
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

reCode: A Lightweight Find-and-Replace Interaction in the IDE for
Transforming Code by Example

WODE NI, Carnegie Mellon University, USA

JOSHUA SUNSHINE, Carnegie Mellon University, USA

VU LE,Microsoft, USA

SUMIT GULWANI,Microsoft, USA

TITUS BARIK,Microsoft, USA

Fig. 1. reCode is a mixed-initiative tool that automates code transformations via an example-driven interaction. The
developer finds relevant locations in their codebase and directly perform changes inline. Based on the search results and user edits,

reCode automatically generalizes edits to other applicable locations as the developer iteratively refines code changes.

Software developers frequently confront a recurring challenge of making code transformations—similar but not entirely identical
code changes in many places—in their integrated development environments. Through formative interviews (𝑛 = 7), we found that
developers were aware of many tools intended to help with code transformations, but often made their changes manually because these
tools required too much expertise or effort to be able to use effectively. To address these needs, we built an extension for Visual Studio
Code, called reCode. reCode improves the familiar find-and-replace experience by allowing the developer to specify a straightforward
search term to identify relevant locations, and then demonstrate their intended changes by simply typing a change directly in the editor.
Using programming by example, reCode automatically learns a more general code transformation and displays these transformations
as before-and-after differences inline, with clickable actions to interactively accept, reject, or refine the proposed changes. In our
usability evaluation (𝑛 = 12), developers reported that this mixed-initiative, example-driven experience is intuitive, complements
their existing workflow, and offers a unified approach to conveniently tackle a variety of common yet frustrating scenarios for code
transformations.

Additional Key Words and Phrases: code transformation, program synthesis, find-and-replace

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
Manuscript submitted to ACM

1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

ACM Reference Format:
Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik. 2021. reCode: A Lightweight Find-and-Replace Interaction in the
IDE for Transforming Code by Example. In The 34th Annual ACM Symposium on User Interface Software and Technology (UIST ’21),

October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/3472749.3474748

1 INTRODUCTION

Maria, a front-end developer, wants to rewrite the visual styles in her project to use vanilla CSS instead of the current
styled-components library. In other words, she wants to find lines of code in her project that look like this:

border: 1px solid ${props => props.theme.black};

and replace them to look like this:

border: 1px solid var(--black);

To estimate the scope of this task, Maria invokes the find interface in her IDE and searches for props.theme. The
interface returns around 30 results, scattered across multiple files. How should Maria complete the task?

Developers like Maria frequently run into these kinds of systematic, repetitive code transformations—similar but
not entirely identical code changes in many places [23, 41, 42]. If it turns out there are only a few lines of code to
edit, Maria could simply make the replacements manually in her IDE. If there are thousands of lines to edit, however,
manual approaches become intractable. Then, there are a bewildering array of tools for developers to turn to for
automation. A common option is to write regular expressions, which are essentially sequences of characters that specify
search patterns. More elaborate approaches include text-based find-and-replace tools like sed [28] or ripgrep [6], or
language-aware tools like structural find-and-replace [36] and jscodeshift [3].

More often than not, developers end up in an unpleasant “murky middle” that is somewhere between these two
extremes. In this murky middle, manually making the changes is both time consuming and error prone, yet the
investment required to automate with a regular expression or script is also unappealing and difficult even for seasoned
developers [32]—it is possible that automating would take longer than doing the task manually. Neither strategy feels
“just right.”

Through formative interviews with developers, we identified limitations in current code transformation tools that
were barriers to developers. First, developers struggled to decide between transforming code manually versus investing
in using a tool to automate the task, particularly when there are a murky middle number of edits to make. Second,
developers reported that writing code transformation scripts was complicated because of the many edge cases that
arise. Third, scripting approaches were often too monolithic, requiring developers to make code transformations in bulk
across their entire project. This made it difficult for developers to reason about how the code transformation impacts
their code. In short, developers desired a more incremental and interactive approach that allowed for automation while
still allowing for oversight and occasional intervention.

To address these needs, we propose a mixed-initiative [19] tool, called reCode, that offers developers a lightweight
interaction for transforming code while balancing automation and inspection. reCode is implemented as a Visual Studio
Code extension, and enhances the familiar find-and-replace experience. reCode users first specify a straightforward
search term to identify relevant locations of interest for the code transformation. To remove the burden of having to
write a complicated regular expressions or script, developers demonstrate their intended code transformation to reCode
by simply typing the code change directly in their editor. reCode leverages programming-by-example to automatically
learn a more general code transformation, across a variety of transformation scenarios. reCode displays these additional

2

https://doi.org/10.1145/3472749.3474748

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 5 4 6

isSettingsSaved = this.isSettingsSa…

saveAsDefault = this.saveAsDefault…

sortCurrencies = this.sortCurrencie…

= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-r

toggleDatePicker = this.toggleDate…
&!DueDate.jsx … 4~/code/official-r

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(thi…

&!Discount.jsx … 2~/code/official-r

deleteContact = this.deleteContact.…

newInvoice = this.newInvoice.bind(t…

&!Contact.jsx … 2~/code/official-re

changeTab = this.changeTab.… '

removeNoti = this.removeNoti.bind(…

&! App.jsx … 2~/code/official-react-

! App.jsx ' (…

official-react-site)app)! App.jsx

30
31
32
33

34
35
36
37
38
39

27
28
29

26

24
25

23
22

20
21

40

 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {

 }

 changeTab = (tabName) => {

 this.removeNoti = this.removeNoti.bind(this);

 super(props);

 constructor(props) {
class App extends PureComponent {

// Components

 const { dispatch } = this.props;

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

A
B

C

D

E

F

Fig. 2. The user interface of reCode. In the Summary View (A), the developer enters a simple query in the Search Box (B) and

previews changes to match results. The developer’s edits are highlighted in green and changes generalized from those edits are

highlighted in yellow (C). The developer directly edits the source code in the main editor (D) and reCode synthesizes a generalized

transformation. In the Inline Diff, suggested deletions are highlighted in pink and suggested replacements are highlighted in green.

(E). The developer can accept or reject the suggestions via Inline Actions (F).

transformations as before-and-after differences inline, and offers the developer clickable actions through which they
can interactively accept, reject, or refine the proposed transformations.

The contributions of this paper are as follows:

• We propose a mixed-initiative interaction for the IDE that improves the familiar find-and-replace experience
through programming-by-example. This interaction removes the need to need write regular expressions or other
complicated scripts for a variety of code transformations. We implement this interaction as an extension, called
reCode, for Visual Studio Code.

• reCode implements a feedback-driven, semi-supervised program synthesis technique, called ReFazer* [16].
ReFazer* accepts tree-based input and output examples to learn program transformations. reCode surfaces this
technique as a usable system.

• Through a usability evaluation with 12 developers, we demonstrate that the reCode example-driven experience
is intuitive, complements their existing workflow, and offers a unified approach to conveniently tackle a variety
of common yet frustrating scenarios for code transformations.

2 A DEMO OF RECODE

Maria used reCode to rewrite her visual styles based on a colleague’s recommendation: “it’s like find and replace. Just

start editing after you find things and it’ll do the rest.” The next day, she decides to tackle a more complex clean-up
task. Her application uses React and was originally written in JavaScript ES5. The application had many bind calls
in class constructors. These bind calls were needed in ES5 to allow methods to work as they do in other languages.

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

With the new version of JavaScript, these calls are no longer required1. Maria simplifies her code by: (1) deleting all
lines that look like this.func = this.func.bind(this) and (2) rewriting the corresponding method declarations as “arrow
functions”.

To see how many of these functions there are, Maria types bind in the Search Box (Figure 2 B) to search in the
repository. Maria thinks, “it’s 4 PM now and I want to get this done soon. If there are only three of these functions, I’ll
just do them manually.” Unfortunately, the Summary View (Figure 2 A) shows 80 matches spread across 32 files!

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 1 2 3

&! App.jsx 2~/code/official-react-site/app

changeTab = this.changeTab.bind(this);
removeNoti = this.removeNoti.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDateTerms.jsx … 1~/code/official-reac

Show All Commands ⇧ ⌘ P

Go to File ⌘ P

Find in Files ⇧ ⌘ F

Start Debugging F5

Toggle Terminal ⌃ `

' 1 (1)Layout: U.S.

