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Abstract

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively
so for neural networks (NNs) with billions of parameters. We show that, in the
recently discovered Maximal Update Parametrization (µP), many optimal HPs
remain stable even as model size changes. This leads to a new HP tuning paradigm
we call µTransfer: parametrize the target model in µP, tune the HP indirectly on a
smaller model, and zero-shot transfer them to the full-sized model, i.e., without
directly tuning the latter at all. We verify µTransfer on Transformer and ResNet.
For example, 1) by transferring pretraining HPs from a model of 13M parameters,
we outperform published numbers of BERT-large (350M parameters), with a total
tuning cost equivalent to pretraining BERT-large once; 2) by transferring from
40M parameters, we outperform published numbers of the 6.7B GPT-3 model, with
tuning cost only 7% of total pretraining cost. A Pytorch implementation of our
technique can be found at github.com/microsoft/mup and installable via pip
install mup.

1 Introduction
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Figure 1: Training loss against learning rate on
Transformers of varying dmodel trained with Adam.
Conventionally and in contrast with our technique,
different widths do not share the same optimal hy-
perparameter; wider networks do not always per-
form better than narrower ones; in fact they under-
perform the same-width networks in our technique
even after tuning learning rate (see dashed line).
See Sections 3 and 4 for experimental setup.

Hyperparameter (HP) tuning is critical to deep
learning. Poorly chosen HPs result in subpar
performance and training instability. Many pub-
lished baselines are hard to compare to one
another due to varying degrees of HP tuning.
These issues are exacerbated when training ex-
tremely large deep learning models, since state-
of-the-art networks with billions of parameters
become prohibitively expensive to tune.

Recently, [54] showed that different neural net-
work parametrizations induce different infinite-
width limits and proposed the Maximal Update
Parametrization (abbreviated µP) (summarized
in Table 3) that enables “maximal” feature learn-
ing in the limit. Intuitively, it ensures that each
layer is updated on the same order during train-
ing regardless of width.2 In contrast, while the
standard parametrization (SP) ensures activations are of unit order at initialization, it actually causes
them to blow up in wide models during training [54] essentially due to an imbalance of per-layer

†Work done partly during Microsoft AI Residency Program.
∗Equal contribution. Order is random. Correspondence to {gregyang, edwardhu}@microsoft.com
2i.e., the updates’ effect on activations becomes roughly independent of width in the large width limit.

github.com/microsoft/mup
https://www.microsoft.com/en-us/research/academic-program/microsoft-ai-residency-program/


Algorithm 1 Tuning a Large Target Model via µTransfer

1: Parametrize target model in Maximal Update Parametrization (µP)
2: Tune a smaller version (in width and/or depth) of target model
3: Copy tuned hyperparameters to target model

Table 1: Hyperparameters That Can Be µTransferred, Not µTransferred, or µTransferred
Across, with a few caveats discussed in Section 6.1. * means empirically validated only on Trans-
formers, while all others additionally have theoretical justification.

µTransferable Not µTransferable µTransferred Across

optimization related, init, regularization width, depth*, batch size*,
parameter multipliers, etc (dropout, weight decay, etc) training time*, seq length*

learning rate (also see Fig. 5). We leverage µP to zero-shot transfer HPs from small models to large
models in this work – that is, we obtain near optimal HPs on a large model without directly tuning
it at all! While practitioners have always guessed HPs of large models from those of small models,
the results are hit-or-miss at best because of incorrect parametrization. For example, as shown in
Fig. 1, in a Transformer, the optimal learning rate is stable with width in µP (right) but far from
so in standard parametrization (left). In addition to width, we empirically verify that, with a few
caveats, HPs can also be transferred across depth (in Section 6.1) as well as batch size, language
model sequence length, and training time (in Appendix G.2.1). This reduces the tuning problem of
an (arbitrarily) large model to that of a (fixed-sized) small model. Our overall procedure, which we
call µTransfer, is summarized in Algorithm 1 and Fig. 2, and the HPs we cover are summarized in
Tables 1 and 2.
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Figure 2: Illustration of µTransfer

