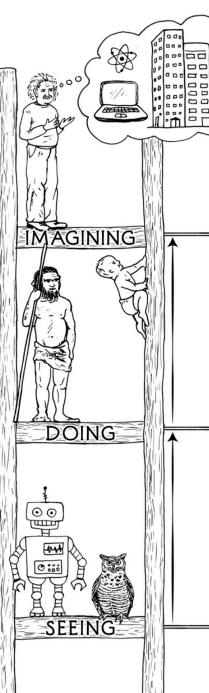


A Truly Unbiased Model

Recent Progress @ MReaL

Hanwang Zhang 张含望 <u>https://mreallab.github.io/</u> hanwangzhang@ntu.edu.sg



3. COUNTER.FACTUALS ACTIVITY: Imagining, Retrospection, Understanding QUESTIONS: What if I had done ...? Why? (Was it X that caused Y? What if X had not occurred? What if I had acted differently?) EXAMPLES: Was it the aspirin that stopped my headache? Would Kennedy be alive if Oswald had not

killed him? What if I had not smoked for the

Long-tailed, VQA-CP, ZSL, Open-Set, etc

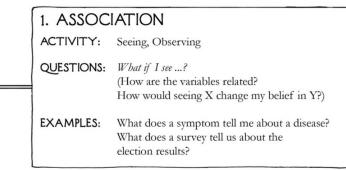
2. INTERVENTION

ACTIVITY: Doing, Intervening

last 2 years?

QUESTIONS: What if I do ...? How? (What would Y be if I do X? How can I make Y happen?)

EXAMPLES: If I take aspirin, will my headache be cured? What if we ban cigarettes?



FSL, VL Pretraining, R-CNN, UDA, CIL, VisDial, Seg, AdvDef, etc

Do vs. CF

- Do = CF
 - Manipulations of observational distributions (P)
 - Assumption: test P is different from train P (reason why we urge OOD causal evaluations)
- Do \neq CF
 - Do averages over contexts (do experiments everywhere)
 - CF pauses (known) everything at a moment, Do, then resume
 - Do interpolates facts
 - CF extrapolates facts---imagination---breaks the POSITIVITY of Do

Do and CF in debiasing methods

- Assumption: train \neq test (OOD)
- Do: CSS, CVL, Re-weighting/Re-sample
- CF: RUBi, CF-VQA, LMH

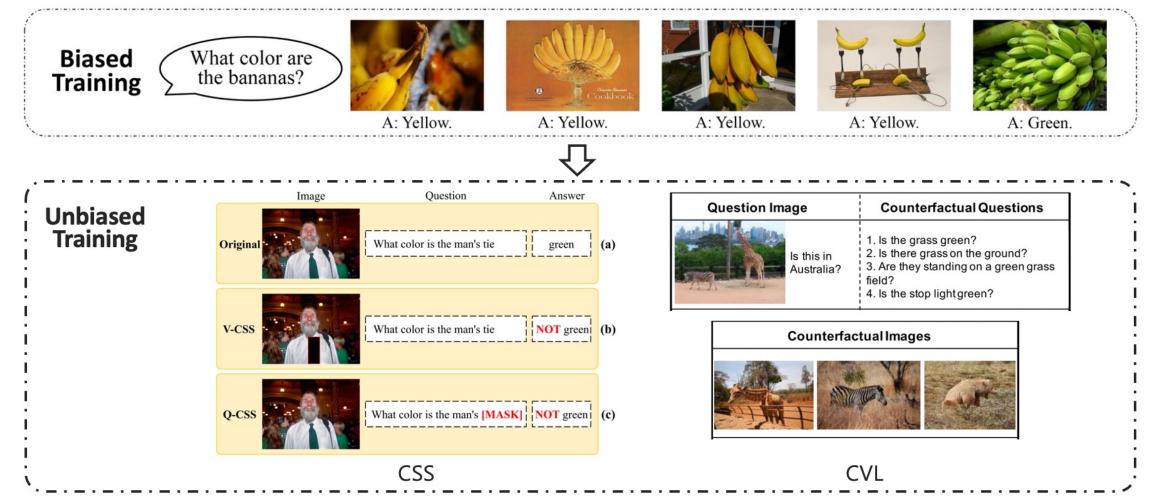
CSS: Chen et al. Counterfactual Samples Synthesizing for Robust Visual Question Answering. CVPR'20

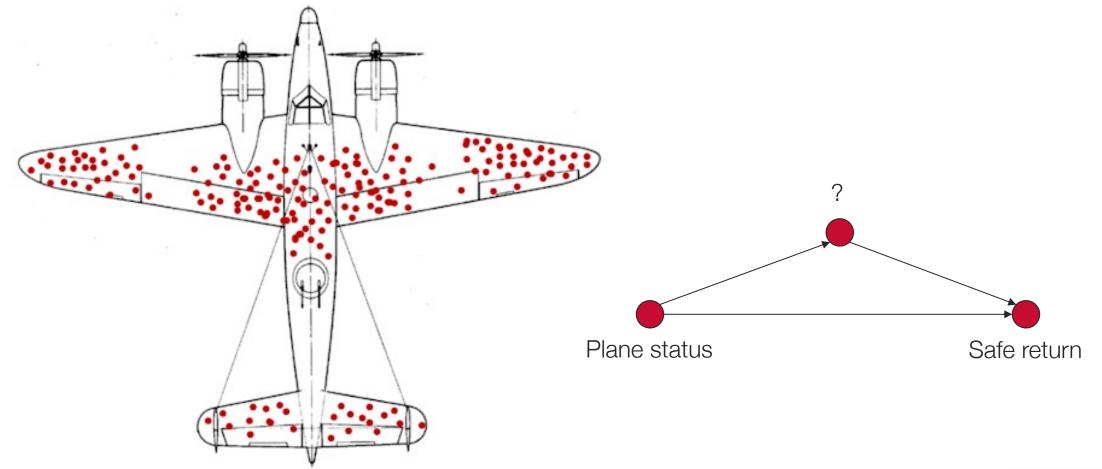
CVL: Abbasnejad et al. Counterfactual Vision and Language Learning. CVPR'20