*

+

,

-

.

/

0

…

Behind the scenes, Maria’s initial bind search with find-and-replace has already activated the reCode tool. She
clicks on the first result in App.jsx and starts to edit the relevant lines for the changeTab function. She removed the
this.changeTab.bind(this) call from line 25 and added = before (tabName) and => after on line 29:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

changeTab = this.changeTab.bind(this); &
removeNoti = this.removeNoti.bind(this);

'!Contact.jsx … 2~/code/official-react-site/a

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

'!Currency.jsx … 4~/code/official-react-site/

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

'!Discount.jsx … 2~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

'!DueDate.jsx … 4~/code/official-react-site/

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

'!DueDatePicker.jsx … 3~/code/official-rea

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

'!DueDateTerms.jsx … 1~/code/official-reac

'! App.jsx 2~/code/official-react-site/app

! App.jsx & (…

official-react-site)app)! App.jsx

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

28
29
30

23
24
25
26
27

22

20
21

13
14
15
16
17
18
19

 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;
 // Get All Data
 dispatch(ContactsActions.getAllContacts());
 dispatch(InvoicesActions.getInvoices());
 dispatch(SettingsActions.getInitalSettings());
 // Add Event Listener

 changeTab = (tabName) => {
 const { dispatch } = this.props;

 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

class App extends PureComponent {

// Components

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';
import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Maria notices in the search result for changeTab is now highlighted in green and she understands that reCode is
generalizing her edits. Immediately after, other results light up in yellow, indicating suggestions made by reCode:

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Within the main editor pane (Figure 2 E), reCode gives two suggestions related to removeNoti . The first one seems
correct: reCode proposes to delete the whole line with the bind call.

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

Looking at the second suggestion, Maria concludes it’s correct, too: the line with the bind call is removed, and
reCode correctly kept the argument id for the function declaration (but if it hadn’t been, Maria could have clicked
“Reject Changes” to revert to the original or changed the code manually—reCode would learn from this correction and
update its suggestions).

! SEARCH " # $ %

80 results in 32 files - Open in editor

bind 4 5 6

isSettingsSaved = this.isSettingsSaved.bind(…
saveAsDefault = this.saveAsDefault.bind(this);
sortCurrencies = this.sortCurrencies.bind(thi…
= this.handleInputChange.bind(this);

&!Currency.jsx … 4~/code/official-react-site/

onFocusChange = this.onFocusChange.bind…
onDateChange = this.onDateChange.bind(th…
clearDate = this.clearDate.bind(this);

&!DueDatePicker.jsx … 3~/code/official-rea

toggleDatePicker = this.toggleDatePicker.bin…
updateCustomDate = this.updateCustomDat…
= this.updatePaymentTerm.bind(this);
updateDueDate = this.updateDueDate.bind(t…

&!DueDate.jsx … 4~/code/official-react-site/

= this.handleInputChange.bind(this);
= this.updateDiscountState.bind(this);

&!Discount.jsx … 2~/code/official-react-site/

&!DueDateTerms.jsx … 1~/code/official-reac

deleteContact = this.deleteContact.bind(this);
newInvoice = this.newInvoice.bind(this);

&!Contact.jsx … 2~/code/official-react-site/a

changeTab = this.changeTab.bind(this); '
removeNoti = this.removeNoti.bind(this);

&! App.jsx 2~/code/official-react-site/app

! App.jsx ' (…

official-react-site)app)! App.jsx

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40

18
19

11
12
13
14
15
16
17

10

// Components
class App extends PureComponent {
 constructor(props) {
 super(props);

 this.removeNoti = this.removeNoti.bind(this);
 }

 changeTab = (tabName) => {
 const { dispatch } = this.props;
 dispatch(UIActions.changeActiveTab(tabName));
 }

 removeNoti(id) { removeNoti = (id) => {
 const { dispatch } = this.props;
 dispatch(UIActions.removeNoti(id));
 }

 componentDidMount() {
 const { dispatch } = this.props;

import AppUpdate from './components/layout/AppUpdate';
import { AppWrapper } from './components/shared/Layout';

import * as InvoicesActions from './actions/invoices';
import * as ContactsActions from './actions/contacts';

// Components
import AppNav from './components/layout/AppNav';
import AppMain from './components/layout/AppMain';
import AppNoti from './components/layout/AppNoti';

import * as SettingsActions from './actions/settings';

Accept Changes | Reject Changes | Accept All in This File

Accept Changes | Reject Changes | Accept All in This File

 changeTab = (tabName) => {

* 0 + 0 ,Layout: U.S.JavaScript ReactLFSpaces: 2Ln 29, Col 27

-

.

/

0

1

2

3

…

1https://reactjs.org/docs/faq-functions.html#how-do-i-bind-a-function-to-a-component-instance

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

Maria clicks “Accept Changes” for both suggestions. She then clicks on several other results in the Summary View
(Figure 2 A) to review the changes proposed by reCode. In the first three files, she clicks “Accept Changes” for each
suggestion that she is confident about. To speed things up, she then goes to the rest of the files, review all of the changes,
and clicks “Accept All in This File” once she determines everything is correct. Using this workflow, inspecting each file
takes about 10 to 20 seconds, and she finishes changing all of her changes in under 10 minutes.

Now imagine doing the same task without reCode. Maria would have faced the same challenge of the “murky
middle” described in Section 1. On the one hand, changing all 80 instances manually can easily take an hour and is error
prone. On the other hand, it might not be worth the investment to write a custom script or complex regular expression
to feed to a find-and-replace tool. For these reasons, Maria prefers the convenience of reCode to help her accomplish a
variety of day-to-day code transformation tasks.

3 BACKGROUND AND RELATEDWORK

The design of reCode is inspired by BluePencil [35], which implements a comparable underlying synthesis technology
to reCode’s engine [16], but surfaces the interaction through a different workflow: BluePencil passively detects and
presents code transformation suggestions as “quick fix” lightbulbs to the developer as they edit their code, which the
developer can either accept or ignore. In contrast, reCode supports developers who frequently desire to have more
control over their code transformations (Section 4).

The rest of this section describes related work on challenges developers have making code transformations and the
multitude of programmatic approaches to code transformations.

3.1 Challenges of Making Code Transformations

Developers edit their code in a patterned and repetitive way to fix bugs [43], migrate from one API/language to
another [11, 21], or make systematic changes to their codebases [22].

Nguyen et al. [41] conducted a large-scale study to show that 70-100% of small changes are repeated, and the
repetitiveness of changes decreases exponentially as the change size increases. The smaller, fine-grained changes are
especially meaningful and pervasive in both time and space: a given code change is often repeated by others, and the
same developer has usually made the same kind of change in the past [42]. Within the same codebase, Kim et al. [23]
found that “locally unfactorable, consistently changing clones” (that is, duplicated code that cannot be easily factored
out and always change together) are common, and changing these clones together can be error-prone and difficult.

Automated tools aim to help developers make code transformations, but they are often too hard to use, leading to tool
abandonment. For instance, Murphy-Hill et al. [38] found that 90% of changes that refactoring tools already support are
performed without the help of tools. Most editors have find-and-replace functionalities baked in and support regular
expressions for more general code transformations. However, find-and-replace can be error-prone [33] and regular
expressions are especially hard to use [32].

reCode addresses the need for a more intuitive and reliable tool to automate repetitive code changes. It improves on
the familiar find-and-replace user experience and leverages program synthesis to generate semantic code transformations
from developers’ direct edits.

3.2 Programmatic Approaches to Code Transformations

To automate code transformations, developers can write queries or scripts that typically operate in batch across their
repository. These tools emphasize either text-level or tree-level transformations.

5

wodeni
Highlight

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

Text-based tools allow developers to perform changes to programs by matching a string pattern and treating the
code as an unstructured string of text. Tools in this space include regular expressions [14] or regex-based codemods [1].

