous design relied on polling,

which consumed too many CPU cycles. With actors,
they were able to write fully reactive code that allowed
them to scale to much larger workloads. For instance,
they were able to hold up to 200, 000 Coyote actors
before seeing the CPU reach 80% utilization.

It is worth noting that Coyote actors was not perceived to
be an “arcane” technology only used and understood by the
most senior engineers. A junior engineer reported: “being a
new developer to the team, one of the first few things I worked

on was Coyote actors, it was really quick to onboard and

writing actual code is simple and straightforward”.

The importance of mocking. Cloud services typically oper-
ate by communicating with their environment, which can
consist of other services, as well as resources such as network
and storage. To simplify the development process, teams
would initially create interfaces for all external dependencies
of their service, and then provide simple mock implementa-
tions of these interfaces (e.g., the ABS team created a mock
forAzure Storage as seen in Figure 4). Importantly,Coyote
mocks allow developers to express nondeterministic behav-
ior that can be controlled during testing. A large part of the
development of each service was done against these mocks
in a test environment.

The efficacy ofCoyote testing relies on how closelymocks
model the real behavior. Any deviation can lead to missed
bugs (when mocks do not exercise some possible behavior)
or even false alarms (when mocks exhibit some behavior that
is not possible in reality). Interestingly, each time there was
an issue in production that was not found by the Coyote
tester, it turned out to be either due to a missing test (some
workload was not exercised by the Coyote tests) or an in-
complete mock. It was never the case that the Coyote tester
could have found the bug, but missed it because of lack of
coverage. In these cases, developers would add more tests
or patch the mocks. The teams knew about these tradeoffs
before deciding to use Coyote. Maintaining the mocks was
an iterative process and deviations were fixed over time as
they got noticed. The initial mocks simply followed the avail-
able online documentation and gradually got more detailed
over time, and thus more effective. This pay-as-you-gomodel
of writing mocks was important to avoid front-loading the
implementation with mocking effort.
Some of the services that were mocked included: Azure

ServiceBus [26], Azure Cosmos DB [24], Azure Stor-
age [27], various networking services [30] and resource
providers [25]. There was sharing of mocks between teams,
but each team ended up owning its own mocks so they could
customize them in ways most relevant for their service.
To illustrate one example, the Azure blockchain team

built a service using Coyote actors that is designed to hide
the complexity of blockchains from users [23]. It deals with

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

issues of submitting transactions exactly once, hiding forks
and rollbacks from users, etc. In order to test this service,
the blockchain team wrote a mock of a blockchain network
itself that nondeterministically created forks and rollbacks.
The ability of authoring Coyote tests for exercising such
scenarios was very valuable.

The value of systematic testing. Teams typically focused on
writing end-to-end Coyote tests for their services instead of
writing standalone tests for individual Coyote actors. This
was enabled by the fact that systematic testing can deal with
concurrency and all declared sources of non-determinism,
after which the Coyote tester was responsible for getting
coverage. This freed the developer from breaking down an
end-to-end scenario into smaller units and assertions for
testing individual actors.

Furthermore, it was easier to write a specification for end-
to-end scenarios. A common specification among many ser-
vices was to validate liveness properties: that it would even-

tually complete the client request, even in the presence of
failures. Coyote enabled writing such end-to-end specifica-
tions just once, and reuse them for all relevant tests. The tests
themselves only vary in the client workload they execute.
Further, Coyote tests would typically run much faster than
stress testing or complex simulations. For example, exercis-
ing failover in PoolManager (§4.3) takes approximately two
minutes for 10, 000 iterations in an Intel Core i7 laptop with
4 cores and 16GB RAM.

Developers frequently executed Coyote tests to validate
safety and liveness specifications as they made code changes,
ensuring that the implementation never regressed. Some
teams reported that the Coyote tester helped them find sev-
eral high-severity bugs before deployment that would have
been hard to find using conventional means, and would have
resulted in loss of business if they occurred in production. In
the words of a service architect, using Coyote they “found

several issues early in the dev process, this sort of issues that

would usually bleed through into production and become very

expensive to fix later”.
Once the service code was reasonably functional in a test

environment, a team would re-implemented the mocked
interfaces (as discussed above) to communicate with the
actual external components. Then the code—the same code

that was systematically tested—was deployed by using this
implementation of the interfaces. Most teams reported that
once a feature was tested with Coyote, it would just work

when put into production.