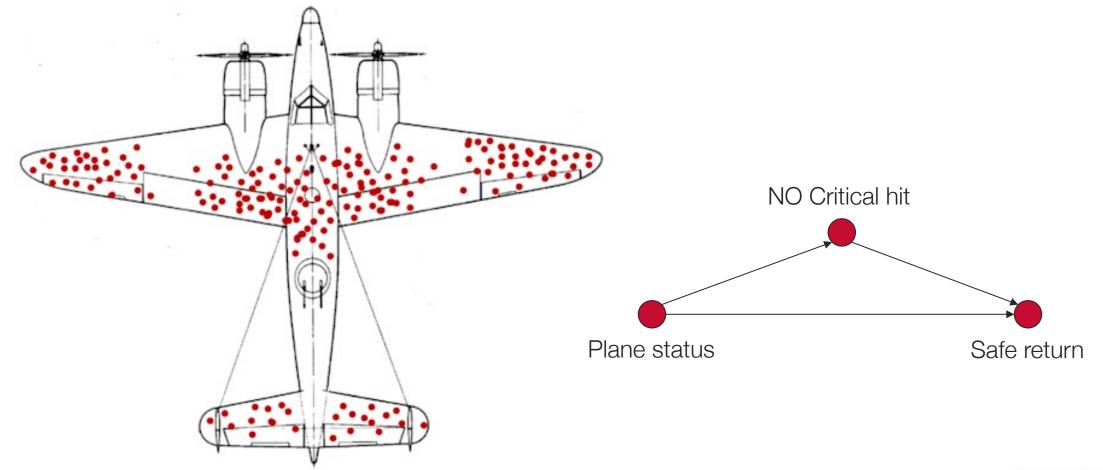
RUBi: Cadene et al. RUBi: Reducing Unimodal Biases in Visual Question Answering. NeurIPS'19

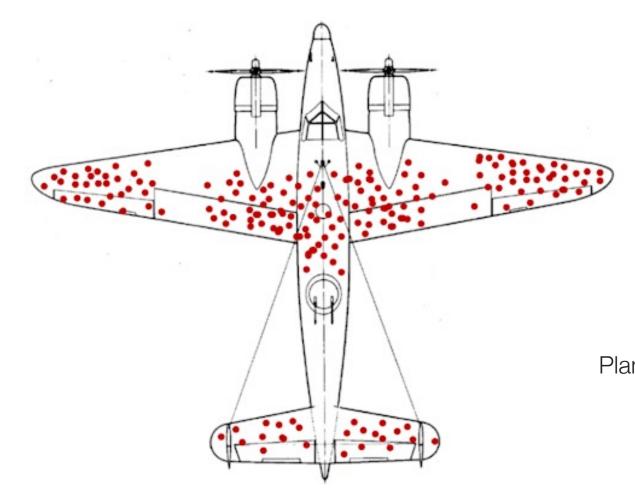
LMH: Clark et al. Don't Take the Easy Way Out: Ensemble based Methods for Avoiding Known Dataset Biases. EMNLP'19

Do Example in VQA-CP

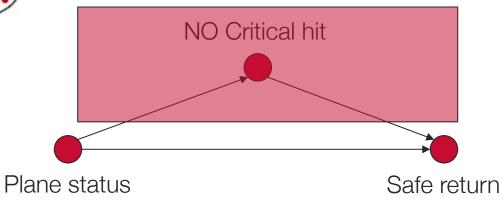


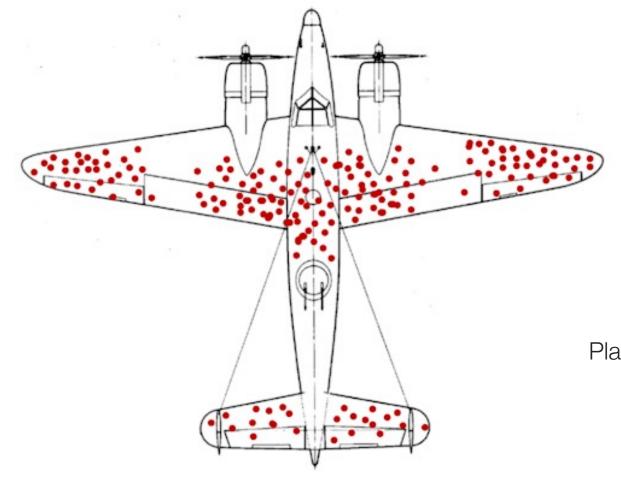




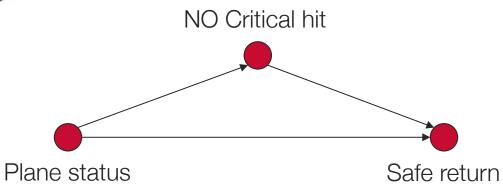


- 1. Most safe returns have less holes
- 2. Only minor have more holes
- 3. You believe that the minor is not safe compared to the majority
- 4. You will fortify the holes
- 5. WRONG





- 1. Most safe returns have no critical hit
- 2. Less critical hits \rightarrow Safer
- 3. Find the critical parts
- 4. You will fortify the intact parts
- 5. CORRECT

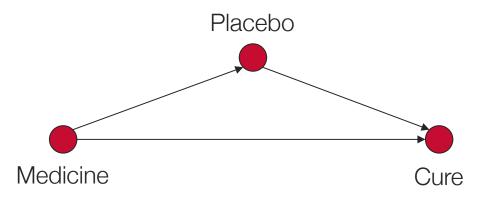


Notes

- The survivorship bias can be easily addressed by interventions.
- However, there are more cases that interventions are impossible; thus we need counterfactuals (imaginative interventions)

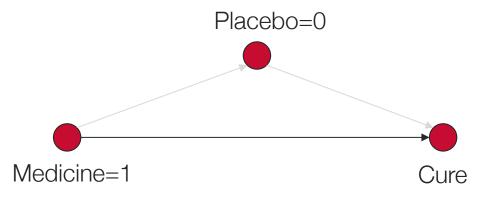
Mediation Effect

• How to remove Placebo Effect



Mediation Effect

- How to remove Placebo Effect?
- Challenge: Med = 1 and Placebo = 1 always co-occur; or, illegal to realize the following graph