Instead of operating on strings, developers also can use tools that provide access to the code’s abstract syntax tree
(AST), types, or another language-specific information. Structural find-and-replace tools let developers transform their
code by specifying patterns and grammatical constructs that take the code structure into account. For example, in these
representations it becomes possible for the developer to specify constraints like “within class constructors only” or
“fields of type integer.” JetBrain’s family of IDEs supports structural find-and-replace for a variety of programming
languages [36]. Comby [50] introduces a simpler query syntax for find-and-replace by generating parser combinators.
Because Comby understands the syntax of code blocks, strings, and comments, Comby queries are usually more concise
and readable than alternatives like regular expressions.

More elaborate code transformations require developers to go beyond queries and rewrite rules to scripts that directly
operate on ASTs. jscodeshift transforms JavaScript programs via an API for JavaScript AST nodes. Rafazar includes
a domain-specific language that encodes AST-level edit actions for program transformations [47]. Although these APIs
may suffer from a variety of usability problems [40], AST transformers have shown their robustness and scalability for
transforming ultra-large codebases [13, 51]. Refactorings tools [5, 7, 31, 37] are also instances of code transformation
scripts, as are linters [2, 4].

Developers using reCode sidestep the decision of which approach to code transformation to choose. Developers edit
examples and reCode “invisibly” [39] programs code transformations for them.

3.3 Editing by Example

In editors, programming-by-example systems infer changes to text or source code based on concrete user actions on
the source text and/or other representations of the program. These inferred changes are often high-level programs
consistent with the user actions but generalized to similar instances [18].

Several early programming-by-example tools, beginning in the 1980s, can operate on text [15, 25–27, 44, 45, 48, 49, 52],
either by inferring a program from input-output examples (result-based) or recording users’ edit steps (action-based).
Nix synthesizes string transformation patterns from a set of input-output examples provided by the user [44]. The
transformations are expressed as gap programs. SMARTEdit does not require an output example upfront and learns
string-based macros from direct edits on an input example [25]. It requires an explicit start/stop command and treats all
the text in the editor as the input example. Some editors allow developers to record edit steps as scripts called keyboard

macros. For instance, both GNU Emacs [48] and vi [45] users can encode edit actions as a program and replay the
same sequence of actions elsewhere. Because ordering is important in the edit steps, macros are known to be brittle
and difficult to specify correctly [26, 49]. Different from text-based tools, reCode is tree-based and generates AST
transformations. The resulting code transformations are resilient to edit ordering and formatting variations.

Sydit and Lase are Eclipse plugins for transforming functions or methods [29, 30]. In contrast to reCode’s light-
weight user experience which allows for fine-grained code transformations, Sydit requires developers to make code
transformation at the method level. ReSynth is an Eclipse plugin that generates a sequence of refactoring operations
from user edits [46]. reCode supports code transformations that are not limited to an existing catalog of refactorings.

Lapis [34] is a specialized editor that allows users to edit multiple lines of code concurrently. Lapis asks users
to specify a natural-language like query to seed the examples. reCode differs in that it allows a straightforward,
keyword-style search, and provides a more sophisticated synthesis backend. Codelink is an extension for XEmacs. The
tool requires the developer to “link” code duplicates, or code clones, explicitly. Once these code clones are linked, any

6

wodeni
Highlight

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

edits the developer makes simultaneously updates the other linked locations. In other words, Codelink’s interaction
is a variation of multi-cursor editing in modern editors [8, 9]. By contrast, reCode does not rely on cursor position
and uses the developers’ initial search term to bootstrap relevant locations. reCode presents a lightweight interaction
workflow different from existing tools.

4 FORMATIVE INTERVIEWS AND DESIGN GOALS

To discover challenges that developers have with existing code transformation tools, we sent out an initial recruitment
survey at a large software company to developers with at least three years of experience, sampled from their company
address book. The survey pre-screened for prior experience using tools in participants’ programming environments that
allow them to perform code transformations, such as find-and-replace, refactoring, or other structural find-and-replace
tools. We interviewed 7 of these survey respondents (F1-F7) to understand how they use tools to automate code editing.
The interviews serve as a need-finding activity, from which we derive design goals for reCode.

In the interviews, we asked about the challenges they faced with code transformations, which tools they use to
automate them, and why the tools they use work or don’t work for them. Five participants showed us code samples
from recent tasks, which we used to design tasks for our later usability evaluation (Section 6). From these interviews,
we identified three common problems across participants.

First, developers reported having to make continuous trade-offs between performing code transformation tasks
manually and reaching for programmatic approaches that enable automation, which resulted in decision fatigue. While
some participants experimented with writing custom scripts (F1, F3) or regular expressions (F2, F4, F6, F7) to automate
tasks, F2 reported encountering unanticipated barriers: “I could use find-and-replace, copy-paste, use multi-cursors, or
use refactorings. But none of them worked exactly the way I wanted.” Given these uncertainties, participants often
impulsively gravitated towards more familiar, manual strategies like find-and-replace because it minimized their decision
fatigue and was the path of least resistance (F1-F7). As F2 described, “there’s probably already a secret tool or some
magical trick [in my editor]. I just don’t want to look.”

Second, writing a robust regular expression or script is tricky, and several participants desired more lightweight
but still expressive approaches. As one example, F7 described trying to use a regular expression but that the language
lacked a “good way to specify context or scope.” They also used macros, which were more generic but indicated that
“the amount of time it takes to remember how to do macros doesn’t justify using it for ordinary tasks” (F7). F1 added
that when scripting, they “often run into these corner cases that the script doesn’t handle” and wonders, “Do I really
have to write my own static analyzer to do it correctly?” They desired an editor to “do it automagically, sees you doing
this many times, and automates this.“ F6 explicitly described an example-driven experience: “I want to find-and-replace
by example. I want to edit a file directly and say ‘Apply that elsewhere’ ”.

Third and finally, participants reported a need for human oversight and inspection in automated approaches. F3
and others (F1, F2, F4, F5) worried about “over-replacing” and “matching on the wrong thing. Because things like
find-and-replace are syntax-based, your compiler may not catch the error, so I have to check it manually.” Several
participants mentioned that ‘Apply all’ is “dangerous” (F1-F6) and F2 had to “watch very carefully to make sure I don’t
replace things I don’t want.” To guard against these issues, all participants shared their experiences building up search
queries iteratively from a simple keyword, and then further narrowing down their results as needed.

Participants reported that their existing tools were mismatched with their desire for inspection. F3, for example, said
that they “spend one hour to click apply and next and apply, and I’ll just give up and apply all, hoping the compiler
catches errors for me,” and F5 reports that automated tools “stress me out and I don’t really trust them” because they

7

wodeni
Highlight

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

can’t easily verify if the code transformations have been correctly applied. Towards improvements in the editor, F2 and
F4 suggested “live previews and highlights” to inspect the changes within the editor. F5 indicated that comparisons in
current editors are difficult because they use too little “screen real estate” and require them to refine code transformations
through “tiny text boxes.”

Based on their reported experiences and feedback, we reflected on their needs and formulated several design goals to
address them:

D1. Provide a unified entry point for code transformations. To minimize decision fatigue, developers should
be able to make a variety of common code transformations through a familiar user experience.

D2. Offer a lightweight way to transform code. Writing regular expressions and custom scripts are difficult. An
intelligent user experience should provide this capability “automagically,” offloading script building to the system.

D3. Design affordances that enable oversight and inspection for code transformations. Developers were
cautious about automated tools over-replacing or matching on the wrong things, and existing tools were
mismatchedwith developer expectations. Developers should be able to incrementally inspect code transformations
and more easily compare their results.

5 SYSTEM DESIGN AND IMPLEMENTATION

reCode realizes the design goals from Section 4 and offers a user experience that: 1) reduces the decision overhead
of having to choose among different tools; instead, the developer can use find-and-replace as a unified entry-point
for their code transformation (D1), 2) eliminates the burden of having to author complicated regular expressions or
scripts; instead, the developer can directly type their change in the editor (D2), and 3) removes the requirement to
inspect all code transformations in bulk; instead, the developer can incrementally inspect, apply, and revise their code
transformations (D3).

reCode is implemented as an extension of Visual Studio Code (VSCode). Most of its features are implemented
within the Search View and main editor pane. First, we augmented the Search View to indicate the state of each search
match. Second, the main editor captures developer edit events and the ReFazer* synthesizer runs as an editor service
in the background and generates transformation programs based on the edits. Finally, we implemented inline code
diffs to surface the synthesizer’s suggestions and we adapted Code Lenses2 to allow the developers to interact with the
synthesizer.

