

A Tutorial on Al Music Composition

Xu Tan & Xiaobing Li Microsoft Research Asia & Central Conservatory of Music, China

Somi Summit On Music Intelligence 2021 Beijing

Central Conservatory of Music
 (CCoM)/The Merchantel Beijing

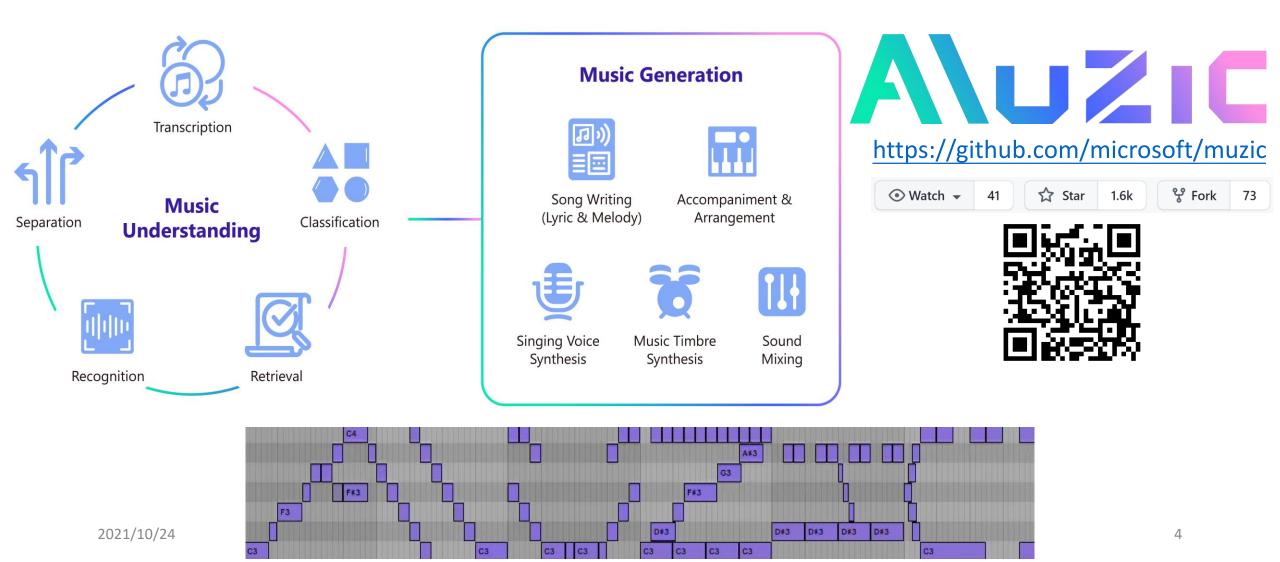
🖄 October 22-24, 2021

https://www.somi-ccom.com/en/

Self-introduction

- Xu Tan (谭旭)
- Senior Researcher @ Machine Learning Group, Microsoft Research Asia
- Research interests: deep learning and its applications on NLP/Speech/Music
 - Music understanding and generation
 - Text to speech
 - Automatic speech recognition
 - Neural machine translation
 - Language/speech pre-training
- Homepage: https://tan-xu.github.io
- Google scholar: https://scholar.google.com/citations?user=tob-U1oAAAAJ
- Al music project page: https://www.microsoft.com/en-us/research/project/ai-music/

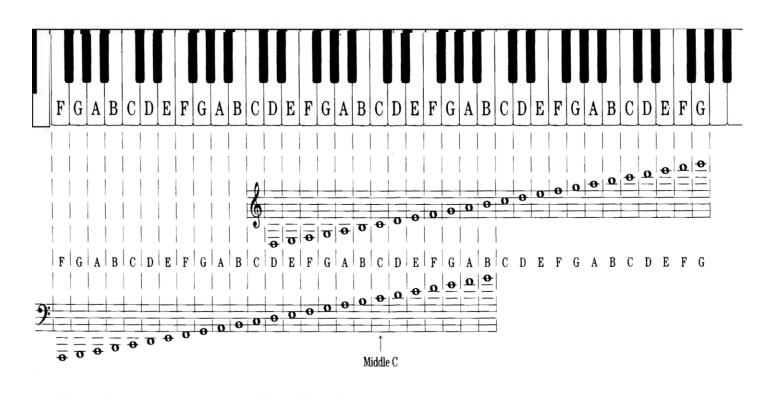
Our research project on Al music: Muzic



Outline

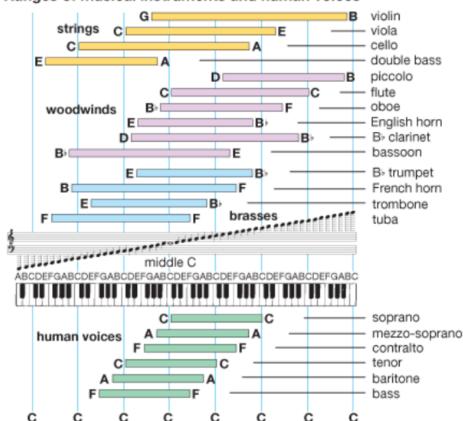
- Background
 - Music Basics
 - AI Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

• Note: pitch, duration, velocity



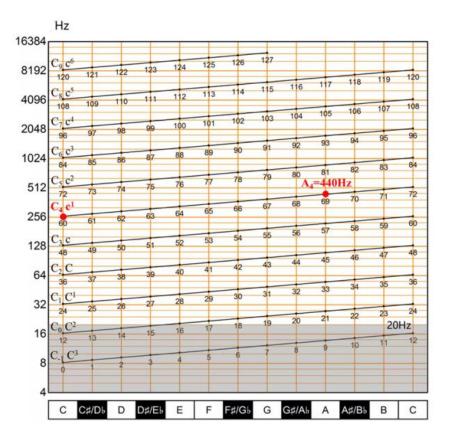
 $\{ppp, pp, pp, p, f, ff, fff\}$

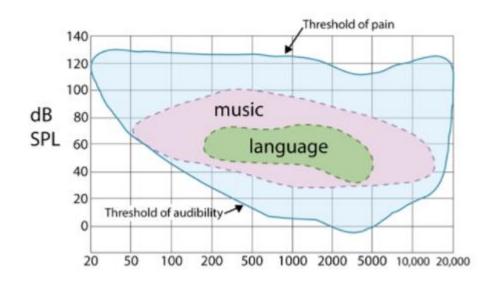
- Note: pitch, duration, velocity
 - Pitch range of different musical instruments



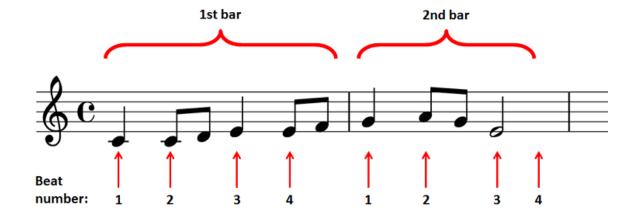
Ranges of musical instruments and human voices

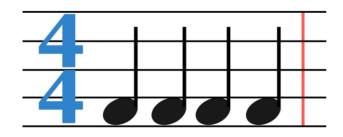
• Note: pitch, duration, velocity



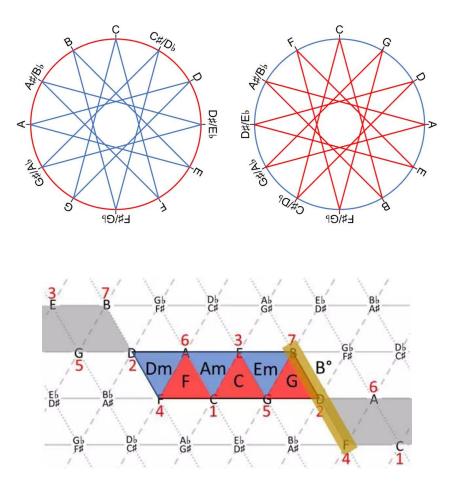


• Rhythm: beat, bar, time signature (e.g., 4/4), tempo (120 beats per minute)



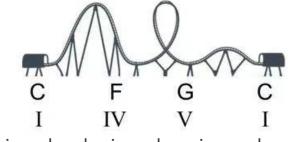


- Interval/Chord
 - Octave, twelve-tone equal temperament
 - C D E F G A B C, 0 1 2 3 4 5 6 7 8 9 10 11 12
 - C major , full/full/half/full/full/half
 - Harmony between two notes
 - Totally consonant: prime, octave (C-C)
 - Consonant: perfect fourth, perfect fifth (C-F, C-G)
 - Incomplete consonant: major/minor third/sixth
 - Dissonant: major/minor second/seventh, augmented forth, diminished fifth
 - Chord
 - C: C, E, G
 - Am: A, C, E
 - C Dm Em F G Am B-

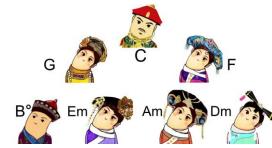


• Harmony

- Tonic chord (T): C chord
- Dominant chord (D): G chord
- Secondary Dominant (S): F chord
- Cadence (in analogy with comma, period)
 - Stable/unstable cadence
 - Half cadence: T-D, S-D, full cadence: D-T, S-D-T
 - C major, begin with C, end with G (half sentence), end with G-C (full sentence)
- Chord progression
 - 1(C) 6(Am) 4(F) 5(G)
 - 4(F) 5(G) 3(Em) 6(Am) 2(Dm) 5(G) 1(C)
 - 1(C) 5(G) 6(Am) 3(Em) 4(F) 1(C) 2(Dm) 5(G) (Canon chords)