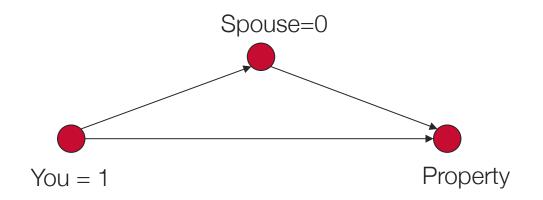


Ideal case

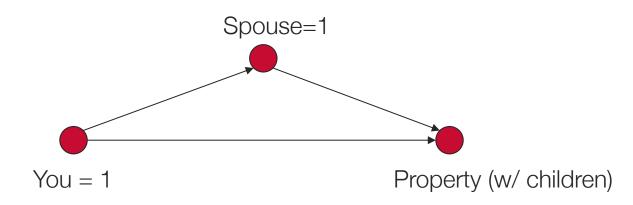
Mediation Effect: TDE (the minus trick)

- How to remove Placebo Effect?
- Solution: counterfactual \rightarrow cheating \rightarrow Med = 0 but Placebo = 1

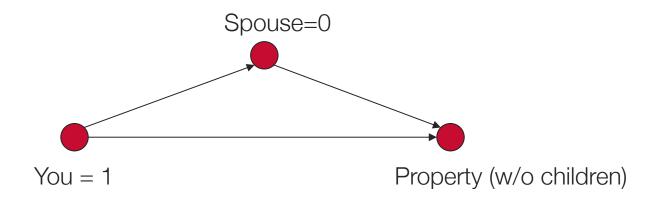
• Divorce



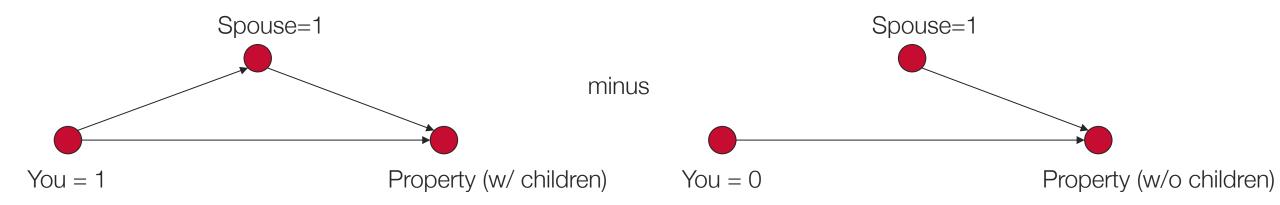
• Divorce



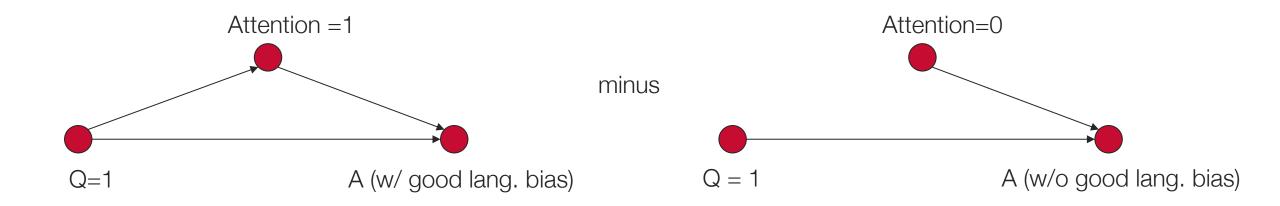
• Divorce: where has the children gone?



• Divorce: minus-trick can contain the children 3



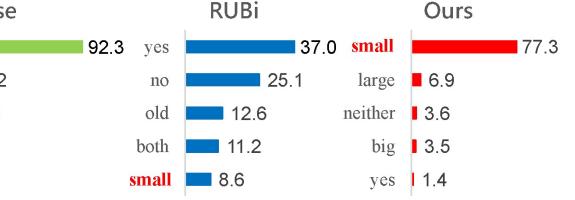
VQA: TIE



Examples

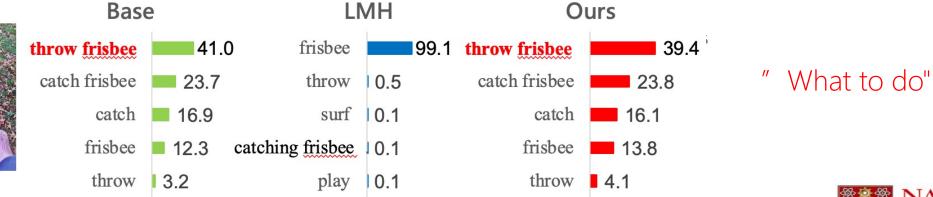
Q: Is this room <u>large or small</u>?