5.1 reCodeWorkflow

In this section, we will walk through the detailed design of reCode’s mixed-initiative workflow (Figure 1), which we
demonstrated in Section 2.

5.1.1 Step 1: Bootstrapping Synthesis via Find. The developer initiates the workflow by typing search terms in the Search
Box (Figure 2 A). The search and results are displayed in the corresponding Result View (Figure 2 B). As we described
in Section 4, our participants were comfortable with constructing search queries via simple keywords and narrowing
down results using find. Consequently, we made an intentional design decision to sacrifice some expressiveness in
search (for example reCode users cannot limit search to “only within fields of a class”) to favor simplicity. reCode only
supports conventional plain-text search.

2https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

8

https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

Because the developer provides search terms that are less precise than the locations they actually intend to change,
the search results will be a superset of what they actually intended to change. This has implications for programming-
by-example, and there are two approaches to tackle this situation—both of which are supported in reCode.

The first approach is manual: the developer can navigate to the Summary View (Figure 2 A), hover over one of the
extraneous matches (Figure 2 C), and click the ‘x’ icon to remove it from the search results. The second approach
is to for the synthesis engine to filter matches: ReFazer* considers all search results as candidate additional inputs,
and applies an anti-unification mechanism to discard candidates that are incompatible with the developer-provided
changes. Thus, the first approach is useful if the developer wants to use the Summary View for manual investigation
and bookkeeping; the second approach is useful if the developer just wants to the reduce the amount of work needed to
do their code transformation.

5.1.2 Step 2: Transforming Code by Example. Through our formative study, we learned that a barrier to correctly
authoring regular expressions or scripts is the need for developers to construct a complete specification upfront. In
textual or modal transformation tools, the developer also typically needs to know the tool exists and learn the syntax of
a language or the UI to perform their code transformation task.

By contrast, reCode lets developers demonstrate program changes directly in the editor. Essentially, developers are
able to construct this specification incrementally through a more intuitive editing affordance. reCode’s by-example
workflow is also designed to solve the problem of discoverability and provide better context. Because the developer
types their examples within the main editor pane (Figure 2 D), they can take advantage of the full range of editor
support, including syntax highlighting and auto-completion.

5.1.3 Step 3: Iteratively Refining the Synthesis Results. The interaction so far has been developer-initiated. But once the
developer types their first code transformation, the synthesizer takes the initiative.

ReFazer* accepts each developer’s code transformation as a positive input-output example to drive synthesis, uses
the search results as candidate locations, and returns suggestions to the user interface. reCode renders these suggestions
directly in the editor as Inline Diffs—the original code is highlighted in pink and the suggested replacement is highlighted
in green (Figure 2 E F). Users can act on each suggestion by clicking Accept, Reject, or Accept All in This File above
the suggestion. We decided to limit Accept All to the current file based on our formative study, where participants were
reluctant to accept all changes from a code transformation tool without inspection (however, “Accept All” is available
under the kebab menu to the lower right of Figure 2 B).

Since the synthesizer is operating in the background in a black-box manner, the visibility of system status is an
important aspect of reCode. In addition to code diffs inline, the Summary View also conveys the status of the synthesizer
by directly highlighting search results: Green highlights indicate original edits done by the user; Yellow highlights
indicate matches with available suggestions; Blue highlights show the current selection.

One consideration is when to send the developer-provided code transformation to the synthesizer: they may be
typing slowly, pausing to think, or any variety of other activities that may cause the user interface to prematurely
roundtrip to the synthesizer and incorrectly update the suggestions to the developer. Our unsophisticated solution to
this problem was to add a short debounce—delaying sending examples to the synthesizer until the developer pauses for
a few seconds—which worked reasonably well.

Another consideration is what happens when the developer edits a line that does not match the original search. For
example, consider when a developer searches for a comment like // TODO, but makes all of their actual edits to the line
below. Again, we implemented a simple approach that constructs a window around the search location overlaps the edit

9

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

location (in the above example, the window size is ±1). This heuristic also worked reasonably well, with the caveat that
ReFazer* becomes sluggish if the window-size becomes too large.

Any suggestions the developer chooses to accept becomes an additional positive input-output example. To avoid
infinite recursion, once a region of code is accepted, it will not be considered again as a candidate location for synthesis.
Any suggestion that a developer chooses to reject becomes a negative input-output example, or filter. Finally, accept all
changes in the current file works essentially the same as accept, but sends all of the accepted suggestions at once.

These iterations continue until the user closes the find UI.

5.2 Overview of ReFazer*

ReFazer* [16] is a robust, general-purpose synthesizer that reasons about differences in abstract syntax trees to learn
code transformations. Although ReFazer* is not specifically designed to support a find-and-replace user experience,
the engine has several properties that reCode is able to usefully exploit. This section presents a high-level overview of
these properties; detailed formal semantics of ReFazer* and its full performance benchmarks can be found in Gao et al.
[16].

Gao et al. [16] report that with only one input-output example, ReFazer* can learn a correct program transformation
with 96% precision (through a benchmark of 12,642 test cases ranging from single-statement to multi-line edits). With
two examples, the precision increases to 98%, and with three examples, 99%. For all three cases, recall is above 99%.
Because we rely on ReFazer* for program synthesis, we expect reCode to have similar performance for comparable
tasks.

ReFazer* frames code transformation as a semi-supervised learning problem. In addition to the concrete edits (input-
output pairs) that the technique uses as instances, the learning process also exploits access to additional inputs—that is,
program subtrees—if they are provided to the synthesizer. Conveniently, this interface for ReFazer* maps closely with
the user experience needs for reCode’s find-and-replace: the developer’s initial search results become the additional
inputs, and the developer’s subsequent code transformations correspond to input-output subtrees. ReFazer* applies a
strategy of anti-unification that discards incompatible additional locations. From reCode’s perspective, this means that
we do not need special handling to support developers who apply simple keywords, resulting in a superset of the actual
locations required.

ReFazer* requires the developer to enter a special mode to provide examples and feedback to the system. While
this can be a limitation for modeless user interfaces, it is precisely the interaction model for find-and-replace because
developers enter an explicit mode.

Because ReFazer*works on abstract syntax trees, we built a shim layer that sits between the front-end and ReFazer*;
this shim takes lines of text and rewrites them them into trees and vice versa. Modern compilers offer built-in APIs to
facilitate this, so our integration work more or less involves invoking the appropriate facilities.

5.3 Limitations and Future Work

User interface. When the number of search results are large, developers are likely to hit perceptual and cognitive
scalability limits that make it overwhelming to make sense of and navigate the search results. One solution to push
these scalability limits outwards would be to apply an intelligent clustering algorithm that groups “related” changes
together, and only present one exemplar search result from that group. For instance, one type of relation might be
to might cluster matches by their relative location in the program, such as “all bind calls in constructors.” Existing

10

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

research on detecting code clones [10, 20, 24] can serve as inspiration for how to group code transformations in the
Summary View.

Although we implemented an inline diff within the editor, our approach was less-than-ideal due to limitations in the
Visual Studio Code extension API. Specifically, Visual Studio code already provides a high-fidelity inline diff experience
for comparing version control changes, but this facility is not exposed in a way that extension authors can use. Although
our inline diff is conceptually similar, it lacks some of the niceties like syntax highlighting, theme support, and support
for diffing long lines.

In our design, we made an assumption that developers in the find-and-replace will only make relevant edits. That is,
only edits are intended to be used as part of the ReFazer* synthesis process. However, it is possible that developers
might make unrelated, interleaving edits (for example, they might fix a typo while making a code transformation). A
future implementation should consider options for addressing this scenario. One possibility is to allow the developer to
explicitly pause the mixed-initiative loop when making an unrelated edit. Another option would to be incorporate the
concept of noisy edits within the ReFazer* engine itself.