Scope for further improvements. We contributed several
improvements to Coyote to help adoption (§5), but other
challenges remain that were brought out by engineering
teams. We list some of them here. One challenge was that
the cost of writing mocks can be unknown upfront. While

mocking is a standard practice in software engineering, writ-
ing functional mocks of complex services can be difficult.
For instance, one team owned a service that relied heavily
on transactional aspects of a backend database. Mocking
this interface, while preserving the transactional guarantees,
was too difficult. The team eventually used an out-of-process
simulation of the database in order to do (standard) testing.
While it is possible to integrate this simulator with Coyote
tests, the result would be cumbersome and it would consid-
erably slow down systematic testing.

Another challenge is that testing is limited by the quality
of the mocks. A constant worry by teams was that if their
mocks were incorrect (or incomplete), then Coyote tests
would not exercise behaviors that could happen in practice.
In this case, traditional integration testing would still be
required, adding to the number of tests that the team has to
maintain. A usual compromise was to do as much testing
with Coyote as possible, but still maintain some integration
tests.
One source of frustration using the Coyote tester was

when it did not cover a path that the developer expected.
The tester does not provide any evidence why some behavior
did not happen and the developer would have to manually
debug and find out if the mistake was in their understanding,
or in lack of coverage by the tester.

Finally, using the Coyote tester requires supplying a limit
on the number of test iterations. Knowing what number is a
good bound can be difficult. The ABS team would occasion-
ally run a very large number of iterations, but they found that
the tester almost never reported a bug after 10, 000 iterations.
So they finally settled on this bound for their inner-loop
testing.

7 RELATEDWORK

Systematic testing tools. The research community has been
long interested in finding bugs in distributed systems. Previ-
ous work showcased how systematic testing (ST) tools and
search techniques can successfully find deep concurrency
bugs [20, 33, 34, 42, 44]. Many of these search techniques
have been adapted almost directly by Coyote [8]. However,
it is critical to consider the nature in which these techniques
are exposed to a user.
In order to reduce user effort, ST tools have mostly tar-

geted existing systems without modification. This approach
requires ST tools to take over all sources of non-determinism
in these systems. Obtaining such level of control is difficult
because the API surface of such systems can be very broad.
For example, Chess [33] targeted the testing of concurrent
multi-threaded programs on Windows. To control thread in-
terleaving,Chess had to interpose at theWin32 API level (via

Reliable Cloud Services With Coyote SoCC ’21, November 1–5, 2021, Seattle, WA, USA

stubs) and reliably identifying all sources of thread synchro-
nization. It was necessary to get these stubs right, without
which the tool would be flaky or even deadlock, leading
to user frustration. The effort required to maintain these
stubs was too large, and Chess went out of support without
seeing user adoption, even though it found numerous bugs.
Instead of targeting unmodified systems, Coyote spells out
how a new system must be built from the outset. Coyote
actor concurrency is simple to control: its only about actor
creation and message passing. Any use of external nondeter-
minism must be mocked: an exercise that is much easier for
a programmer who controls the design of their code.
Systems-level imposition can also be slow. For example,

SAMC [20] takes roughly 6 hours for doing 1, 000 test itera-
tions of Cassandra [13] because it must bring up the actual
database in each iteration and inject failures via actual system
crashes. The use of mocks to model real-world interactions
and failures offers speed: roughly two minutes for 10, 000
iterations of PoolManager with Coyote tester (§6).

Modeling languages. Researchers have argued for princi-
pled design of distributed systems through the use of model-
ing languages such as TLA+ [19] or Promela/SPIN [18]. TLA+
has been extensively used to model and specify distributed
protocols and algorithms [35]. One can apply inductive rea-
soning to these model (which is harder) or use push-button
model checkers (which is easy). Modeling languages are use-
ful for validating the high-level design of a system. However,
they do not help with the actual implementation. As new
features are added, the implementation often diverges from
the initial design that was modeled. Coyote bridges the gap
between design and implementation: what you test is what
you execute.

Formally verified systems. Recent research efforts have
focused on developing formally-verified systems [14, 43].
Building such systems involves using a high-level language
that can generate executable code, as well as contain log-
ical assertions that mark inductive system invariants. The
inductiveness checks, as well as the check that the invariants
imply the system specification, are all discharged by a theo-
rem prover to establish the proof of correctness. Examples of
such systems include: crash-tolerant file systems [6], simple
operating systems [15], distributed key-value stores [14] and
protocols [4, 43]. Although this line of research is exciting, all
of these systems have been developed in academic settings.
Inductive reasoning requires deep understanding of formal
logic and that is outside the scope of education that most
software developers receive. This constitutes the biggest
bottleneck for adoption of these practices in the industry.

Coyote removes the need for theorem proving. Develop-
ers must write specifications of their program to find bugs,
but there is no need for inductive reasoning. At the most, one

must learn the concept of liveness properties. The emphasis
of Coyote in programmability allows engineering teams to
use Coyote effectively without having a researcher in the
loop.Coyote guarantees are not as strong as full verification:
Coyote testing is still an argument of coverage. However,
as this paper shows, Coyote testing has (so far) not missed
a bug due to lack of coverage.