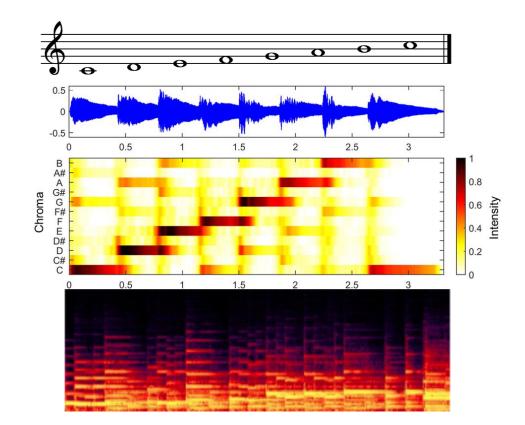


opening, developing, changing and concluding



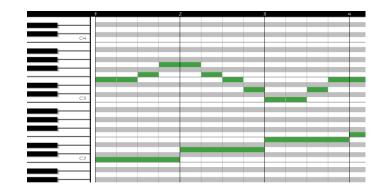
Music basics——Representation

- Audio domain
 - Waveform
 - chromatogram
 - Spectrogram



Music basics——Representation

- Symbolic domain
 - Piano-roll



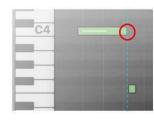
• MIDI: Musical Instrument Digital Interface

 ${\bf 128}$ NOTE-ON events: one for each of the 128 MIDI pitches. Each one starts a new note.

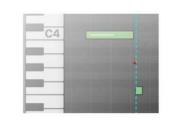
128 NOTE-OFF events: one for each of the 128 MIDI pitches. Each one releases a note.

125 TIME-SHIFT events: each one moves the time step forward by increments of 8 ms up to 1 second.

 $32\ {\rm VELOCITY}$ events: each one changes the velocity applied to all subsequent notes (until the next velocity event).



SET-VELOCITY<31> NOTE-ON<C4> TIME-SHIFT<640ms> NOTE-OFF<C4> TIME-SHIFT<24ms> SET-VELOCITY<25> NOTE-ON<F3>



SET-VELOCITY<31> NOTE-ON<C4> TIME-SHIFT<640ms> NOTE-OFF<C4> TIME-SHIFT<24ms> SET-VELOCITY<25> NOTE-ON<F3>

C4	
-	
	1

SET-VELOCITY<31>
NOTE-ON <c4></c4>
TIME-SHIFT<640ms>
NOTE-OFF <c4></c4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON <f3></f3>

SET-VELOCITY<31>
NOTE-ON <c4></c4>
TIME-SHIFT<640ms>
NOTE-OFF <c4></c4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON <f3></f3>

C4	_	_
		0

SET-VELOCITY<31> NOTE-ON<C4> TIME-SHIFT<640ms> NOTE-OFF<C4> TIME-SHIFT<24ms> SET-VELOCITY<25> NOTE-ON<F3>

Music basics——Music type

- Melody: Single-voice monophonic melody
- Polyphony: Single-voice polyphony
 - piano or guitar
- Multivoice polyphony
 - Chorale: soprano, alto, tenor and bass
- Accompaniment
 - Harmony, chord progression, drum, bass, guitar, keyboard
- Music plus
 - Lyrics/singing (song, most popular)
 - Text/speaking (rap, reading)
 - Movie, game, dance
 - Religion, labor, wedding and funeral

Music basics——History

- Music is the universal language of mankind
 - —— American Poet: Henry Wadsworth Longfellow, 200 years ago
- Music exists in every civilization
 - Music may be invented in Africa, 55K years ago
 - Some old musical instruments in China
 - Jiahu bone flute, 9000 years ago, heptachord
- Why music is born?
 - Hunting, labor, witchcraft, imitation, game, expression of emotion, etc
 - e.g., harp \rightarrow hunting with bow?

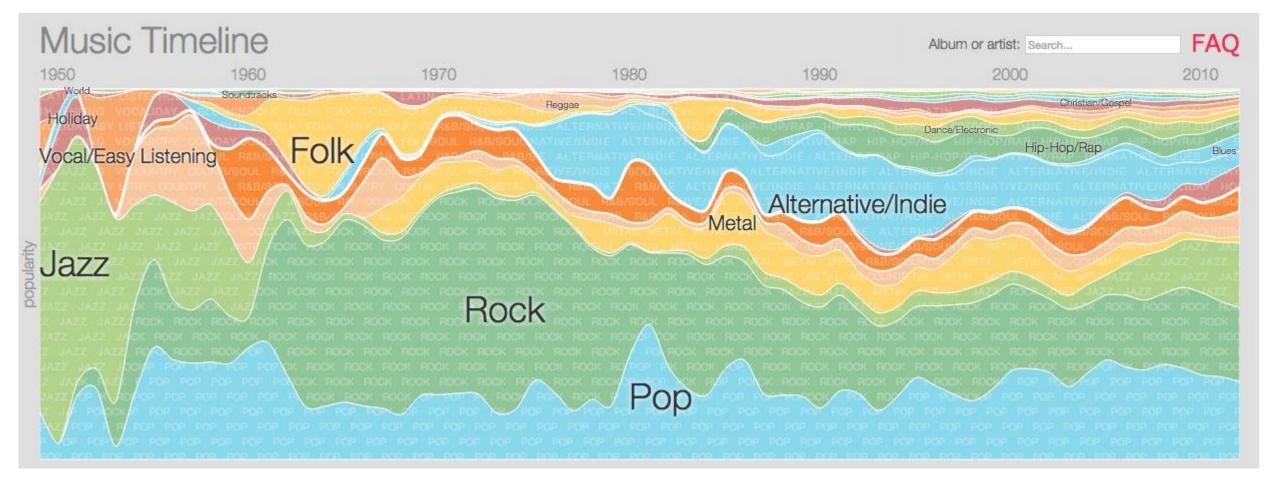
Music basics——History (western)

- Ancient Greek/Rome (12th BC -- 476)
 - Music (Muse), Rhythm, Melody, Harmony, Polyphony, Symphony
- Middle Ages (476 -- 1460)
 - Religious music
- Renaissance (1430 -- 1600)
 - Against empirical philosophy, advocate individuality and freedom
- Baroque (1600 -- 1750)
 - Gorgeous and passionate. Bach
- Classicism (1750 -- 1820)
 - Rules and order, universal truth, Haydn, Mozart, Beethoven.
- Romanticism (1820 -- 1910)
 - Love for nature, new and original, exoticism
- Modern (19th -- 1950s)
 - Complex and changing international environment, technology
- Contemporary (1950s -- now)

2021/10/2Electronic/Computer/Al music

Classicism Romanticism Modern Contemporary

Music basics——History (20th century)



Music basics——Computational music

- Discipline: Technology & Music
 - Technology: Acoustics, Audio Signal Processing, Artificial Intelligence, Human-Machine Interaction
 - Music: Composition (melody, rhythm, harmony, form, polyphony, orchestrate), Music Production, Sound Design, Instrumental Playing
- Technique
 - Sound/Music Signal Processing (analysis/transformation/synthesis): Spectrum analysis, amplitude modulation, frequency modulation filtering, transcoding compression, sampling, mixing, denoising and modulation
 - Music Understanding: Music transcription, melody extraction, rhythm analysis, chord recognition, audio detection, genre classification, sentiment analysis, singer recognition, singing evaluation, singing separation, etc
 - Music Generation: melody generation, arrangement, music production, sound design, etc

Music basics——Computational music

- Organization and research institute
 - Organization/Conference: ISMIR, NIME, CSMT, ACM Multimedia, ICASSP, TASLP, AI Conferences, etc.
 - Research Lab: C4DM (Queen Mary University of London), LabROSA (Columbia University), Music Al Lab (Academia Sinica), CCRMA (Stanford University), CMG (CMU), IRCAM (Pairs), MTG (Barcelona), CCOM (Central Conservatory Of Music), etc.
 - Industry: Microsoft Muzic, Xiaolce, Google Magenta, OpenAI, Tencent, NetEase, TikTok, Kuaishou, etc.