Developers may unintentionally provide ambiguous or conflicting code transformation examples. For instance, f(a,
b) to g(b, a) is ambiguous if the developer provides an example f(c, c) to g(c, c) demonstrate renaming and
swapping the arguments. Similarly, code transformations can also be conflicting: a to b and also a to c. For ambiguous
code transformations, the developer must inspect the transformation closely. For conflicting code transformations, we
surface a generic error message to the developer. However, an improvement to this user experience would be to provide
an explanation for why one or more code transformations conflict.

Program synthesis engine. ReFazer* is useful for a variety of code transformation tasks, but currently has some known
limitations. Because ReFazer* is tree-based, it works at the node level and does not perform substring-to-substring
transformations. For example, translate to tranform works, but translateObject to transformObject would not.
To support this scenario, ReFazer* could be extended by adding FlashFill-style string transformations [17].

One scenario that is not handled by ReFazer* are code transformations that require reasoning about a countable but
arbitrary number of nodes in the tree. For example, consider the program:

new string[] {

a.ToString(),

b.ToString(),

c.ToString() }

which the developer wants to transform to:

new int[] { a, b, c }.Select(x => x.ToString())

The problem is that this code transformation requires generalizing to an arbitrary number of elements in the array—
this is not supported in ReFazer*. The current workaround is for the developer to do repeated find-and-replace tasks
for arguments of length one, length two, length three, and so on up to the largest number of arguments.

ReFazer* does not understand the concept of associated edits. For example, theMultiloc in our usability evaluation
requires the developer to delete the line with bind, as well as modify the corresponding function having the same
function name. To allow this, an extension to ReFazer* implements a heuristic that treats this task as two independent
synthesis tasks: one for deleting bind, and another for the function modification. The consequence of this is that a

11

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

Task Code to find Replacement code Task type Required changes
Constant-
string translate transform Plain text replacement 14 lines in 2 files
Gather-
args expect(a).toEqual(b); same(a, b); Function refactoring 17 lines in 5 files

Multiline-
add export default withAmp(Box)

export default Box
export const config
= { withAmp: true }

API migration 28 lines in 13 files

Multiloc

class Example {
constructor() {
this.func =
this.func.bind(this);

}
func() {}

}

class Example {
constructor() {}
func = () => {}

}

AST transformation 50 lines in 10 files

Table 1. Tasks for the usability evaluation. The tasks reflect the range of scenarios identified in the formative interviews: from

constant strings to tree transformations. Each task represents a type of code edits developers often encounter.

developer might accidentally delete a bind and forgot to modify the corresponding function, and ReFazer* would be
unable to detect this error.

ReFazer* is resilient to variations in program text (for example, whitespace, newlines, and other formatting trivia)
and tries to mimic the formatting that developers do as best-effort. However, there is no guarantee that the suggested
code transformation will preserve formatting in same style as the input example, and this annoys developers.

6 USABILITY EVALUATION OF RECODE

6.1 Participants and Setup

We recruited 12 participants (10 men, 2 women, mean self-reported experience of 6.8 years) using the same recruitment
survey described in Section 4. Participants are denoted as P1-P12 in subsequent sections. For programming languages,
participants in their day-to-day tasks report using TypeScript (4), Python (2), C# (8), C++ (4), with some reporting more
than one language. On a 5-point Likert-type scale, participants reported the frequency of code transformation tasks
to be: very frequently (2), frequently (5), occasionally (3), rarely (2). Participants also reported their familiarity with
VSCode: extremely familiar (2), moderately familiar (8), somewhat familiar (2).

Each session took 45-60 minutes and was conducted remotely on Microsoft Teams. Developers connected to a remote
desktop environment pre-configured with reCode. All sessions were audio and video recorded, including participants’
screens.

6.2 Tasks

In the formative study, participants discussed the challenges they had endured when transforming code and several
participants shared recent transformation tasks. Through the formative study, we designed four tasks (Table 1) that
represent increasingly complicated code transformations. We identified an applicable public GitHub repository for each
task. We then selected a subset of the files so that the size of each task (“Required changes” in Table 1) reflects the
“murky middle“ (15-50 lines-of-code changes), in which we expected the participants to make an deliberate decision on
whether to use a tool or perform the task manually.

12

wodeni
Highlight

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

(1) Constant-string3 replaces a constant string in an entire program. This transformation is supported by almost
all editors through find-and-replace or rename refactoring. All participants in the formative study reported
frequently making this kind of change.

(2) Gather-args4 gathers arguments from chained function calls into a single call. This transformation requires
more effort since the arguments from the found code needs to be reused in the replacement. This transformation
might be accomplished by using regex-based find-and-replace with capture groups. Formative study participants
reported that refactoring function calls is common, but also demand significant effort. For example, F2 reported
“copy-pasting and editing lots of function calls in a test suite”.

(3) Multiline-add5 finds one existing line of code, changes this line, and appends additional code. The task
represents changes involving a single-line match and multi-line changes, such as adding a null-pointer check
around a line of code, or breaking up a line of code into multiple lines. The task requires developers to take extra
care to handle formatting and newlines, and might be accomplished using a keyboard macro or a multi-line
regular expression.

(4) Multiloc6 changes two separate locations that are connected by a common method name (e.g., func in Table 1).
This transformation involves multiple matches and changes, which is common in language migration and
design-pattern changes [11]. Specifying such transformations in one regex or macro is challenging since they
depend heavily on syntax and formatting. Therefore, this task is often accomplished with more complex tools
that manipulate programming language structure like Comby [50] or AST transformers such as jscodeshift.

Since we did not require our participants to have experience with a specific programming language, we provided
them with a before-and-after example to illustrate the kind of code transformation they would need to perform for each
task.

6.3 Protocol

To reacquaint participants with code transformation tasks, participants started by performing a warm-up exercise using
VSCode without reCode. In this exercise, we asked participants to change from t.is(a, b) to expect(a).toEqual(b) (17
lines in 5 files). We then showed participants a short reCode tutorial. Afterwards, they performed the remaining tasks
in random order using VSCode with reCode (Section 5). Participants were free to access online resources during all
tasks.

After completing the transformation tasks, participants were given a questionnaire. The questionnaire asked them to
self-evaluate the difficulty and tediousness of each task on a 5-point Likert scale (Strongly disagree–Strongly agree). To
validate the relevance of the tasks, we also included a question asking how frequently participants encountered similar
tasks in their work. The questionnaire also asked if the participant would use a production version of reCode. At the
end of the evaluation, we conducted a retrospective interview to gather feedback about reCode.

3The code for Constant-string is adapted from a test file of the svgpath library: https://github.com/fontello/svgpath.
4The code participants received for Gather-args is one of the transformations required to migrate from Jest to AVA.js: https://jestjs.io/docs/migration-
guide.
5The code for Multiline-add is one of the breaking changes introduced by v9 of next.js. The authors of the library provided a script to automate this
complex change: https://nextjs.org/docs/upgrading.
6Multiloc is a structural change for using a new language feature of JavaScript ES6. An implementation for this particular task can be found in
react-codemod: https://github.com/reactjs/react-codemod.

13

https://github.com/fontello/svgpath
https://jestjs.io/docs/migration-guide
https://jestjs.io/docs/migration-guide
https://nextjs.org/docs/upgrading
https://github.com/reactjs/react-codemod

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

Frequency of task Difficulty rating Tediousness rating

Task Avg. time taken # completed Med. Dist. Med. Dist. Med. Dist.

Constant-string 1:35 12 5 1.5 2

Gather-args 3:09 12 4 2 2

Multiline-add 4:34 12 4 1.5 1.5

Multiloc 3:22 10 3 2 2

Table 2. Summary results for each task. The number of participants that completed each task and the average task time are shown.

After each task, they were asked to rate (1) “this task was difficult to complete;” (2) “this task was tedius;” and (3) “I encounter similar

tasks in my work.” The rating scale as from left-to-right was: Strongly disagree (1), Disagree (2), Neither agree nor disagree (3),

Agree (4), Strongly Agree (5). Median values precede each distribution.