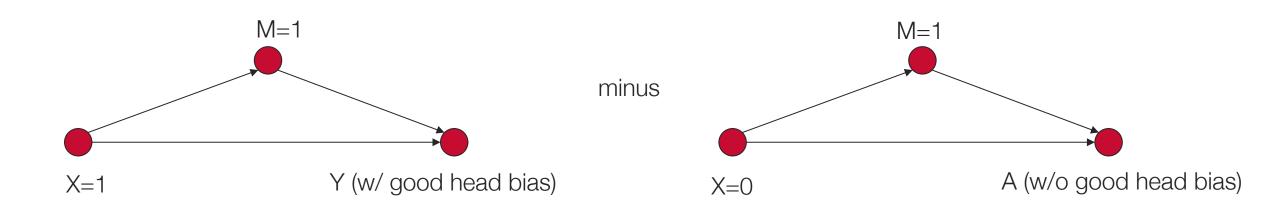


language context

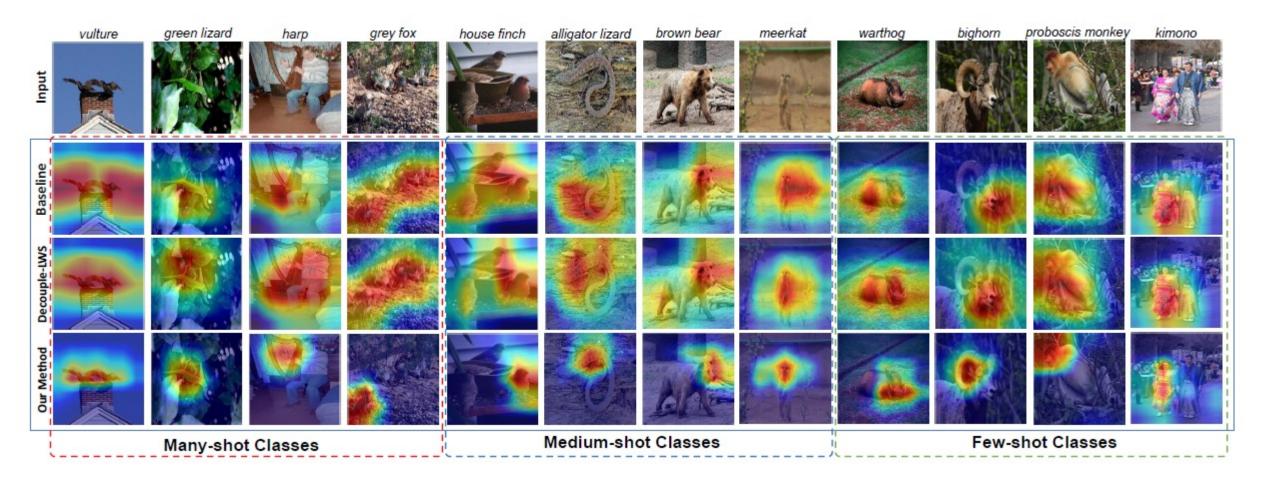
Q: What is the man about to do?



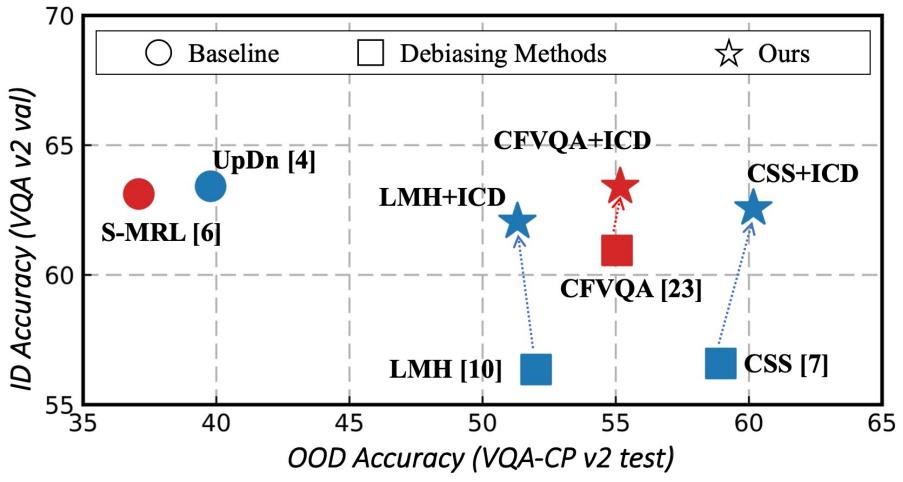
Long-tail: TDE



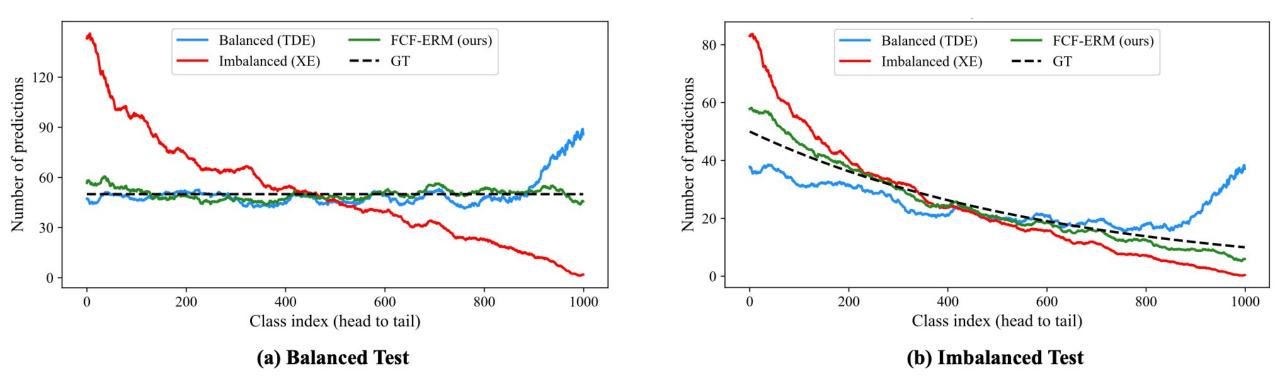
Grad-cam Visualization on Imagenet-It



What, on earth, do they minus? VQA



What, on earth, do they minus? Long-tail



What's new?

- A best of two worlds VQA model
- A best of two worlds long-tailed model

Introspective Distillation for VQA: Key Idea

- **ID-Teacher**: Good @ Train = Test, Bad @ Train != Test
- **OOD-Teacher**: Good @ Train != Test, Bad @ Train = Test
- A **Student** learns the best of the two teachers
- By **ONLY** given the train, how does the student know to whom she should listen?

Introspective Distillation for VQA: Key Idea

Introspection: Case 1

• if *ID-bias* > OOD-bias, then *ID-teacher* < OOD-teacher



Q: Is that an electric oven? (GT: Yes.)

For each sample, If ID-Teacher is too good to be true OOD-Teacher not so good, W(OOD) ∝ XE(OOD)/XE(ID)

Introspection: Case 2

• if *ID-bias < OOD-bias*, then *ID-teacher > OOD-teacher*

Question type "What color is the ... ?"