Outline

- Background
 - Music Basics
 - AI Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

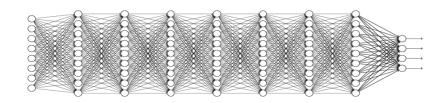
- Machine learning paradigm
 - Supervised learning: learn from large amount of supervised data
 - Reinforcement learning: learn from reward
 - Unsupervised/Self-supervised learning: design task to learn from the data itself
 - Multitask/transfer learning: learn from different tasks to help target task

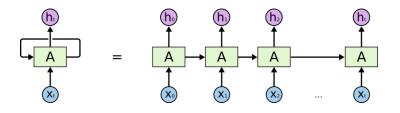
- Model structure
 - DNN: dense connection

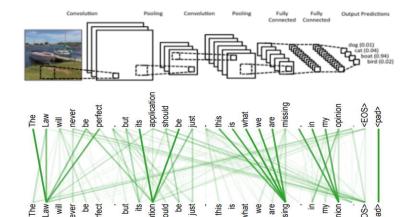
• RNN: sequential modeling

• CNN: local interaction

• Self-attention: global interaction





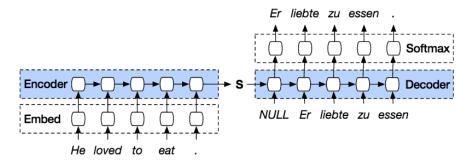


- Model structure comparison
 - Information exchange: self-attention > CNN > RNN
 - Computation complexity: self-attention > CNN > RNN (when n is large)

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k\cdot n\cdot d^2)$	O(1)	$O(log_k(n))$

- Model structure used in music composition
 - Symbolic domain: MelodyRNN (RNN) \rightarrow MidiNet (CNN) \rightarrow Music Transformer (self-attention)
 - Audio domain: SampleRNN/Tacotron (RNN) → WaveNet/DeepVoice (CNN) → FastSpeech (self-attention)

- Sequence generation model
 - Decoder or encoder-attention-decoder
 - Model structure can be RNN/CNN/self-attention
- Sequence generation task in music composition
 - Melody generation
 - Song writing (lyric to melody)
 - Accompaniment generation (melody to accompaniment)
 - Sound rendering (score to sound)
 - Singing voice synthesis (lyric+score to singing voice)



- Generative models
 - Autoregressive generation
 - Condition on last music token/frame, generate token/frame one by one
 - Teacher forcing in training, autoregressive decoding in inference
 - GAN
 - Generator to generate a music sequence, discriminator to judge true or false
 - On audio domain, gradient can be easily back-propagated from discriminator to generator
 - On symbolic domain, usually use policy-gradient or gumble softmax or straight-through to backprogate gtadient
 - VAE
 - Self-reconstruction, with prior distribution as regularization.
 - Posterior encoder P(z|x), decoder g(x|z), prior regularization KL(z|N(0, 1))
 - In generation, sample z from N(0,1), and g(x|z)
 - Disentangle, control, transfer
 - Flow/Diffusion model
 - Flow: map between data distribution x and standard (normalizing) prior distribution z with invertible transformation
 - Diffusion model: diffusion/forward process ($x \rightarrow z$), denoising/backward process ($z \rightarrow x$)

Outline

- Background
 - Music Basics
 - Al Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

Music composition pipeline

- From the perspective of pure music
 - Score Generation \rightarrow Performance Generation \rightarrow Sound Generation

- From the perspective of music+song
 - Song Writing (Lyric/Melody) \rightarrow Accompaniment/Arrangement \rightarrow Singing Voice Synthesis / Instrumental Sound Generation \rightarrow Sound Mixing
- Unify the pipeline together
 - Music score generation (symbolic domain)
 - Music sound generation (audio domain)
- \leftarrow text generation
- \leftarrow speech generation

Music score generation

- Melody generation
 - Melody generation
 - Polyphony generation
 - Multi-track generation
 - Expressive melody generation (performance generation)
- Song writing
 - Lyric generation
 - Lyric-to-melody generation
 - Melody-to-lyric generation
- Accompaniment and arrangement generation
 - Melody-to-accompaniment generation

Melody generation——Key challenges

- Music sequence is not as simple as text, highly complex and structured
 - How to encode symbolic music with good representation?
- Music sequence is extremely long and has strong repeating patterns
 - How to model the long-term dependency to capture the overall music structrue?
- Multitrack/polyphony music has strong interdependency among tracks
 - How to model the dependency among tracks?
- Music score relies on performance features for expressive music sound generation
 - How to generate expressive score sequence?

Melody generation——How to encode symbolic music

• Pianoroll

2021/10/24

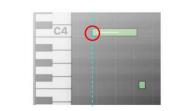
- Advantages: intuitional
- Disadvantages: too dense, cannot distinguish between a long note and a repeated short note
- MIDI: Musical Instrument Digital Interface
 - Advantages: event-based, concise
 - Disadvantages: cannot explicitly express the concepts of quarter note, eighth notes, or rests (metrical structure), cannot effectively represent multiple notes being played at once, note-off can be mispredicted, note duration need to be calculated

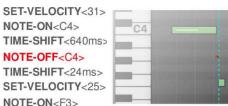
 $\mathbf{128}$ NOTE-ON events: one for each of the 128 MIDI pitches. Each one starts a new note.

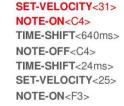
 ${\bf 128}$ NOTE-OFF events: one for each of the 128 MIDI pitches. Each one releases a note.

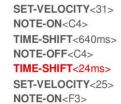
 $125\ \mathrm{TIME-SHIFT}$ events: each one moves the time step forward by increments of 8 ms up to 1 second.

32 VELOCITY events: each one changes the velocity applied to all subsequent notes (until the next velocity event).

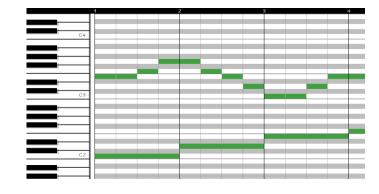








C4	_
C4	



Melody generation——How to encode symbolic music

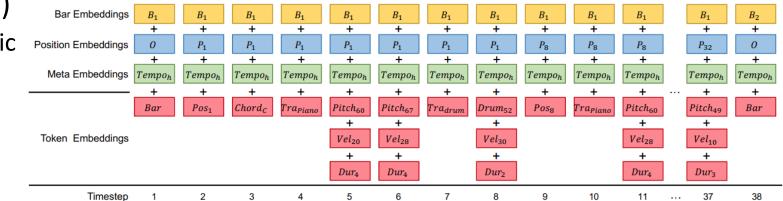
- REMI (Pop Music Transformer [9])
 - Advantages: represent beat-bar-phrase hierarchical structure
 - Disadvantages: long sequence

Bar, Position (1/16), Chord (C major), Position (1/16), Tempo Class (mid), Tempo Value (10), Position (1/16), Note Velocity (16), Note On (60), Note Duration (4), Position (5/16),

Tempo Value (12), Position (9/16), Note Velocity (14), Note On (67), Note Duration (8), Bar

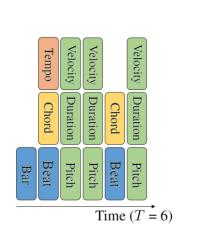
	MIDI-like [30]	REMI (this paper)	
Note onset	Note-On (0–127)	Note-On (0–127)	
Note offset	Note-Off (0–127)	Note Duration (32th note multiples; 1–64)	
Time grid	Тіме-Sніft (10–1000ms)	Position (16 bins; 1–16) & Bar (1)	
Tempo changes	×	Темро (30–209 ВРМ)	
Chord	×	Chord (60 types)	

- MuMIDI (PopMAG [41])
 - Encode multitrack music



Melody generation——How to encode symbolic music

- CP (Compound Word Transformer [13])
 - Group into metric and note type shorten the sequence length



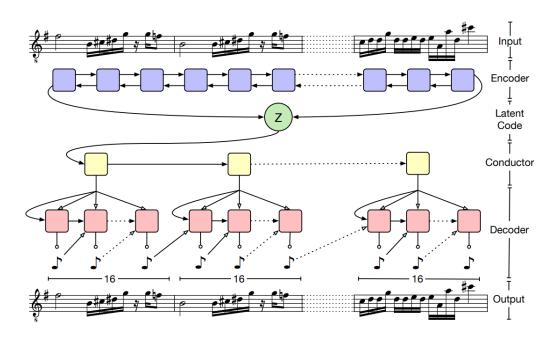
- OctupleMIDI (MusicBERT [45])
 - Group all tokens (Bar, TimeSig, Pos, Tempo, Piano, Pitch, Duration, Velocity) together
 - Full representation, better for understanding

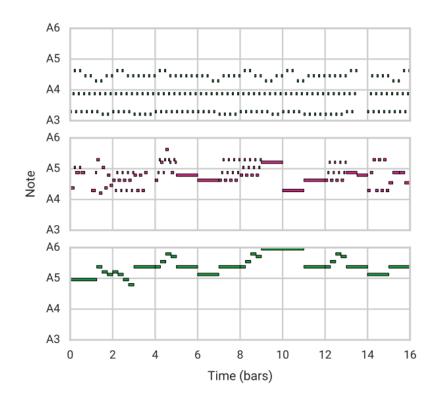
TS _{3/4}	TS _{3/4}	TS _{3/4}	TS _{3/4}	TS _{3/4}	TS _{3/4}
BPM ₁₂₀	BPM ₁₂₀	BPM ₁₂₀	BPM ₁₂₅	BPM ₁₃₀	BPM ₁₃₀
Bar ₀	Bar ₀	Bar ₀	Bar ₀	Bar ₁	Bar ₁
Pos ₀	Pos ₀	Pos ₀	Pos ₁₆	Pos ₀	Pos ₀
Inst _{piano}	Inst _{piano}	Inst _{guitar}	Inst _{guitar}	Inst _{piano}	Inst _{guitar}
Pitch ₅₇	Pitch ₆₀	Pitch ₆₉	Pitch ₆₇	Pitch ₅₇	Pitch ₆₅
Dur ₆₄	Dur ₆₄	Dur ₁₆	Dur ₃₂	Dur ₁₆	Dur ₁₆
Vel ₆₂	Vel ₆₂	Vel ₈₂	Vel ₈₂	Vel ₆₆	Vel ₈₆
1	2	3	4	5	6

Time (T = 6)

Melody generation——How to model long-term dependency

- More context into consideration: MelodyRNN [46]
 - Lookback RNN and Attention RNN
- Hierachical modeling: MusicVAE [38]