7 RESULTS

In this section, we describe our participants’ task performance, their responses to the follow-up questionnaire, and
feedback from the retrospective interview.

7.1 Efficiency and Effectiveness

Table 2 shows the average time taken and number of participants that successfully completed each task. After each task,
participants were asked to rate the frequency of which they encounter similar tasks, the difficulty of the task, and the
tediousness of the task. All participants were able to complete Constant-string, Gather-args, and Multiline-add
using reCode. The average completion time was less than than five minutes. Finally, two participants failed to complete
(P1, P2) Multiloc because of an unexpected failure in the reCode synthesizer. The most complicated task, Multiloc,
also appeared least frequently in participants daily work. Most participants encounter all other tasks frequently.

7.2 Participant Feedback

We group participants’ feedback using the steps from the reCode user experience: Find, Edit, and Generalize. Finally,
we report participants’ feedback on the overall user experience.

Find. All participants initiated the reCode experience using the “Find” feature very early on: participants either
immediately started using “Find,” or they poked around a few files first, made a guess about a keyword, and then used
“Find” to search for that keyword.

Most participants (P1, P2, P3, P5, P7, P8, P9, P10, P11, P12) used an overly broad keyword rather than an elaborate but
precise expression (P4, P6). For instance, when performingGather-args, P4 and P6 searched for expect\((.*)\).toEqual\((.*)\) ,
whereas all other participants searched for toEqual initially. Participants later added punctuation around the keyword
as an ad hoc solution to narrow down the scope (for example,).toEqual(), because they “usually search for something
very generic and see if I need to narrow down my search later” (P9). Some participants reported that this is “what [they]
would have done anyway” (P2), with or without reCode.

Some participants expressed a desire for “structural search to prevent over-matching, because bind can appear
anywhere and what I really want to find is all function calls of bind ” (P1, P4). However, these participants struggled to
achieve this because they “don’t know how [they] would say it” (P1) and resorted to adding simple punctuation around
the search term because it was “the best they could do” (P1).

14

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

After performing the find, all participants (P1-P12) manually inspected more than one results before performing any
changes because they “wanted to see all the possible cases to see if [they’re] overmatching” (P3). When navigating
through the find results, they liked the “holistic view of all the results” (P1) in the Summary View Figure 2 A .

Change. After reCode displayed the find results, all participants (P1-12) proceeded to directly edit one of the found
code locations.

Direct edits helped participants make sense of the transformation and estimate “if it’s easy enough to go through
things manually. If it takes more than 5 minutes, [they’ll] go for other tools” (P7). After editing one or more find results,
participants noticed reCode’s suggestions inline and noted that reCode “figured out what [they] did” (P3) and “picked
up on the pattern now that [they] did it a couple of times” (P5).

Participants appreciated that direct editing is “way faster and much easier than writing regexes” (P10) and the fact
that reCode “analyzes what you are doing and you don’t have to write scripts by hand” (P1). But for trivial tasks
like constant string replacement (Constant-string), some participants (P4, P5) were fine with using the replace
box in find-and-replace: “I was equally satisfied here [directly editing using reCode], but I might fall back to regular
find-and-replace since this is not a challenging task” (P4).

Some participants (P2, P4, P6, P7) requested better visibility of the system’s status. For instance, in the first task, P7
asked, “Is this running? I guess I’ll just keep doing thing manually” until reCode displayed the first inline diff in their
editor pane. P7 wanted to “know it’s there in the first place” and “know if it starts working or not.” P2 needed “more
confirmation in the UI that it’s searching” and P6 proposed adding “an indicator that say ‘suggestion in progress’ in the
editor pane.” P4 speculated that “exposure might be key, because after getting used to it I understand the green bar is
telling me if it’s active.”

Generalize. All participants (P1-12) understood reCode’s suggestions after seeing inline diffs and inline actions
(Figure 2 E F) in the same file or yellow highlights in the Summary View (Figure 2 A).

P5 thought the inline diffs were “really cool because [they] wanted to see what things were before replacement
and this way [via inline diffs] [they] can verify if everything’s right.” P12 said the inline diff and actions were “pretty
intuitive, and just like git in VSCode. I can see the diffs inline and choose to accept or not. Very familiar.” P9 preferred our
inline diffs to a separate window for find-and-replace; in their editors “screen real estate is important, and [a separate
diff view] is too distracting.”

After viewing a few of the suggestions by scrolling around and/or clicking through search results, participants
felt that “it’s doing the right thing” (P12) and “trusted it like [they] trust ‘Rename Variable’ in VSCode” (P11). When
performing Multiline-add, P6 deliberately looked for “the trickiest case” and found out “it’s reusing the component
names correctly, now I think it works.” Some participants (P4, P6, P10) directly edited the suggestion to test if reCode
would update the rest of the suggestions as well, and found that “every string gets updated after I changed one of them,
great!” (P6).

After participants expressed some confidence in reCode’s suggestions, all of them (P1-P12) interacted with the inline
actions (Figure 2 F). For instance, P3 was “comfortable accepting all after reviewing a few items” but requested an “an
’Accept All in Project’ button to finish the whole thing.” However, after making the same request as P3, P2 commented
that “the engineer in me says be careful. I would compile and see if anything breaks. The diligent person in me says
there shouldn’t be this [Accept All in Project] button to allow me to do it.”

15

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

As noted in Section 5.3, reCode sometimes does not preserve the exact formatting of the developer’s original edit.
For instance, P4 noticed an extra new line in the suggestion and said: “Boo, it added this new line. I deleted the new line
character, so should you!” For the most complicated task (Multiloc), a few participants requested the ability “to link
two related edits and if I click on accept changes for bind , the function below should change, too” (P10). P9 mentioned
the same feature because “in [their] head, these two changes are grouped together and [they] wished the tool could
show [them] how they are related.”
End-to-end feedback. Participants liked the overall reCode experience because it “was really fast” (P1, P2, P10),
“worked naturally” (P2, P5, P6, P12), “was easy to use” (P4, P7, P9, P12), and “saved time” (P2, P3, P4, P6, P8, P9, P10, P11).
P9 noted that they “spent too much time battling things like regular expressions and this will be a huge productivity
multiplier.” P2 appreciated how well reCode fits into their workflow because “it’s basically how I would do it normally.”
P11 shared their experience with auto-completion tools and said, “it’s always trying to give me suggestions and I don’t
need them most of the time and after a while I just turned it off.” Instead, P11 preferred reCode’s workflow because
“it’s more selective. Instead of listening passively and trying to come up a plan for me, it only works when I have a plan
to actively change things.”

When asked whether they will use a production version of reCode in the questionnaire after the study, participants
responded either “Would use” (9/12) or “Probably use” (3/12). All participants asked when reCode would be shipped
officially so they can start using it. They were excited to use reCode to automate a variety of their daily tasks such as
“writing repetitive tests” (P2) and “refactoring my Powershell scripts” (P4). Automatic synthesis of code transformations
enabled them to have ways to perform a task “when the editor doesn’t have refactoring support” (P9). P4 gave it “10 out
of 10” and said, “I’d use this daily. Sometimes when I get 50 matches and I just thought I’ll just do it manually, but this
thing is like ’do you want me to automate it?’ I love it!” P5 “loved the granularity of the tool,” and P9 said that because
“find-and-replace is such a common thing, the ability to do this all directly [in my editor] makes this my favorite tool.”

8 DISCUSSION

The results of our evaluation suggest that reCode addresses the design goals we formulated in Section 4. Participants
found reCode provides a unified entry point for code transformations (D1), offers a lightweight way to transform their
code (D2), and provides useful affordances to allow developers to incrementally inspect their code transformations and
compare the before-and-after-results. In this section, we discuss the benefits of reCode’s unified interaction, developers’
expectations about code transformation explainability, and other insights about how developers might leverage reCode.

8.1 Example-driven Intent through a Lightweight, Unified Interaction

We found that developers frequently need to make code transformations, but existing tools require them to make
unsatisfying trade-offs, particularly in the “murky middle.” reCode removes much of this decision-making dilemma by
offering a unified entry-point for their code transformation task. When using reCode, the developer does not have to
consider the cost of switching out of their editing workflow or calculate the utility of automation (D1). Instead, they
find and make manual edits as usual, and automatically get non-intrusive suggestions that perform the remaining edits
on their behalf.