Introspection

blue

ID

white

white

OOD

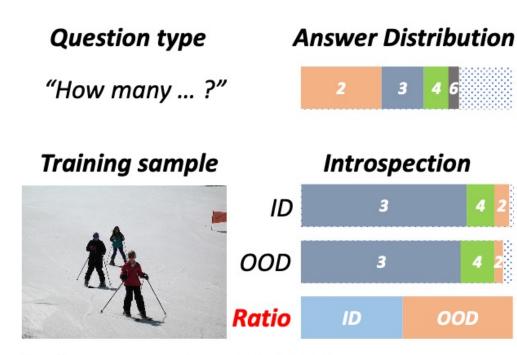
Training sample

Q: What color is the older man's shirt? (GT: Blue.)

For each sample, If ID-Teacher is not so good, OOD-Teacher is too good to be true, W(ID) ∝ XE(ID)/XE(OOD)

Introspection: Case 3

• if *ID-bias* ≈ *OOD-bias*, then *ID-teacher* ≈ *OOD-teacher*



For each sample, If ID/OOD-teachers are similar, W(ID) \approx W(OOD) as XE(ID) \approx XE(OOD)

Q: How many skiers? (GT: 3.)

The Introspective Pipeline



How does Introspection look like?

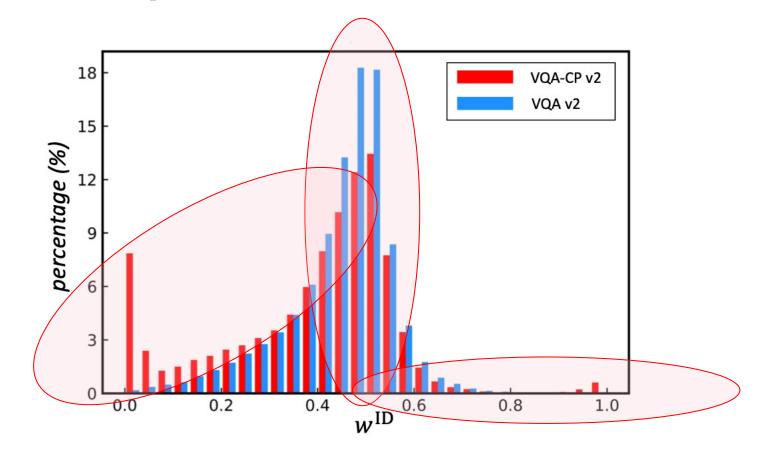


Figure 4: The distribution of w^{ID} on the VQA-CP v2 and VQA v2 training sets.

How does Introspection look like? Both are mostly Case 3

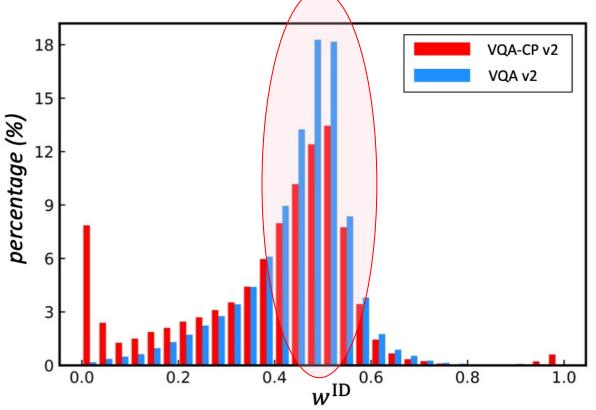
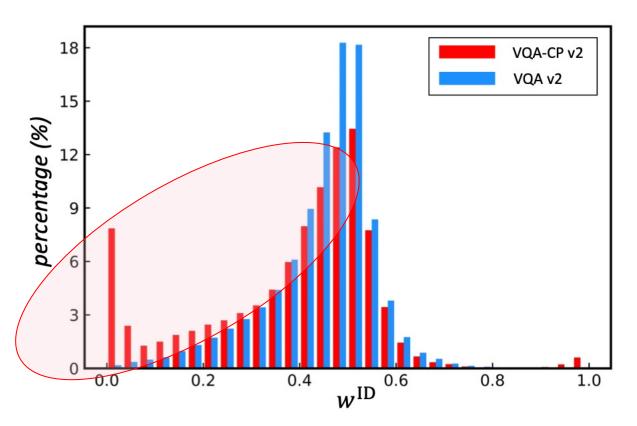


Figure 4: The distribution of w^{ID} on the VQA-CP v2 and VQA v2 training sets.

ID-teacher \approx OOD-teacher **Question type** Answer Distribution "How many ... ?" Training sample Introspection ID OOD Ratio OOD ID

Q: How many skiers? (GT: 3.)

How does Introspection look like? VQA-CP has more Case 1 than VQA



Question typeAnswer Distribution"Is ... ?"YesNoTraining sampleIntrospectionIDYesNoODYesNoRatioODODODO: Is that an electric oven? (GT: Yes.)

ID-teacher < OOD-teacher

Figure 4: The distribution of w^{ID} on the VQA-CP v2 and VQA v2 training sets.

How does Introspection look like? VQA has more Case 2 than VQA-CP

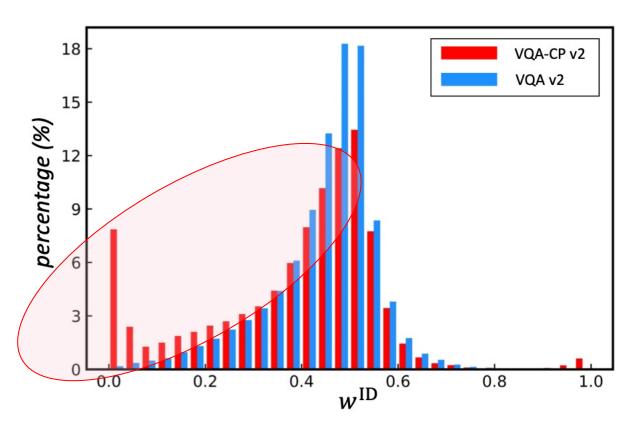


Figure 4: The distribution of w^{ID} on the VQA-CP v2 and VQA v2 training sets.

Question typeAnswer Distribution"What color is the ... ?"white blackTraining sampleIntrospectionIDbluewhiteOODbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDbluewhiteIDDODblue

ID-teacher > OOD-teacher

Q: What color is the older man's shirt? (GT: Blue.)