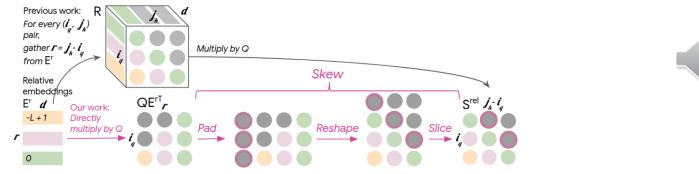


Melody generation——How to model long-term dependency

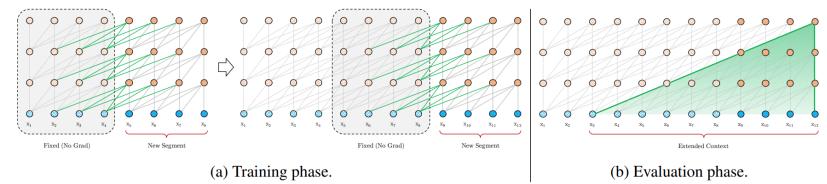
• Relative position embedding: Music Transformer [2]

2021/10/24

- First apply Transformer to model long sequence in music
- Efficient relative position to model relative timing between notes



• Transformer-XL [47]: Pop Music Transformer [9], PopMAG [41]



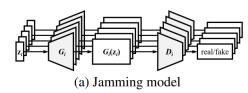
Melody generation——How to model inter-track dependency

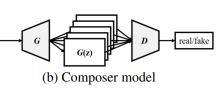
z

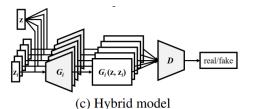
• MuseGAN [3]

2021/10/24

- Jamming model
- Composer model
- Hybrid model

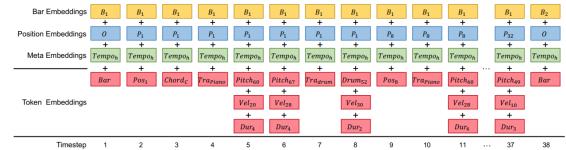




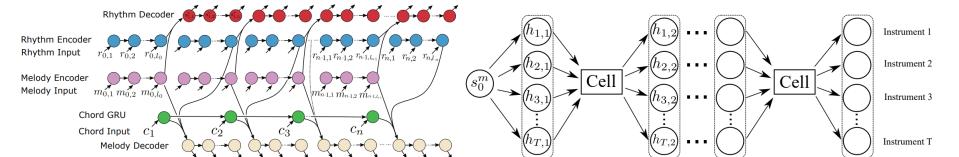


35

• PopMAG [41]: multitrack encoded into a single sequence

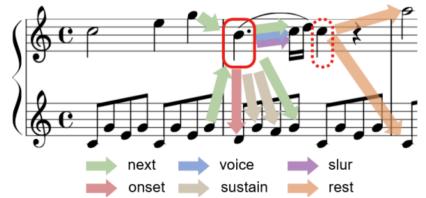


• XiaoiceBand [40]: separate decoder with shared latent



Melody generation——How to generate expressive score

- Performance features
 - Tempo: global or local tempo
 - Expressive timing: Swing in Jazz
 - Articulation: slur, trill, legato, staccato, stress, tenuto
 - Dynamics: velocity or volume $\{ppp, pp, p, f, ff, fff\}$
- Research works
 - PianoFiguring [36]
 - Extract performance features from music score and performance data [7]
 - Represent music score using graph, and render expressive piano performance from music score [8]



Music score generation

- Melody generation
 - Melody generation
 - Polyphony generation
 - Multi-track generation
 - Expressive melody generation (performance generation)
- Song writing
 - Lyric generation
 - Lyric-to-melody generation
 - Melody-to-lyric generation
- Accompaniment and arrangement generation
 - Melody-to-accompaniment generation

Song writing——Key challenges

- Lyric generation
 - Format/Rhyme modeling
 - Theme/topic modeling
- Lyric-to-melody and melody-to-lyric generation
 - Alignment modeling
 - Style/emotion modeling

Paired Aligned Data :

Lyric	Another			day	has	gone	Ľ	m	still	alo	ne	
Pitch	R	G3	E4	D4	C4	B3	C4	R	E4	C4	B3	C4
Duration	$\frac{7}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{5}{16}$

Song writing——Lyric generation

- Format control
 - Lyric syllables depend on melody rhythm [48] 你问/ 我爱/ 你有/ 多深, 我爱/ 你有/几 分
 - Control the number of words in a sentence [49]
 - love is not love, $\langle /s \rangle$ bends with the remover to remove. $\langle /s \rangle \langle eos \rangle$

$$C = \{c_0, c_0, c_0, c_2, c_1, \langle /s \rangle$$

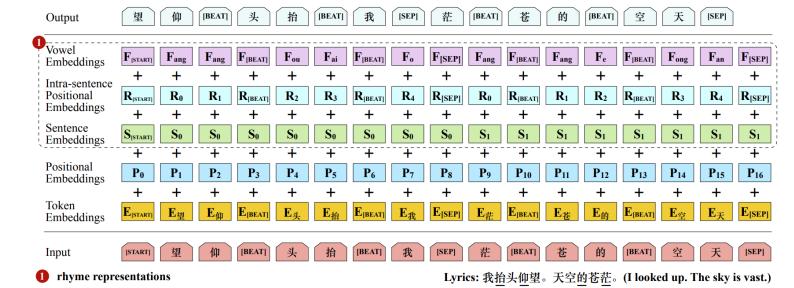
$$c_0, c_0, c_0, c_0, c_0, c_2, c_1, \langle /s \rangle, \langle eos \rangle \}$$

(You ask me how deep I love you, how much I love you.)

 $\underline{\mathbf{0}} \underline{\mathbf{5}} \quad \mathbf{\dot{\mathbf{1}}} \cdot \quad \underline{\dot{\mathbf{3}}} \stackrel{\mathbf{\dot{\mathbf{5}}}}{\mathbf{5}} \cdot \quad \underline{\dot{\mathbf{1}}} \quad \mathbf{7} \cdot \quad \underline{\dot{\mathbf{3}}} \stackrel{\mathbf{\dot{\mathbf{5}}}}{\mathbf{5}} \cdot \quad \underline{\dot{\mathbf{5}}} \quad \mathbf{\dot{\mathbf{6}}} \cdot$

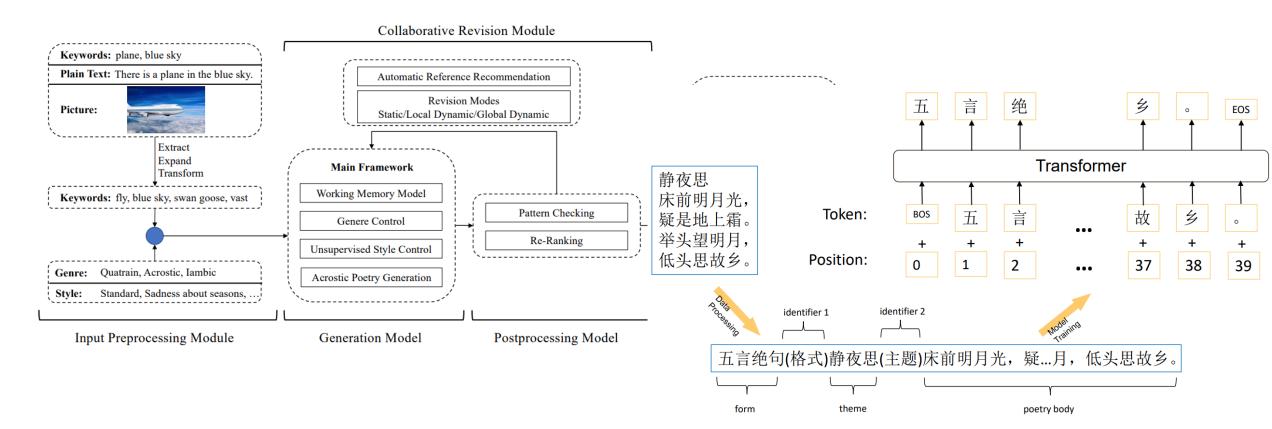
<u>7</u>165

- Rhyme modeling [50]
 - Rhyme embedding
 - Right-to-left modeling



Song writing——Lyric generation

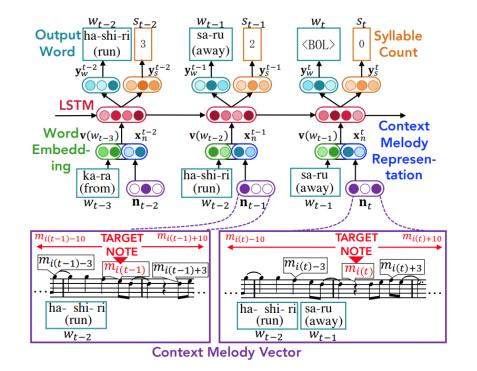
• Theme/topic modeling [51]