Previous work on P, P#, and Coyote. Coyote is an evolu-
tion of the P# project. P# was designed specifically for the
communicating state-machine programming model, which
was itself inspired from the P language. Coyote now sup-
ports multiple programming models.
Previous work on P# focused on defining the frame-

work [7] and showcasing its bug-finding abilities [8, 31],
but only targeted existing systems. In our experience, con-
vincing teams with just bug-finding capabilities alone was
not enough. It was much easier to convince them once we
had a success story (with Azure Batch) that demonstrated
overall faster development time, along with increased service
quality.

The P language [9] consists of its own language definition
and compiler, and it is a different design point compared
to P# or Coyote, each of which are C#-specific solutions.
P has been used in the past for Windows Device Driver
development [9] and is currently being used in Amazon for
creating formal models of distributed protocols involved in
AWS’s S3 system [3].

REFERENCES

[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, Cambridge, MA, USA.
[2] Amazon. 2012. Summary of the AWS service event in the US East

Region. http://aws.amazon.com/message/67457/.
[3] Amazon. 2021. Use of Automated Reasoning for S3 Strong Consistency.

https://www.twitch.tv/videos/962963706?t=0h26m57s. [Online; ac-
cessed 14-September-2021].

[4] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, Rustan Leino, Jay R. Lorch, Kenji Maillard, Jianyang Pan,
Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay Rane,
Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santi-
ago Zanella Béguelin, and Jean Karim Zinzindohoue. 2017. Everest:
Towards a Verified, Drop-in Replacement of HTTPS. In SNAPL. 1:1–
1:12.

[5] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. 2010. A randomized scheduler with probabilistic
guarantees of finding bugs. In ASPLOS. 167–178.

[6] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay
İleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. 2017.
Verifying a High-performance Crash-safe File System Using a Tree
Specification. In SOSP. 270–286.

[7] Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal,
and Paul Thomson. 2015. Asynchronous programming, analysis and
testing with state machines. In PLDI. 154–164.

http://aws.Alpha XR/message/67457/
https://www.twitch.tv/videos/962963706?t=0h26m57s

SoCC ’21, November 1–5, 2021, Seattle, WA, USA Pantazis Deligiannis, Narayanan Ganapathy, Akash Lal, and Shaz Qadeer

[8] Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen,
Alastair F. Donaldson, John Erickson, ChengHuang, Akash Lal, Rashmi
Mudduluru, Shaz Qadeer, andWolfram Schulte. 2016. Uncovering Bugs
in Distributed Storage Systems during Testing (Not in Production!). In
FAST. 249–262.

[9] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K.
Rajamani, and Damien Zufferey. 2013. P: safe asynchronous event-
driven programming. In PLDI. 321–332.

[10] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. 2015. Systematic
testing of asynchronous reactive systems. In FSE. 73–83.

[11] Forbes. 2018. 83% of enterprise workloads will be in the Cloud
by 2020. https://www.forbes.com/sites/louiscolumbus/2018/01/07/
83-of-enterprise-workloads-will-be-in-the-cloud-by-2020.

[12] Forbes. 2019. Public Cloud soaring to $331B by 2022 according to
Gartner. https://www.forbes.com/sites/louiscolumbus/2019/04/07/
public-cloud-soaring-to-331b-by-2022-according-to-gartner.

[13] Apache Foundation. 2019. Cassandra. http://cassandra.apache.org/.
[14] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan

Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
Proving practical distributed systems correct. In SOSP. ACM.

[15] Chris Hawblitzel, Jon Howell, Jay Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End
Security via Automated Full-System Verification. In OSDI.

[16] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463–492.
[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-grained Resource Sharing in the Data
Center. In NSDI (Boston, MA). 295–308.

[18] Gerard Holzmann. 2011. The SPIN Model Checker: Primer and Reference

Manual (1st ed.). Addison-Wesley Professional.
[19] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions

on Programming Languages and Systems 16, 3 (1994), 872–923.
[20] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.

Lukman, and Haryadi S. Gunawi. 2014. SAMC: Semantic-aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems. In OSDI.
399–414.

[21] Microsoft. 2019. Asynchronous programming in C#. https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/async/.

[22] Microsoft. 2019. Azure Batch: Cloud-scale job scheduling and compute
management. https://azure.microsoft.com/en-in/services/batch/.

[23] Microsoft. 2019. Azure Blockchain Service. https://docs.microsoft.
com/en-us/azure/blockchain/service/overview.

[24] Microsoft. 2019. Azure Cosmos DB. https://azure.microsoft.com/en-in/
services/cosmos-db/.