How does Introspection look like? Both ID-Teachers are weaker (more biased than OOD-Teachers)

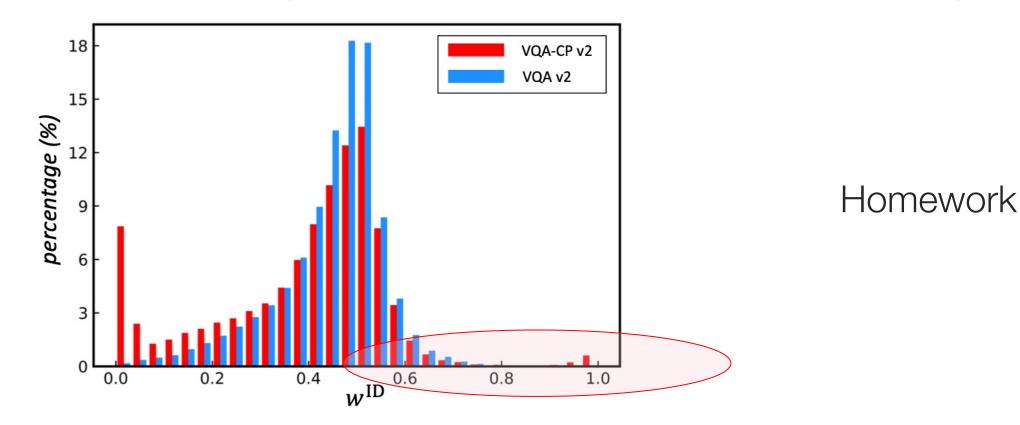
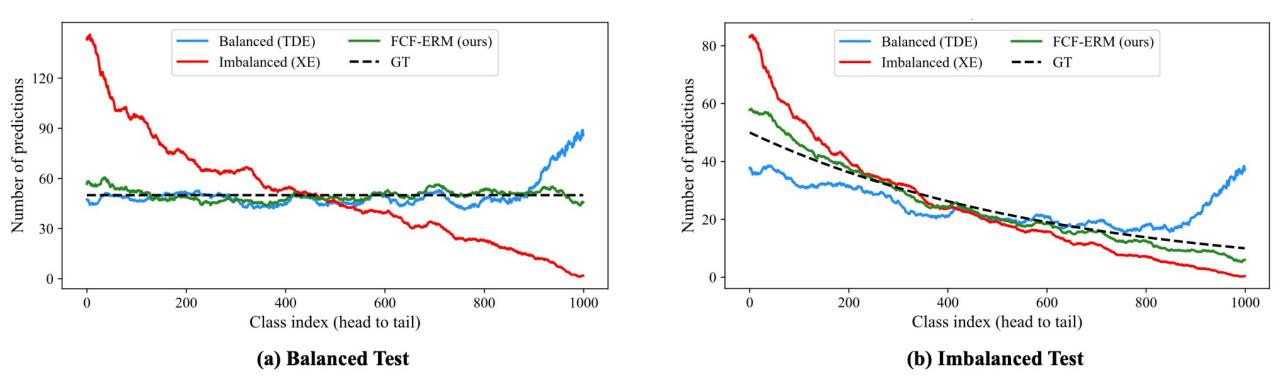


Figure 4: The distribution of w^{ID} on the VQA-CP v2 and VQA v2 training sets.

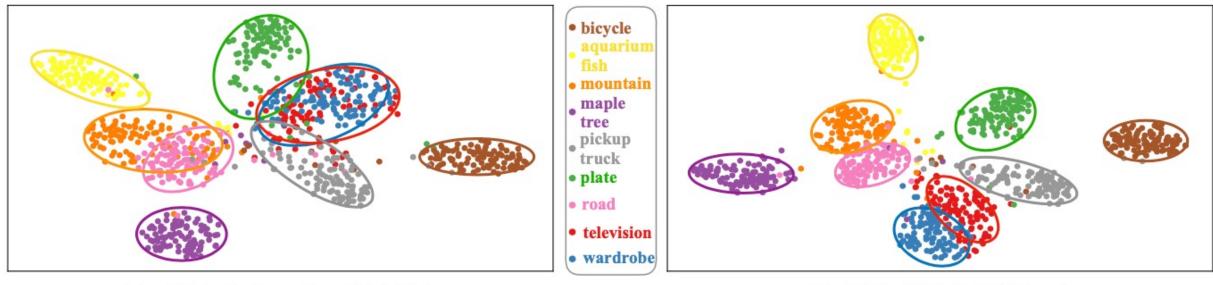
The best of the two worlds

	VQA-CP v2 test (OOD)				V				
Methods	All	Y/N	Num.	Other	All	Y/N	Num.	Other	HM
UpDn [4]	39.79	43.23	12.28	45.54	63.42	81.19	42.43	55.47	48.90
LMH [10]	52.01	72.58	31.12	46.97	56.35	65.06	37.63	54.69	54.09
+ IntroD	51.31 <mark>-0.70</mark>	71.39	27.13	47.41	62.05 ^{+5.70}	77.65	40.25	55.97	56.17 ^{+2.08}
CSS [7]	58.95	84.37	49.42	48.21	56.98	65.90	38.19	55.18	57.95
+ IntroD	60.17 ^{+1.22}	89.17	46.91	48.62	62.57 ^{+5.59}	78.57	41.42	56.00	61.35 +3.40
S-MRL [6]	37.09	41.39	12.46	41.60	63.12	81.83	45.95	53.43	46.72
RUBi [6]	47.60	$7\bar{0}.\bar{48}$	20.33	43.09	61.16	81.97	44.86	49.65	53.53
+ IntroD	48.54 ^{+0.96}	73.94	19.43	43.21	61.86 ^{+0.70}	82.40	45.40	50.58	54.40 ^{+0.87}
RUBi-CF [23]	54.90	90.26	34.33	42.01	60.53	81.39	42.87	49.34	57.58
+ IntroD	54.92 ^{+0.02}	90.84	25.17	44.26	63.15 ^{+2.62}	82.44	45.12	53.25	58.75 ^{+1.17}
$\overline{CF}-VQ\overline{A}$ [23]	55.05	90.61	21.50	45.61	60.94	81.13	43.86	50.11	57.85
+ IntroD	55.17 ^{+0.12}	90.79	17.92	46.73	63.40 ^{+2.46}	82.48	46.60	54.05	58.99 ^{+1.14}