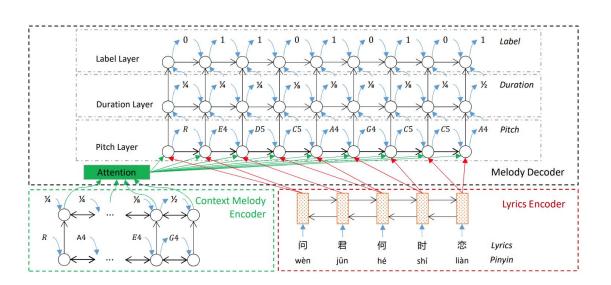


- The characteristic of the task
 - Lack of paired melody and lyric data
 - The connection between melody and lyric is weak
 - Unlike other tasks: Automatic Speech Recognition, Text to Speech, Neural Machine Translation
 - Needs large amount of paired data
 - Or motivate us to find connections from other aspects
- How to model the alignment (weakly coupled, but strictly aligned)
 - Learning from training data
 - Music knowledge: rhythm/structure/template

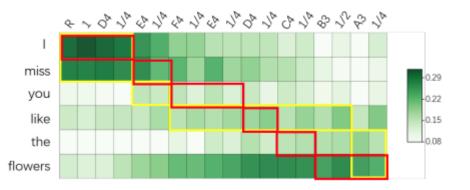
• Alignment modeling

- Predict how many syllable in predicting word, to decide how many notes to use (melody to lyric) [43]
- Decide if switch to next word when predicting notes (lyric to melody) [44]

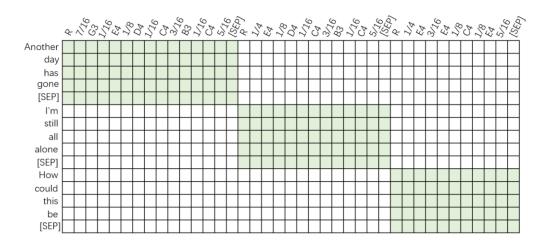


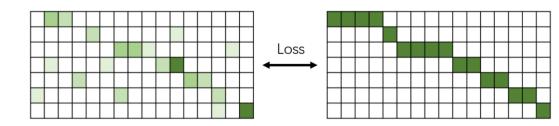


- Alignment modeling
 - Derived from attention [42]

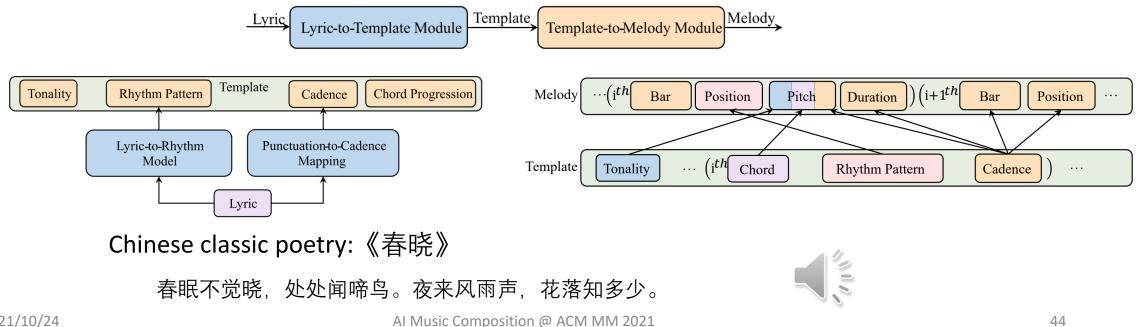


• In training, use attention mask to encourage attention learning





- Alignment modeling
 - Use template and rule: TeleMelody [52]
 - Lyric \rightarrow Template \rightarrow Melody
 - Lyric \rightarrow Template: learned based on supervised data
 - Template \rightarrow Melody: self-supervised learning from music data



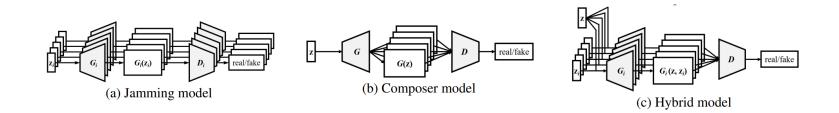
Music score generation

- Melody generation
 - Melody generation
 - Polyphony generation
 - Multi-track generation
 - Expressive melody generation (performance generation)
- Song writing
 - Lyric generation
 - Lyric-to-melody generation
 - Melody-to-lyric generation
- Accompaniment and arrangement generation
 - Melody-to-accompaniment generation

Melody-to-accompaniment generation

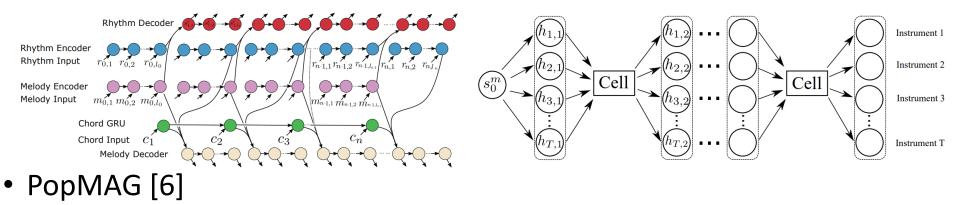
- Melody-to-accompaniment generation
 - Melody (Chord) → Drum, Bass, Guitar, Piano, String
 - Use methods from multi-track generation
 - Ensure the harmony between tracks

- MuseGAN [39]
 - Jamming model
 - Composer model
 - Hybrid model

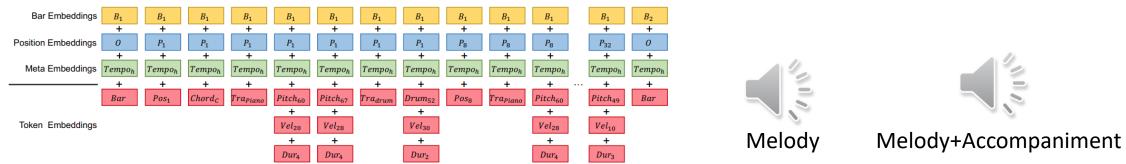


Melody-to-accompaniment generation

- XiaoiceBand [5]
 - Separate decoder with shared latent



• Multitrack encoded into a single sequence



Bar: <Bar> token, **Position**: 32 position (1/32), **Chord**: 12 chord root * 7 types = 84 chords **Track**: Lead, Chord, Drum, Bass, Guitar, Piano, String, **Note**: Pitch, Duration, Velocity

Music arrangement

- Horizonal axis (time): music form, chord progression
- Vertical axis (harmony): texture (Melody, Harmony, Base, Rhythm, Noise)

Music Form: verse-chorus	Intro: 4	Verse: 16	Chorus: 16	Interlude: 4	Verse: 8	Chorus: 16	Outro: 6
Melody		Sequence	Syncopation			Strengthen	Slow
Harmony	Guitar	Guitar	Piano				
Base			Bass				
Rhythm			Drum				
Noise	Sea Wave						

Outline

- Background
 - Music Basics
 - Al Techniques for Music Composition

• Key Components in Al Music Composition

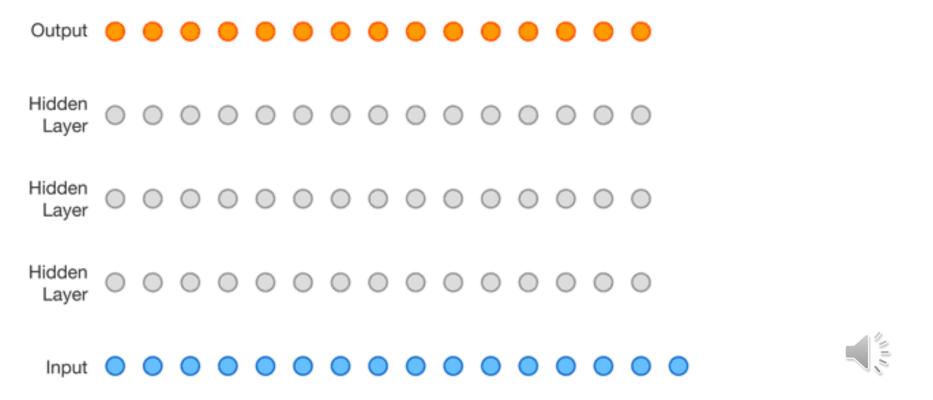
- Music Score Generation
- Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

Music sound generation

- Similar to speech synthesis
 - Unconditional music audio synthesis \rightarrow Unconditional speech synthesis
 - Score-to-audio synthesis \rightarrow Pitch/duration-to-speech synthesis
 - Singing voice synthesis (Lyric/score-to-singing synthesis) \rightarrow Text-to-speech synthesis
- Instrumental sound synthesis
 - WaveNet [14], SampleRNN [23]
 - SING [16], SynthNet [17], GAE [22], DDSP [53]
 - GANSynth [18], WaveGAN [19], TiFGAN [21], DrumGAN [20]
- Singing voice synthesis
 - DNN based [24,25,26], WaveNet based [27,28], LSTM based [29], GAN based [31,32,34]
 - XiaoiceSing [30], ByteSing [33], HiFiSinger [35]

Music sound generation——WaveNet [14]

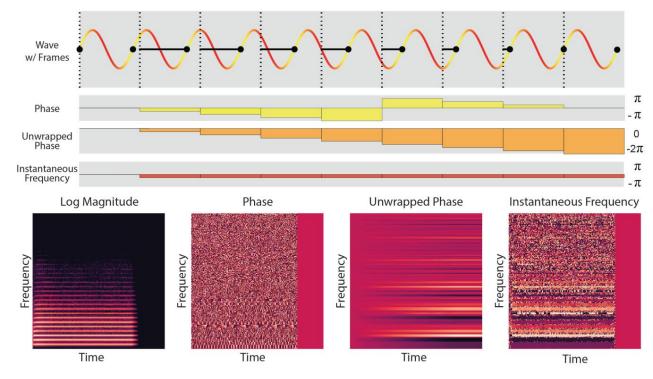
- Audio waveform generation one by one autoregressively
 - Causal CNN with dilation to enlarge the receptive field