Existing code transformation tools also force them to switch out of their editing workflow to automate these edits.
For example, P9 recalled that “they don’t want to switch out of my editors to do find-and-replace. We really don’t like
distractions from our workflows.”

16

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

Our participants told us that using tools like regular expressions and AST transformers required a careful planning
and authoring process. Before using any transformation tool, developers have to learn their intricacies. The cost of this
learning is often a significant barrier to automating code transformation. As P7 reminded us, “if you have a problem to
solve with regular expressions, now you have two problems.” reCode enables developers to make a variety of code
transformations without needing to turn to regular expressions or another intricate code transformation language (D2).

8.2 Expectations about Explainability

Developers are careful about code transformations, especially when an automated tool is performing the changes. Our
participants expressed a desire to iteratively and incrementally develop and test their code transformations. In addition,
because code transformations can have many edge cases, they were wary of transforming code without directly being
able to observe the changes.

In contrast to scripts that typically operate in batch across the entire project, participants preferred the ability to
interactively inspect the code transformation and verify them inline through reCode. Instead of requiring developers
to make all-in decisions on the code transformation, reCode iteratively generalize developers’ direct edits and provides
the developer with autonomy over accepting, rejecting, or modifying individual suggestions. Importantly, the mixed-
initiative workflow of reCode lets developers progressively evaluate the effect of their edits through concrete examples,
while balancing automation and inspection (D3).

8.3 Reusable Code Transformations

Developers often make code transformations that are highly contextual and tailored to their own projects: while these
code transformations are important for this developer, it’s unlikely that they would be able to find an off-the-shelf tool
that already provides the transformation they need. As a result, developers mostly performed most edits manually and
repeatedly. When working with reCode, some participants thought the tool could be improved by allowing them to
keep a personal “history” (P1), “export” (P3), or reusable catalog of their own transformations.

Since the ReFazer* internally learns a code transformation, one possibility is for reCode to save or serialize this
code transformation so that the developer may reuse it at a later time without having to reinitiate a find-and-replace
interaction from scratch. A more ambitious representation would to provide a readable representation of the code [12],
perhaps by presenting the developer with a close-to-source language like Comby [50], a structural find-and-replace
template, or a codemod script like jscodeshift.

The ability to offer the developer a readable representation of the code transformation has several benefits. If the
developer is able to read the synthesized program, they may be more comfortable accepting code transformations
without needing to manually inspect and verify as many locations (D3). The developer may also want to use the
synthesized program to learn how to use one of the many code transformation languages (D2). As one example, the
Gather-args task can be written as the following Comby script:

match template: 'expect(:[a]).toEqual(:[b])'

rewrite template: 'same(:[a], :[b])'

For large-scale projects, developers might use reCode to synthesize a transformation from a smaller project, and
then use the script to “bootstrap” (P3) a more elaborate script for code transformations in a larger project. Alternatively,
an interesting possibility is that the developer may already have a script that they want to understand, apply, or refine.
In this situation, instead of bootstrapping find-and-replace with search keywords, they could bootstrap the reCode

17

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

experience using their script—and use reCode, just as before, to understand or refine the script through the unified
reCode interaction (D1).

9 CONCLUSION

Our formative study showed that developers struggled to automate code transformations using existing tools; as result,
they abandoned these tools and often ended up performing the changes manually. To address their needs, we designed
reCode, an example-driven, mixed-initiative interaction that improves on their familiar find-and-replace experience.
After performing a simple code search, reCode users can demonstrate their intended changes by directly editing code,
and reCode automatically learns a more general code transformation to help developers complete the task. Participant
feedback from our usability evaluation suggests that the reCode example-driven experience is intuitive, complements
their existing workflow, and offers a unified approach to conveniently tackle a variety of common yet frustrating
scenarios for code transformations. Developers in our evaluation were enthusiastic about using reCode in their own
day-to-day work.

REFERENCES
[1] [n.d.]. codemod. https://github.com/facebook/codemod
[2] [n.d.]. ESLint. https://eslint.org/
[3] [n.d.]. jscodeshift. https://github.com/facebook/jscodeshift
[4] [n.d.]. Pylint. https://www.pylint.org/
[5] [n.d.]. ReSharper. https://www.jetbrains.com/resharper/
[6] [n.d.]. ripgrep. https://github.com/BurntSushi/ripgrep
[7] [n.d.]. Roslyn Analyzers. https://github.com/dotnet/roslyn-analyzers
[8] [n.d.]. Sublime Text. https://www.sublimetext.com/
[9] [n.d.]. Visual Studio Code. https://code.visualstudio.com/
[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998. Clone detection using abstract syntax trees. In Proceedings. International Conference

on Software Maintenance (Cat. No. 98CB36272). 368–377. https://doi.org/10.1109/ICSM.1998.738528
[11] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring. Journal of Software Maintenance and Evolution: Research and

Practice 18, 2 (2006), 83–107. https://doi.org/10.1002/smr.328
[12] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. Wrex: A Unified Programming-by-Example Interaction for

Synthesizing Readable Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20).
Association for Computing Machinery, Honolulu, HI, USA, 1–12. https://doi.org/10.1145/3313831.3376442

[13] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. 2013. Boa: A language and infrastructure for analyzing ultra-large-scale software repositories. In
2013 35th International Conference on Software Engineering (ICSE). 422–431. https://doi.org/10.1109/ICSE.2013.6606588 ISSN: 1558-1225.

[14] Jeffrey E. F. Friedl. 2006. Mastering Regular Expressions (3rd ed. ed.). O’Reilly, Farnham.
[15] Yuzo Fujishima. 1998. Demonstrational automation of text editing tasks involving multiple focus points and conversions. In Proceedings of

the 3rd International Conference on Intelligent User Interfaces (IUI ’98). Association for Computing Machinery, New York, NY, USA, 101–108.
https://doi.org/10.1145/268389.268408

[16] Xiang Gao, Shraddha Barke, Arjun Radhakrishna, Gustavo Soares, Sumit Gulwani, Alan Leung, Nachiappan Nagappan, and Ashish Tiwari. 2020.
Feedback-driven semi-supervised synthesis of program transformations. Proceedings of the ACM on Programming Languages 4, OOPSLA (Nov. 2020),
219:1–219:30. https://doi.org/10.1145/3428287

[17] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL ’11). Association for Computing Machinery, New York, NY, USA, 317–330.
https://doi.org/10.1145/1926385.1926423

[18] Sumit Gulwani. 2016. Programming by examples. Dependable Software Systems Engineering 45, 137 (2016), 3–15.
[19] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems

(CHI ’99). Association for Computing Machinery, New York, NY, USA, 159–166. https://doi.org/10.1145/302979.303030
[20] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-based code clone detection system for large scale source code. IEEE

Transactions on Software Engineering 28, 7 (July 2002), 654–670. https://doi.org/10.1109/TSE.2002.1019480
[21] A. Ketkar, A. Mesbah, D. Mazinanian, D. Dig, and E. Aftandilian. 2019. Type migration in ultra-large-scale codebases. In Proceedings of the 2019

International Conference on Software Engineering (ICSE ’19). 1142–1153. https://doi.org/10.1109/ICSE.2019.00117

18

https://github.com/facebook/codemod
https://eslint.org/
https://github.com/facebook/jscodeshift
https://www.pylint.org/
https://www.jetbrains.com/resharper/
https://github.com/BurntSushi/ripgrep
https://github.com/dotnet/roslyn-analyzers
https://www.sublimetext.com/
https://code.visualstudio.com/
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1002/smr.328
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/268389.268408
https://doi.org/10.1145/3428287
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/302979.303030
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/ICSE.2019.00117

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

reCode: A Lightweight Find-and-Replace Interaction in the IDE for Transforming Code by ExampleUIST ’21, October 10–14, 2021, Virtual Event, USA

[22] Miryung Kim and David Notkin. 2009. Discovering and representing systematic code changes. In Proceedings of the 31st International Conference on
Software Engineering (ICSE ’09). Association for Computing Machinery, New York, NY, USA, 309–319. https://doi.org/10.1109/ICSE.2009.5070531

[23] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical study of code clone genealogies. In Proceedings of the 10th
European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering
(ESEC/FSE-13). Association for Computing Machinery, New York, NY, USA, 187–196. https://doi.org/10.1145/1081706.1081737

[24] P. Kreutzer, G. Dotzler, M. Ring, B. M. Eskofier, and M. Philippsen. 2016. Automatic clustering of code changes. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). 61–72.