Current LT is just a "bias flip" game



So, it does not truly improve the feature



(c) t-SNE of balanced model (TDE)

(d) t-SNE of FCF-ERM (ours)

Factual and Counterfactual ERMs Blend: 3 Steps

Step 1

- Learn a conventional classifier on the imbalanced training data as the *factual* model
- Learn a balanced classifier as the *counterfactual* model

Factual and Counterfactual ERMs Blend: 3 Steps

Step 2: ER Weights

(Factual ER weight)

$$w^{\rm f} = \frac{(XE^{\rm f})^{\gamma}}{(XE^{\rm f})^{\gamma} + (XE^{\rm cf})^{\gamma}},$$

(Counterfactual ER weight)

$$w^{\rm cf} = 1 - w^{\rm f} = \frac{(XE^{\rm cf})^{\gamma}}{(XE^{\rm f})^{\gamma} + (XE^{\rm cf})^{\gamma}}.$$

Factual and Counterfactual ERMs Blend: 3 Steps

Step 3: Blended ERM

(Factual ER)
$$\mathcal{R}^{f}(f) = -w^{f} \sum_{i} y_{i} \log f_{i}(x),$$

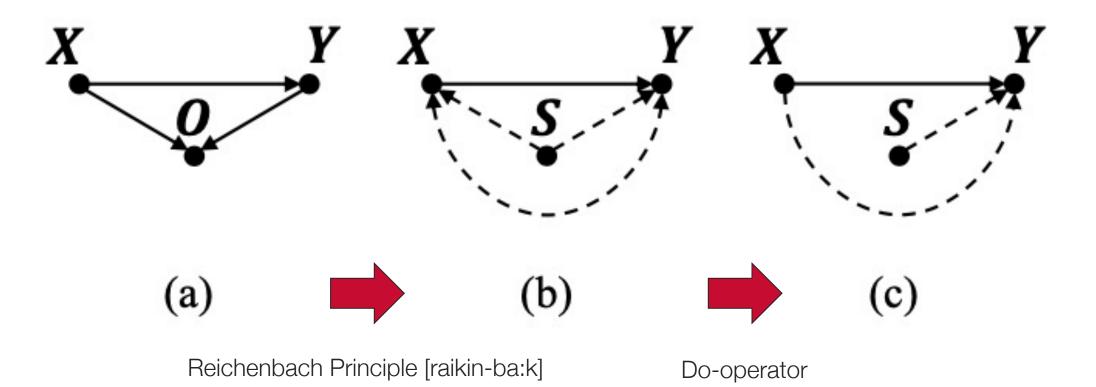
where y_i and f_i are the ground-truth and the predicted label for *i*-th class, respectively.

(Counterfactual ER)
$$\mathcal{R}^{\mathrm{cf}}(f) = -w^{\mathrm{cf}} \sum_{i} \hat{y}_i \log f_i(x),$$

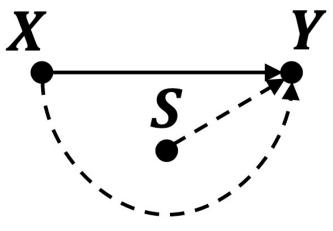
where $\hat{y}_i = p^{cf}(y_i|x)$ denotes the balanced prediction for *i*-th class. The overall empirical risk minimization:

$$\mathcal{R}(f) = \mathcal{R}^{\mathrm{f}}(f) + \mathcal{R}^{\mathrm{cf}}(f).$$

Why? Selection Bias Removal



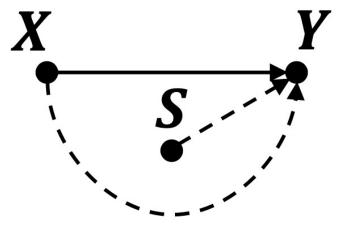
ERM on the Do-modified graph



$$\mathcal{R}(f) = \mathbb{E}_{x \sim P(X), y \sim P(Y|do(X=x))} \mathcal{L}(y, f(x)) = \sum_{x} \sum_{y} \mathcal{L}(y, f(x)) P(y|do(x)) P(x)$$

Jung et al. Learning Causal Effects via Weighted Empirical Risk Minimization. NeurIPS'20

Backdoor Adjustment: from "interventional" distribution to "observational" distribution



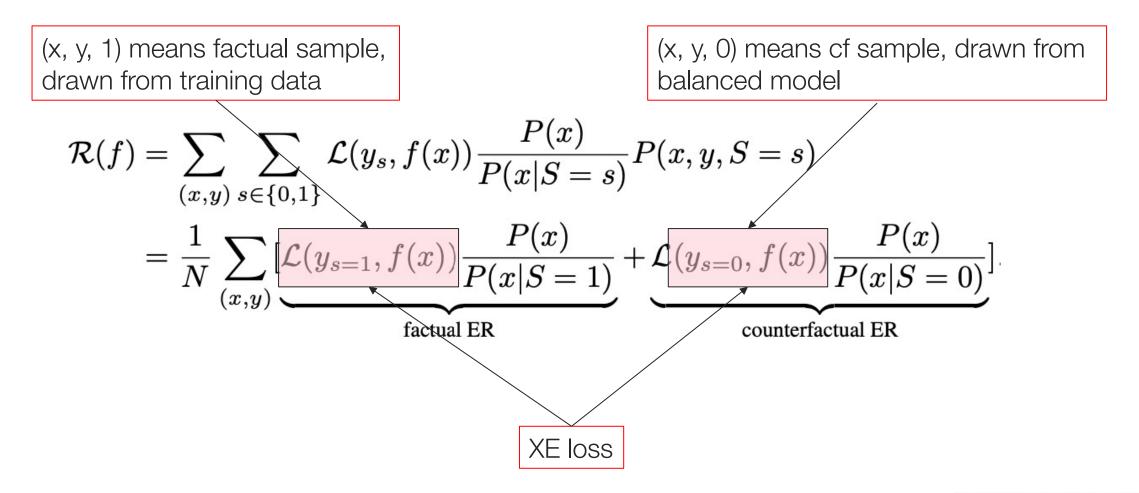
$$P(y|do(x)) = \sum_{S=s \in \{0,1\}} P(y|x, S=s) P(S=s) = \frac{P(x, y, S=1)}{P(x|S=1)} + \frac{P(x, y, S=0)}{P(x|S=0)}.$$