10

Music sound generation——GANSynth [18]

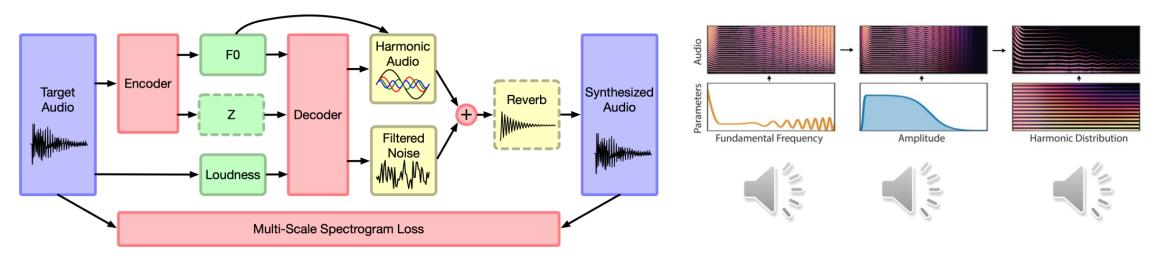
- Generate magnitude and phase, and generate waveform through iSTFT
 - Model instantaneous frequency can better model phase
 - Model mel-spectrogram instead of spectrogram



AI Music Composition @ ACM MM 2021

Music sound generation——DDSP [53]

- Integrate classic signal processing elements with deep learning methods
 - Strong inductive biases & expressive power of neural networks
 - Pitch/loudness control, timbre transfer, etc



Singing voice synthesis

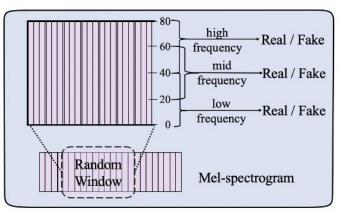
• Lyric + melody \rightarrow singing voice

• Input representation

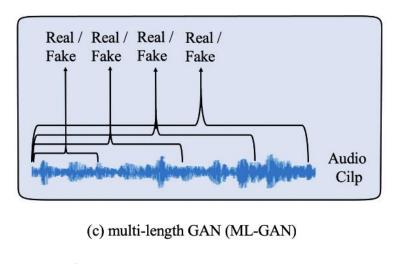
Character	都			可			以			
Phoneme	sil	d	o_h	u_h	k	el_h	el_h	yi	i_h	i_h
Pitch	sil G4		C4			D4				
MIDI ID	0	67	67	67	60	60	60	62	62	62
Duration	0.5		0.5			1			1	
Duration in seconds	0.25		0.25			0.5			0.5	
Duration in #frames (5ms hop size)	50	50	50	50	100	100	100	100	100	100

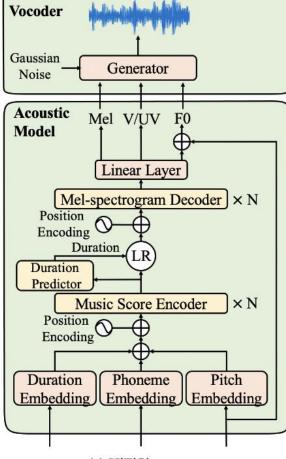
Singing voice synthesis——HiFiSinger [35]

- Model 48KHz sampling rate for hifidelity singing voice synthesis
- Challenges of 48KHz
 - 48KHz vs 24KHz, wide frequency cause challenges to acoustic model
 - 48KHz, 1s has 48000 waveform points, cause challenges to vocoder



(b) sub-frequency GAN (SF-GAN)





(a) HiFiSinger

Outline

- Background
 - Music Basics
 - Al Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in AI Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

Music structure/form modeling

- Music structure, repeat pattern, music form
 - A, AB, ABA
 - Rondo: ABACAD
 - Variation: A+A1+A2+A3+A4
 - Sonata: exposition, development, recapitulation
 - Verse-Chorus: intro+verse1+verse2+chorus+verse2+chorus+solo+chorus+outro
- Generate whole song requires structure/form modeling. However, modeling music structure/form is complicated
 - Require large amount of label data
 - Or learn structure from scratch without labeling

Music structure/form modeling

- Label structure data
 - By human
 - By algorithm/rule: Pop909 [54]
- Learn from scratch without labeling
 - PopMNet [55], MELONS [56]
 - High-level structure such as verse/chorus (phrase/section level) may be difficult to learn
 - Low-level structure such as relation between bars (bar level) are easier to learn
 - Repetition, development, and cadence

Music structure/form modeling——MusicBERT [45]

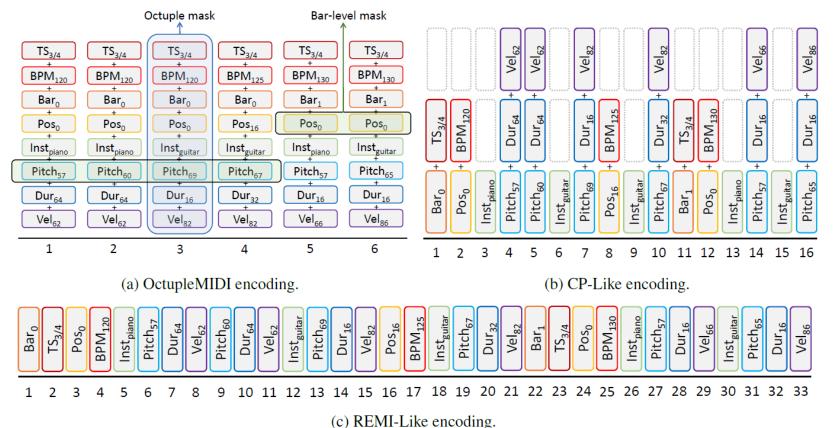
- Dataset construction: Million MIDI Dataset (MMD)
 - Crawled from various MIDI and sheet music websites
 - 1.5 million songs after deduplication and cleaning (10x larger than LMD)

Dataset	Songs	Notes (Millions)
MAESTRO	1,184	6
GiantMIDI-Piano	10,854	39
LMD	148,403	535
MMD	1,524,557	2,075

- Data representation: OctupleMIDI
 - Compound token: (Bar_1, TimeSig_4/4, Pos_35, Tempo_120, Piano, Pitch_64, Dur_12, Vel_38)
 - Supports changing tempo and time signature
 - Shorter length compared to REMI and MuMIDI in PopMAG

Music structure/form modeling——MusicBERT

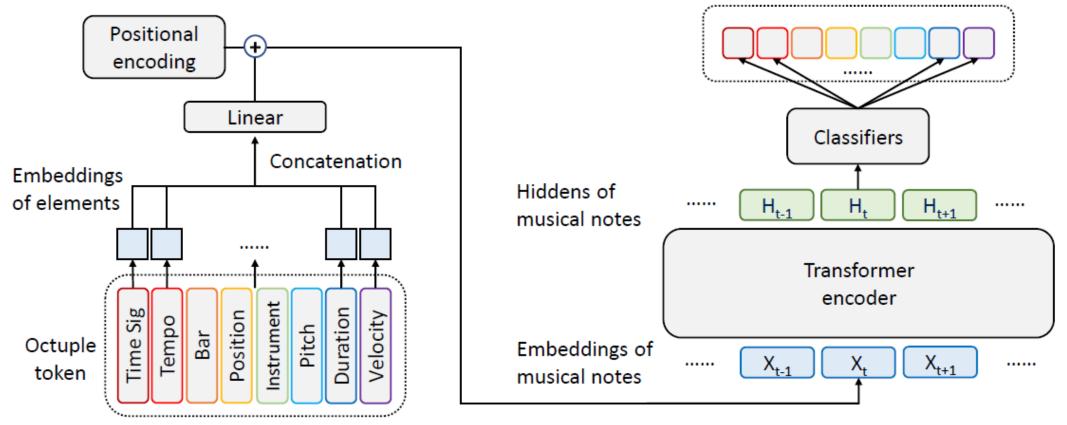
OctupleMIDI representation



EncodingOctupleMIDICP-likeREMI-likeTokens3607 AI Music Composition @ 15679 MM 2021

Music structure/form modeling——MusicBERT

• Model structure



Music structure/form modeling——MELONS [56]

• Repetition, development, and cadence

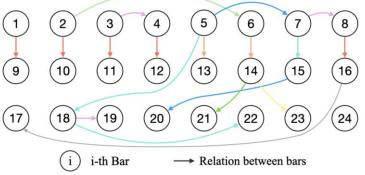
	•	Harmonious cadence Rhythmic sequence of 3rd bar of 2nd bar						
9 9 9 9 1 1 1 1	ition of 1st bar	Transposition of 5th bar 11 12 13 14 15 16 16th bar 14 15 16 16th bar 15 16 17						
		Surround progression of 15th bar 20 21 22 22 23 24 25 24 25 25 24 25 25 24 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25						
Priority	n Transposition Pitch	progression Rhythmic sequence Melody progression Surround progression Harmonious cadence Rest Description						
	•••	-						
1 2	Repetition	The current bar is the same as a previous bar.						
23	Transposition Pitch progression	The current bar is the tonal transposition of a previous bar. Same rhythm. The similarity of pitch sequences between two bars is not less than 50%						
3 4	Rhythmic sequence	Same rhythm. The similarity of pitch sequences between two bars is less than 50%						
5	Melody progression	Two bars who have at least 3 consecutive notes of the same pitch and rhythm.						
6	Surround progression	Surrounding notes (repeat more than 3 times in a bar) rise or fall by at least five semitones between						
7	Harmonious cadence	two bars. A certain note in the current bar belongs to the local minimum point of the note density curve ¹ , and the pitch of this note belongs to the tonic chord of music key.						
8	Rest	No notes in the current bar.						