[25] Microsoft. 2019. Azure Resource Manager. https://docs.microsoft.com/
en-us/azure/azure-resource-manager/.

[26] Microsoft. 2019. Azure Service Bus. https://docs.microsoft.com/en-us/
azure/service-bus-messaging/.

[27] Microsoft. 2019. Azure Storage. https://azure.microsoft.com/en-us/
services/storage/.

[28] Microsoft. 2019. Azure Subscriptions. https://docs.microsoft.com/
en-us/azure/azure-subscription-service-limits.

[29] Microsoft. 2019. Azure Virtual Machine Scale Sets. https://azure.
microsoft.com/en-in/services/virtual-machine-scale-sets/.

[30] Microsoft. 2019. Azure Virtual Network. https://docs.microsoft.com/
en-us/azure/virtual-network/.

[31] Rashmi Mudduluru, Pantazis Deligiannis, Ankush Desai, Akash Lal,
and Shaz Qadeer. 2017. Lasso detection using partial-state caching. In
FMCAD. 84–91.

[32] Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash
Lal. 2020. Learning-based controlled concurrency testing. Proc. ACM
Programming Languages 4, OOPSLA (2020), 230:1–230:31.

[33] Madanlal Musuvathi and Shaz Qadeer. 2008. Fair Stateless Model
Checking. In PLDI. ACM, 362–371.

[34] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and
Reproducing Heisenbugs in Concurrent Programs. In OSDI. USENIX,
267–280.

[35] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. 2015. How Amazon Web Services
Uses Formal Methods. Commun. ACM 58, 4 (March 2015), 66–73.

[36] Microsoft Research. [n.d.]. Coyote Actor SharedObjects Doc-
umentation. https://microsoft.github.io/coyote/#concepts/actors/
sharing-objects/. [Online; accessed 12-September-2021].

[37] Microsoft Research. 2020. Coyote: Fearless coding for reliable asyn-
chronous software. https://github.com/microsoft/coyote.

[38] Gregory Tassey. 2002. The economic impacts of inadequate infrastruc-
ture for software testing. National Institute of Standards and Technology,
Planning Report 02-3 (2002).

[39] Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2016. Concur-
rency Testing Using Controlled Schedulers: An Empirical Study. TOPC
2, 4 (2016), 23:1–23:37.

[40] Ben Treynor. 2014. GoogleBlog – Today’s outage for sev-
eral Google services. http://googleblog.blogspot.com/2014/01/
todays-outage-for-several-google.html.

[41] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: yet another resource negotiator. In SOCC. 5:1–5:16.

[42] Jiří Šimša, Randy Bryant, and Garth Gibson. 2011. dBug: Systematic
Testing of Unmodified Distributed and Multi-threaded Systems. In
SPIN. Springer-Verlag, 188–193.

[43] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems.
In PLDI. ACM, 357–368.

[44] Junfeng Yang, Tisheng Chen, MingWu, Zhilei Xu, Xuezheng Liu, Haox-
iang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009.
MODIST: Transparent Model Checking of Unmodified Distributed
Systems. In NSDI. 213–228.

https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020
https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-gartner
https://www.forbes.com/sites/louiscolumbus/2019/04/07/public-cloud-soaring-to-331b-by-2022-according-to-gartner
http://cassandra.apache.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://azure.microsoft.com/en-in/services/batch/
https://docs.microsoft.com/en-us/azure/blockchain/service/overview
https://docs.microsoft.com/en-us/azure/blockchain/service/overview
https://azure.microsoft.com/en-in/services/cosmos-db/
https://azure.microsoft.com/en-in/services/cosmos-db/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://azure.microsoft.com/en-in/services/virtual-machine-scale-sets/
https://azure.microsoft.com/en-in/services/virtual-machine-scale-sets/
https://docs.microsoft.com/en-us/azure/virtual-network/
https://docs.microsoft.com/en-us/azure/virtual-network/
https://microsoft.github.io/coyote/#concepts/actors/sharing-objects/
https://microsoft.github.io/coyote/#concepts/actors/sharing-objects/
https://github.com/microsoft/coyote
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html
http://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html

	Abstract
	1 Introduction
	2 Overview
	2.1 The Azure Batch Service (ABS)
	2.2 An Introduction to the Coyote Actor Framework

	3 Implementing the PoolManager with Coyote Actors
	3.1 External Services
	3.2 PoolManager Design
	3.3 PoolManager Operations

	4 Testing the PoolManager with Coyote
	4.1 PoolManager Specifications
	4.2 Mocking External Dependencies
	4.3 Failover Testing Technique

	5 Improvements in using Coyote
	6 Experience with using Coyote actors in production
	7 Related Work
	References