More math

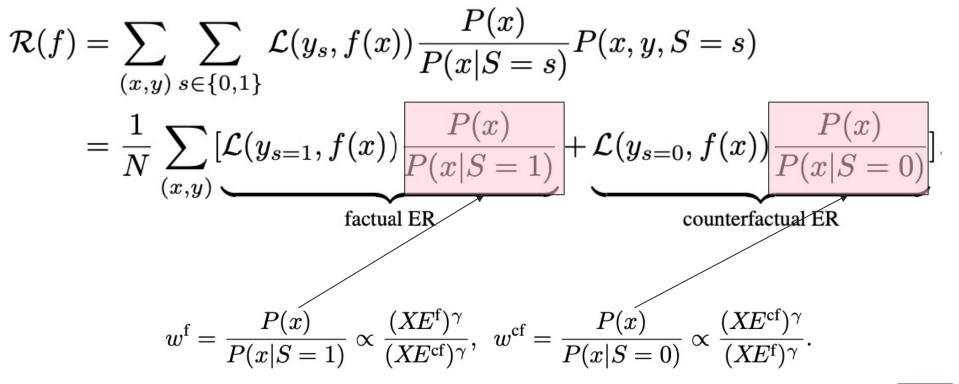
$$\mathcal{R}(f) = \mathbb{E}_{x \sim P(X), y \sim P(Y|do(X=x))} \mathcal{L}(y, f(x)) = \sum_{x} \sum_{y} \mathcal{L}(y, f(x)) \frac{P(y|do(x))}{P(y|do(x))} P(x)$$

$$P(y|do(x)) = \sum_{S=s \in \{0,1\}} P(y|x, S=s) P(S=s) = \frac{P(x, y, S=1)}{P(x|S=1)} + \frac{P(x, y, S=0)}{P(x|S=0)}.$$

Overall ERM



Overall ERM: it explains all



The best of the two worlds: balanced test

Methods	Acc	Recall		Precision			F1			
		Many	Med	Few	Many	Med	Few	Many	Med	Few
XE	49.0	68.6	42.9	15.0	46.9	59.1	60.7	55.7	49.7	24.1
τ -Norm [17]	49.6	61.8	46.2	27.4	52.2	48.5	43.7	56.6	47.3	33.7
LWS [17]	49.9	60.2	47.2	30.3	53.0	49.1	41.3	56.4	48.1	35.0
LADE [13]	51.7	62.6	49.0	30.4	55.3	50.5	41.2	58.7	49.7	34.9
DiVE [11]	53.1	64.1	50.4	31.5	-	-	-	-		-
DisAlign [40]	53.4	61.3	52.2	31.4	-	_	-	-	_	-
PC [13]	48.9	60.4	46.7	23.8	56.3	49.7	32.0	58.3	48.2	27.3
TDE [16]	51.8	62.7	49.0	31.4	57.3	52.3	39.5	59.9	50.6	35.0
FCF-ERM _{PC}	53.2	67.6	49.8	24.0	53.1	55.0	52.4	59.3	51.9	33.0
FCF-ERM _{TDE}	54.1	68.6	50.0	27.5	53.5	57.3	52.0	60.1	53.4	36.0

The best of the two worlds: imbalanced test

Imbalanced ratio	50	25	10	5
τ -Norm [17]	59.6	58.2	56.2	54.6
LWS [17]	60.6	59.2	57.0	55.0
PC [13]	58.2	56.8	54.5	52.7
LADE [13]	61.8	60.6	58.6	56.8
TDE [16]	63.0	61.6	59.5	57.6
XE	67.7	65.2	61.4	58.0
FCF-ERM _{PC}	66.8	65.3	62.5	60.1
FCF-ERM _{TDE}	67.7	66.0	63.5	60.9

The best of two worlds: improved feature (LT data trained backbone. Normal classification on balanced data

Backbone	Acc	Recall		Precision			F1			
		Many	Med	Few	Many	Med	Few	Many	Med	Few
CIFAR100										
XE (PC [13])	52.6	60.3	51.9	44.4	59.6	51.1	44.4	60.0	51.5	44.4
TDE [16]	52.6	60.4	51.7	44.4	59.5	51.0	44.5	60.0	51.4	44.5
LADE [13]	53.9	58.7	53.8	47.8	60.2	54.5	47.1	59.4	54.1	47.4
FCF-ERM _{TDE}	55.1	62.8	54.5	46.7	61.7	53.9	48.1	62.3	54.2	47.4
FCF-ERM _{PC}	55.3	60.9	56.0	48.0	63.7	54.3	48.3	62.3	55.1	48.1
Places365										
XE (PC [13])	43.8	43.8	44.0	43.5	39.9	43.5	49.3	41.7	43.7	46.2
TDE [16]	43.8	43.8	43.9	43.6	39.7	43.6	48.7	41.6	43.8	46.0
LADE [13]	44.3	42.9	45.9	43.1	43.4	45.1	45.7	43.1	45.5	44.4
FCF-ERM _{TDE}	44.6	44.1	45.3	44.0	40.4	44.9	49.5	42.1	45.1	46.6
FCF-ERM _{PC}	46.6	45.1	48.2	46.0	44.2	49.0	53.3	44.6	48.6	49.4
ImageNet										
XE (PC [13])	56.5	64.5	53.8	43.2	59.8	55.1	50.6	62.1	54.4	46.6
TDE [16]	56.5	64.4	53.8	43.7	60.2	55.2	49.8	62.2	54.5	46.6
LADE [13]	57.9	62.6	55.7	52.2	62.4	56.5	52.9	62.5	56.1	52.5
FCF-ERM _{TDE}	58.9	66.5	56.4	46.2	62.1	57.8	63.2	64.2	57.1	49.4
FCF-ERM _{PC}	60.2	64.8	58.2	53.8	64.9	58.3	53.9	64.8	58.2	53.8