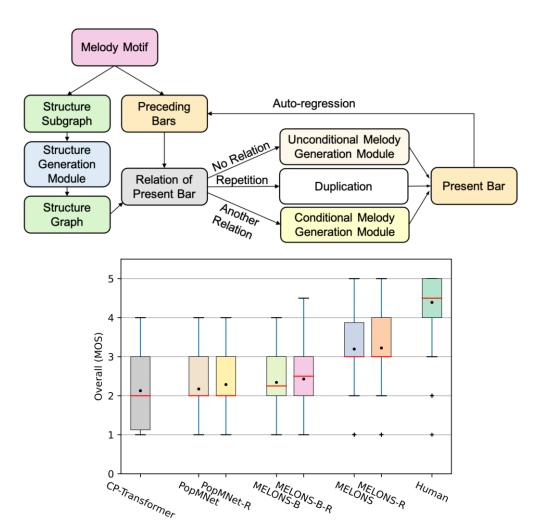
2021/10/24

Music structure/form modeling——MELONS [56]

Two-stage generation

Input motif MELONS MELONS-R





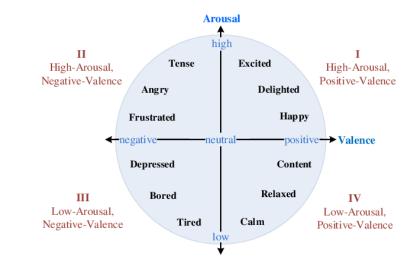
Ground-truth

Outline

- Background
 - Music Basics
 - Al Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Music Transfer/Control
- Challenges and Future Directions

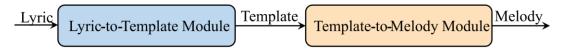
Music style/emotion modeling

- Music is so subjective, hard to define style or emotion
 - Classification on style/emotion may be hierarchical, overlapping, conflicted, and disputed
 - Genre: Blues, Country, Folk, HipHop, Jazz, Latin, Rock, R&B, Classic, Pop, Electronic, etc
 - Emotion: Valence-Arousal
- Generation with style/emotion with labeled data
 - Require data labeling and classification
 - EMOPIA dataset [57]
 - Single-instrument
 - Multi-modal (audio and MIDI)
 - Clip-level annotation
- Generation with style/emotion with implicit/unsupervised learning
 - Understand music, learn hidden representation
 - Disentangle, identify, control generation with style/emotion

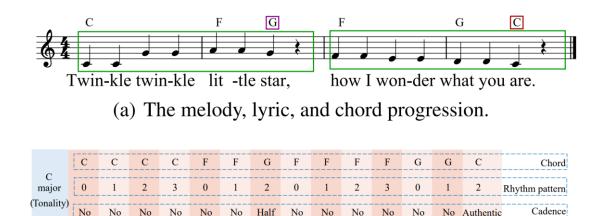


Music control——TeleMelody [52]

- Solution: templated based two-stage method
 - Lyric \rightarrow Template, Template \rightarrow Melody



- Template design principle
 - 1) Extracted from melody; 2) From lyrics in accordance with; 3) Easy to manipulate
- Template: tonality, chord progression, rhythm pattern, and cadence

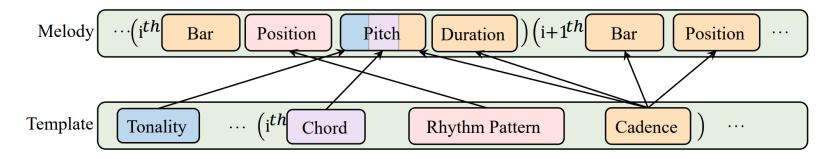


2021/10/24

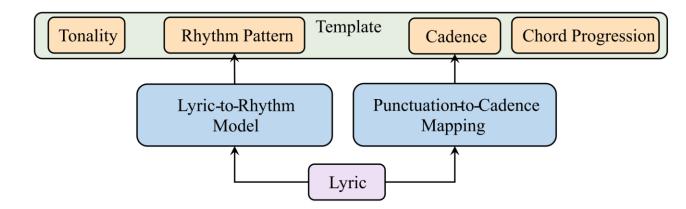
(b) The corresponding template.

Music control——TeleMelody [52]

Template → Melody: self-supervised learning from music data



• Lyric → Template: rules + supervised data learned based on supervised data



Music transfer

- Comparison between style transfer and expressive generation
 - e.g., Voice Conversion vs TTS
 - TTS genetate expressive speech given text,
 - Voice conversion: given a speech, disentangle its content and style, generate another style given the content
 - Advantages: source music is given, not need to generate music from scratch
 - Disadvantages: need to disetengle content and style
- Disentangle \rightarrow Control \rightarrow Transfer
- Music has a lot of elements
 - Rhythm, chord, structure, style/emotion, timbre, etc, different modalities,
 - Different modalities
 - Music Score: Tonality, Chord Sequence, Rhythm
 - Music Sound: Sound texture and timbre

Music transfer——Score

• Hierarchical music structure representation [58]

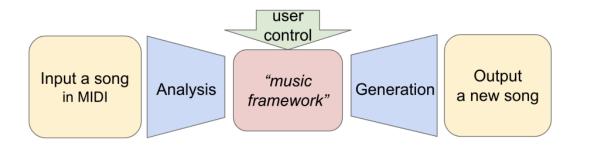
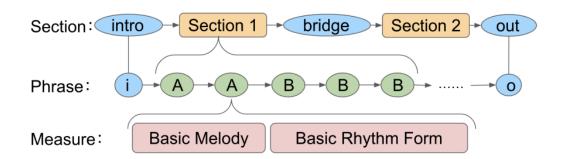
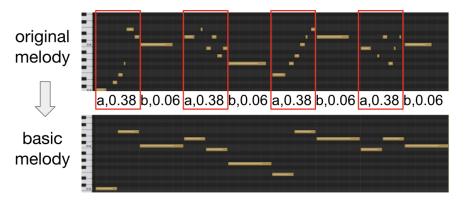
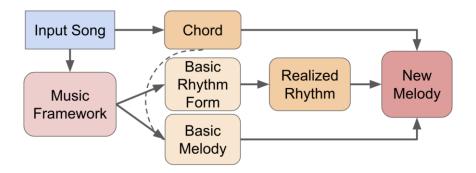


Figure 1. Architecture of *MusicFrameworks*.

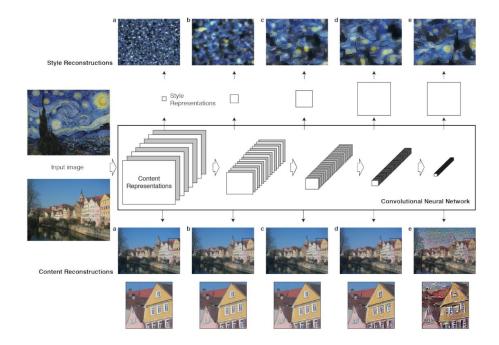




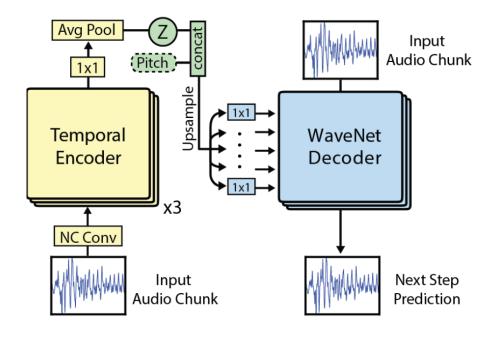


Music transfer——Sound

- WaveNet Autoencoders [15]
- Neural Style Transfer for Audio Spectrograms [59]



WaveNet Autoencoder



Outline

- Background
 - Music Basics
 - Al Techniques for Music Composition
- Key Components in Al Music Composition
 - Music Score Generation
 - Music Sound Generation
- Advanced Topics in Al Music Composition
 - Music Structure/Form Modeling
 - Music Style/Emotion Modeling
 - Transfer/Control in Music Generation
- Challenges and Future Directions

Research challenges

- Music structure
 - Clear theme and self-repetitive structure (Motif \rightarrow Sequence)
 - Music form: rondo, variation, sonata, ternary, verse-chorus, Chinese
 - Arrangement: harmony, orchestration
- Emotion and Style
 - How to recognize emotion and style
 - How to control the emotion and style in generation
- Interaction
 - Retain a certain level of creative freedom when composing music with AI
- Originality
 - How to ensure innovation, instead of fitting data distribution

Thank You!

Xu Tan (谭旭) Senior Researcher @ Microsoft Research Asia <u>xuta@microsoft.com</u>

<u>https://www.microsoft.com/en-us/research/people/xuta/</u>, <u>https://tan-xu.github.io</u> <u>https://www.microsoft.com/en-us/research/project/ai-music/</u>

https://github.com/microsoft/muzic

AI Music Composition @ ACM MM 2021

[1] Roberts A, Engel J, Raffel C, et al. A hierarchical latent vector model for learning long-term structure in music[C]//International Conference on Machine Learning. PMLR, 2018: 4364-4373.