[25] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2001. Learning repetitive text-editing procedures with SMARTedit. In Your
wish is my command: programming by example. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 209–226.

[26] Toshiyuki Masui and Ken Nakayama. 1994. Repeat and predict: two keys to efficient text editing. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’94). Association for Computing Machinery, New York, NY, USA, 118–130. https://doi.org/10.1145/191666.191722

[27] David Maulsby and Ian H. Witten. 1997. Cima: An interactive concept learning system for end-user applications. Applied Artificial Intelligence 11,
7-8 (Oct. 1997), 653–671. https://doi.org/10.1080/088395197117975

[28] Lee E. McMahon. 1990. Sed: a non-interactive text editor. In UNIX Vol. II: research system (10th ed.). W. B. Saunders Company, USA, 389–397.
[29] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Sydit: creating and applying a program transformation from an example. In Proceedings

of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering (ESEC/FSE ’11). Association for
Computing Machinery, New York, NY, USA, 440–443. https://doi.org/10.1145/2025113.2025185

[30] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from examples. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, San Francisco, CA, USA, 502–511.

[31] T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE Transactions on Software Engineering 30, 2 (Feb. 2004), 126–139. https:
//doi.org/10.1109/TSE.2004.1265817

[32] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant. 2019. Regexes are hard: decision-making, difficulties, and risks in programming regular
expressions. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). 415–426. https://doi.org/10.1109/ASE.2019.
00047

[33] Robert C. Miller and Alisa M. Marshall. 2004. Cluster-based find and replace. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’04). Association for Computing Machinery, Vienna, Austria, 57–64. https://doi.org/10.1145/985692.985700

[34] Robert C. Miller and Brad A. Myers. 2001. Interactive simultaneous editing of multiple text regions. In Proceedings of the General Track: 2001 USENIX
Annual Technical Conference. USENIX Association, USA, 161–174.

[35] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the
fly synthesis of edit suggestions. Proceedings of the ACM on Programming Languages 3, OOPSLA, Article 143 (Oct. 2019), 29 pages. https:
//doi.org/10.1145/3360569

[36] Maxim Mossienko. 2004. Structural search and replace: What, why, and how-to. OnBoard Magazine (2004).
[37] E.Murphy-Hill andA. P. Black. 2008. Refactoring tools: fitness for purpose. IEEE Software 25, 5 (Sept. 2008), 38–44. https://doi.org/10.1109/MS.2008.123
[38] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. HowWe Refactor, and HowWe Know It. IEEE Transactions on Software Engineering

38, 1 (Jan. 2012), 5–18. https://doi.org/10.1109/TSE.2011.41 Conference Name: IEEE Transactions on Software Engineering.
[39] B. A. Myers. 1990. Invisible programming. In Proceedings of the 1990 IEEE Workshop on Visual Languages. 203–208. https://doi.org/10.1109/WVL.

1990.128407
[40] Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM 59, 6 (May 2016), 62–69. https://doi.org/10.1145/2896587
[41] Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, and Hridesh Rajan. 2013. A study of repetitiveness of code changes

in software evolution. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE’13). IEEE Press, Silicon
Valley, CA, USA, 180–190. https://doi.org/10.1109/ASE.2013.6693078

[42] H. A. Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton. 2019. Graph-based mining of in-the-wild, fine-grained, semantic code change
patterns. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE) (ICSE ’19). 819–830. https://doi.org/10.1109/ICSE.2019.00089

[43] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-Kofahi, and Tien N. Nguyen. 2010. Recurring bug fixes in object-oriented programs.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10). Association for Computing Machinery,
New York, NY, USA, 315–324. https://doi.org/10.1145/1806799.1806847

[44] Robert P. Nix. 1985. Editing by example. ACM Transactions on Programming Languages and Systems 7, 4 (Oct. 1985), 600–621. https://doi.org/10.
1145/4472.4476

[45] Andreas J. Pilavakis. 1989. The vi Editor. In UNIX Workshop, Andreas J. Pilavakis (Ed.). Macmillan Education UK, London, 59–65. https:
//doi.org/10.1007/978-1-349-19900-6_6

[46] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refactoring with synthesis. Proceedings of the ACM on Programming
Languages, 339–354. https://doi.org/10.1145/2509136.2509544

[47] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017.
Learning syntactic program transformations from examples. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). 404–415.
https://doi.org/10.1109/ICSE.2017.44

19

https://doi.org/10.1109/ICSE.2009.5070531
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1145/191666.191722
https://doi.org/10.1080/088395197117975
https://doi.org/10.1145/2025113.2025185
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1145/985692.985700
https://doi.org/10.1145/3360569
https://doi.org/10.1145/3360569
https://doi.org/10.1109/MS.2008.123
https://doi.org/10.1109/TSE.2011.41
https://doi.org/10.1109/WVL.1990.128407
https://doi.org/10.1109/WVL.1990.128407
https://doi.org/10.1145/2896587
https://doi.org/10.1109/ASE.2013.6693078
https://doi.org/10.1109/ICSE.2019.00089
https://doi.org/10.1145/1806799.1806847
https://doi.org/10.1145/4472.4476
https://doi.org/10.1145/4472.4476
https://doi.org/10.1007/978-1-349-19900-6_6
https://doi.org/10.1007/978-1-349-19900-6_6
https://doi.org/10.1145/2509136.2509544
https://doi.org/10.1109/ICSE.2017.44

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

UIST ’21, October 10–14, 2021, Virtual Event, USA Ni, et al.

[48] Richard M Stallman. 1981. EMACS the extensible, customizable self-documenting display editor. In Proceedings of the ACM SIGPLAN SIGOA
symposium on Text manipulation. 147–156.

[49] Atsushi Sugiura and Yoshiyuki Koseki. 1996. Simplifying macro definition in programming by demonstration. In Proceedings of the 9th annual
ACM symposium on User interface software and technology (UIST ’96). Association for Computing Machinery, New York, NY, USA, 173–182.
https://doi.org/10.1145/237091.237118

[50] Rijnard van Tonder and Claire Le Goues. 2019. Lightweight multi-language syntax transformation with parser parser combinators. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 363–378. https://doi.org/10.1145/3314221.3314589

[51] Louis Wasserman. 2013. Scalable, example-based refactorings with refaster. In Proceedings of the 2013 ACM workshop on Workshop on refactoring
tools (WRT ’13). Association for Computing Machinery, New York, NY, USA, 25–28. https://doi.org/10.1145/2541348.2541355

[52] Andrew J.Werth and BradA.Myers. 1993. Tourmaline (abstract): macrostyles by example. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on
Human Factors in Computing Systems (CHI ’93). Association for ComputingMachinery, NewYork, NY, USA, 532. https://doi.org/10.1145/169059.169532

20

https://doi.org/10.1145/237091.237118
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/169059.169532

	Abstract
	1 Introduction
	2 A Demo of reCode
	3 Background and Related Work
	3.1 Challenges of Making Code Transformations
	3.2 Programmatic Approaches to Code Transformations
	3.3 Editing by Example

	4 Formative Interviews and Design Goals
	5 System Design and Implementation
	5.1 reCode Workflow
	5.2 Overview of ReFazer*
	5.3 Limitations and Future Work

	6 Usability Evaluation of reCode
	6.1 Participants and Setup
	6.2 Tasks
	6.3 Protocol

	7 Results
	7.1 Efficiency and Effectiveness
	7.2 Participant Feedback

	8 Discussion
	8.1 Example-driven Intent through a Lightweight, Unified Interaction
	8.2 Expectations about Explainability
	8.3 Reusable Code Transformations

	9 Conclusion
	References