[2] Huang C Z A, Vaswani A, Uszkoreit J, et al. Music transformer[J]. arXiv preprint arXiv:1809.04281, 2018.

[3] Dong H W, Hsiao W Y, Yang L C, et al. Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).

[4] Tan H H. ChordAL: A Chord-Based Approach for Music Generation using Bi-LSTMs[C]//ICCC. 2019: 364-365.

[5] Zhu H, Liu Q, Yuan N J, et al. Xiaoice band: A melody and arrangement generation framework for pop music[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2837-2846.

[6] Ren Y, He J, Tan X, et al. Popmag: Pop music accompaniment generation[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1198-1206.

[7] Jeong D, Kwon T, Kim Y, et al. Score and performance features for rendering expressive music performances[C]//Proc. of Music Encoding Conf. 2019.

[8] Jeong D, Kwon T, Kim Y, et al. Graph neural network for music score data and modeling expressive piano performance[C]//International Conference on Machine Learning. PMLR, 2019: 3060-3070.

[9] Huang Y S, Yang Y H. Pop music transformer: Generating music with rhythm and harmony[J]. arXiv preprint arXiv:2002.00212, 2020.

[10] Jeong D, Kwon T, Kim Y, et al. VirtuosoNet: A Hierarchical RNN-based System for Modeling Expressive Piano Performance[C]//ISMIR. 2019: 908-915.

[11] Briot J P, Hadjeres G, Pachet F D. Deep learning techniques for music generation--a survey[J]. arXiv preprint arXiv:1709.01620, 2017.

[12] Ji S, Luo J, Yang X. A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions[J]. arXiv preprint arXiv:2011.06801, 2020.

[13] Hsiao W Y, Liu J Y, Yeh Y C, et al. Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs[J]. arXiv preprint arXiv:2101.02402, 2021.

[14] Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio[J]. arXiv preprint arXiv:1609.03499, 2016.

[15] Engel J, Resnick C, Roberts A, et al. Neural audio synthesis of musical notes with wavenet autoencoders[C]//International Conference on Machine Learning. PMLR, 2017: 1068-1077.

[16] Défossez A, Zeghidour N, Usunier N, et al. Sing: Symbol-to-instrument neural generator[J]. arXiv preprint arXiv:1810.09785, 2018.

[17] Schimbinschi F, Walder C, Erfani S M, et al. SynthNet: Learning to Synthesize Music End-to-End[C]//IJCAI. 2019: 3367-3374.

[18] Engel J, Agrawal K K, Chen S, et al. Gansynth: Adversarial neural audio synthesis[J]. arXiv preprint arXiv:1902.08710, 2019.

[19] Donahue C, McAuley J, Puckette M. Adversarial audio synthesis[J]. arXiv preprint arXiv:1802.04208, 2018.

[20] Nistal J, Lattner S, Richard G. DrumGAN: Synthesis of drum sounds with timbral feature conditioning using Generative Adversarial Networks[J]. arXiv preprint arXiv:2008.12073, 2020.

[21] Marafioti A, Perraudin N, Holighaus N, et al. Adversarial generation of time-frequency features with application in audio synthesis[C]//International Conference on Machine Learning. PMLR, 2019: 4352-4362.

[22] Lattner S, Grachten M. High-level control of drum track generation using learned patterns of rhythmic interaction[C]//2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2019: 35-39.

[23] Mehri S, Kumar K, Gulrajani I, et al. SampleRNN: An unconditional end-to-end neural audio generation model[J]. arXiv preprint arXiv:1612.07837, 2016.

[24] Nishimura M, Hashimoto K, Oura K, et al. Singing Voice Synthesis Based on Deep Neural Networks[C]//Interspeech. 2016: 2478-2482.

[25] Nakamura K, Hashimoto K, Oura K, et al. Singing voice synthesis based on convolutional neural networks[J]. arXiv preprint arXiv:1904.06868, 2019.

[26] Hono Y, Murata S, Nakamura K, et al. Recent development of the DNN-based singing voice synthesis system—sinsy[C]//2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2018: 1003-1009.

[27] Blaauw M, Bonada J. A neural parametric singing synthesizer[J]. arXiv preprint arXiv:1704.03809, 2017.

[28] Blaauw M, Bonada J. A neural parametric singing synthesizer modeling timbre and expression from natural songs[J]. Applied Sciences, 2017, 7(12): 1313.

[29] Kim J, Choi H, Park J, et al. Korean singing voice synthesis system based on an LSTM recurrent neural network[C]//Proc. Interspeech. 2018: 1551-1555.

[30] Lu P, Wu J, Luan J, et al. XiaoiceSing: A high-quality and integrated singing voice synthesis system[J]. arXiv preprint arXiv:2006.06261, 2020.

[31] Wu J, Luan J. Adversarially trained multi-singer sequence-to-sequence singing synthesizer[J]. arXiv preprint arXiv:2006.10317, 2020.

[32] Lee J, Choi H S, Jeon C B, et al. Adversarially trained end-to-end Korean singing voice synthesis system[J]. arXiv preprint arXiv:1908.01919, 2019.

[33] Gu Y, Yin X, Rao Y, et al. Bytesing: A chinese singing voice synthesis system using duration allocated encoder-decoder acoustic models and wavernn vocoders[C]//2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2021: 1-5.

[34] Chandna P, Blaauw M, Bonada J, et al. Wgansing: A multi-voice singing voice synthesizer based on the wasserstein-gan[C]//2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019: 1-5.

[35] Chen J, Tan X, Luan J, et al. HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis[J]. arXiv preprint arXiv:2009.01776, 2020.

[36] Nakamura E, Saito Y, Yoshii K. Statistical learning and estimation of piano fingering[J]. Information Sciences, 2020, 517: 68-85.

[37] Liang H, Lei W, Chan P Y, et al. PiRhDy: Learning Pitch-, Rhythm-, and Dynamics-aware Embeddings for Symbolic Music[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 574-582.

[38] Roberts A, Engel J, Raffel C, et al. MusicVAE: Creating a palette for musical scores with machine learning, March 2018[J]. 2018.

[39] Dong H W, Hsiao W Y, Yang L C, et al. Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2018, 32(1).

[40] Zhu H, Liu Q, Yuan N J, et al. Xiaoice band: A melody and arrangement generation framework for pop music[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2837-2846.

[41] Ren Y, He J, Tan X, et al. Popmag: Pop music accompaniment generation[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1198-1206.

[42] Sheng Z, Song K, Tan X, et al. SongMASS: Automatic Song Writing with Pre-training and Alignment Constraint[J]. arXiv preprint arXiv:2012.05168, 2020.

[43] Watanabe K, Matsubayashi Y, Fukayama S, et al. A melody-conditioned lyrics language model[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018: 163-172.

[44] Bao H, Huang S, Wei F, et al. Neural melody composition from lyrics[C]//CCF International Conference on Natural Language Processing and Chinese Computing. Springer, Cham, 2019: 499-511.

[45] Zeng M, Tan X, Wang R, et al. MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training[J]. arXiv preprint arXiv:2106.05630, 2021.

[46] Waite E. Generating long-term structure in songs and stories[J]. Web blog post. Magenta, 2016, 15(4).

[47] Dai Z, Yang Z, Yang Y, et al. Transformer-xl: Attentive language models beyond a fixed-length context[J]. arXiv preprint arXiv:1901.02860, 2019.

[48] Lu X, Wang J, Zhuang B, et al. A syllable-structured, contextually-based conditionally generation of chinese lyrics[C]//Pacific Rim International Conference on Artificial Intelligence. Springer, Cham, 2019: 257-265.

[49] Li P, Zhang H, Liu X, et al. Rigid formats controlled text generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 742-751.

[50] Xue L, Song K, Wu D, et al. DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling[J]. arXiv preprint arXiv:2107.01875, 2021.

[51] Zhipeng G, Yi X, Sun M, et al. Jiuge: A human-machine collaborative chinese classical poetry generation system[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2019: 25-30.

[52] Ju Z, Lu P, Tan X, et al. TeleMelody: Lyric-to-Melody Generation with a Template-Based Two-Stage Method[J]. arXiv preprint arXiv:2109.09617, 2021.

[53] Engel J, Hantrakul L, Gu C, et al. DDSP: Differentiable digital signal processing[J]. arXiv preprint arXiv:2001.04643, 2020.

[54] Wang Z, Chen K, Jiang J, et al. Pop909: A pop-song dataset for music arrangement generation[J]. arXiv preprint arXiv:2008.07142, 2020.

[55] Wu J, Liu X, Hu X, et al. PopMNet: Generating structured pop music melodies using neural networks[J]. Artificial Intelligence, 2020, 286: 103303.

[56] Seymour G B, McGlasson W B. Melons[M]//Biochemistry of fruit ripening. Springer, Dordrecht, 1993: 273-290.

[57] Hung H T, Ching J, Doh S, et al. EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation[J]. arXiv preprint arXiv:2108.01374, 2021.

[58] Dai S, Jin Z, Gomes C, et al. Controllable deep melody generation via hierarchical music structure representation[J]. arXiv preprint arXiv:2109.00663, 2021.

[59] Verma P, Smith J O. Neural style transfer for audio spectograms[J]. arXiv preprint arXiv:1801.01589, 2018.