There are several benefits to our approach: 1. Better Per-
formance: µTransfer is not just about predicting how the
optimal learning rate scales in SP. In general, we expect the
µTransferred model to outperform its SP counterpart with
learning rate optimally tuned. For example, this is the case
in Fig. 1 with the width-8192 Transformer. We discuss the
reason for this in Section 5 and Appendix C. 2. Speedup:
It provides massive speedup to the tuning of large mod-
els. For example, we are able to outperform published
numbers of (350M) BERT-large [11] purely by zero-shot
HP transfer, with tuning cost approximately equal to 1
BERT-large pretraining. Likewise, we outperform the pub-
lished numbers of the 6.7B GPT-3 model [7] with tuning
cost being only 7% of total pretraining cost. For models
on this scale, HP tuning is not feasible at all without our
approach. 3. Tune Once for Whole Family: For any fixed family of models with varying width and
depth (such as the BERT family or the GPT-3 family), we only need to tune a single small model
and can reuse its HPs for all models in the family.3 For example, we will use this technique to
tune BERT-base (110M parameters) and BERT-large (350M parameters) simultaneously by trans-
ferring from a 13M model. 4. Better Compute Utilization: While large model training needs to
be distributed across many GPUs, the small model tuning can happen on individual GPUs, greatly
increasing the level of parallelism for tuning (and in the context of organizational compute clusters,
better scheduling and utilization ratio). 5. Painless Transition from Exploration to Scaling Up:
Often, researchers explore new ideas on small models but, when scaling up, find their HPs optimized
during exploration work poorly on large models. µTransfer would solve this problem.

In addition to the HP stability property, we find that wider is better throughout training in µP, in
contrast to SP (Section 8). This increases the reliability of model scaling in deep learning.

In this work, we primarily focus on hyperparameter transfer with respect to training loss. In settings
where regularization is not the bottleneck to test performance, as in all of our experiments here, this
also translates to efficacy in terms of test loss. In other settings, such as finetuning of models on small
datasets, µTransfer may not be sufficient, as we discuss in Section 6.1.

3but possibly not for different data and/or tasks.
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Table 2: Examples of µTransferable Hyperparameters. All of the below can also be specialized
to per-layer hyperparameters.

Optimizer Related Initialization Parameter Multipliers

learning rate (LR), momentum, per-layer multiplicative constants after
Adam beta, LR schedule, etc init. variance weight/biases, etc

Our Contributions

• We demonstrate it is possible to zero-shot transfer near optimal HPs to a large model from a
small version via the Maximal Update Parametrization (µP) from [54].

• While [54] only covered SGD, here we derive µP for Adam as well (Table 3).
• We propose a new HP tuning technique, µTransfer, for large neural networks based on this

observation that provides massive speedup over conventional methods and covers both SGD
and Adam training;

• We thoroughly verify our method on machine translation and large language model pretrain-
ing (in Section 7.3) as well as image classification (in Appendix G.1);

• We release a PyTorch [33] package for implementing µTransfer painlessly. A sketch of this
package is given in Appendix H.

Terminologies Sometimes, to be less ambiguous, we often refer to the “large model” as the target
model, as it is the model we wish to ultimately tune, while we refer to the “small model” as the
proxy model, as it proxies the HP tuning process. We follow standard notation dmodel, dhead =
dk, dv, nhead, dffn regarding dimensions in a Transformer; one can see Fig. 11 for a refresher.

Tensor Programs Series This paper is the 5th installment of the Tensor Programs series. While it
is self-contained with the target audience being practitioners and empirical researchers, this paper
presents the first major practical payoff of the theoretical foundation built in previous works [50–55].

2 Parametrization Matters: A Primer

In this section, we give a very basic primer on why the correct parametrization can allow HP transfer
across width, but see Appendices J.1 to J.3 for more (mathematical) details.

The Central Limit Theorem (CLT) says that, if x1, . . . , xn are iid samples from a zero-mean, unit-
variance distribution, then 1√

n
(x1 + · · ·+ xn) converges to a standard Gaussian N (0, 1) as n→∞.

Therefore, we can say that 1√
n

is the right order of scaling factor cn such that cn(x1 + · · · + xn)

converges to something nontrivial. In contrast, if we set cn = 1/n, then cn(x1 + · · ·+ xn)→ 0; or
if cn = 1, then cn(x1 + · · ·+ xn) blows up in variance as n→∞.

Now suppose we would like to minimize the function

Fn(c)
def
= E

x1,...,xn

f(c(x1 + · · ·+ xn)) (1)

over c ∈ R, for some bounded continuous function f : R→ R. If we reparametrize c = α/
√
n for

α ∈ R, then by CLT, Gn(α)
def
= Fn(c)→ E f(N (0, α2)) stabilizes into a function of α as n→∞.

Then for sufficiently large n, the optimal α∗n
def
= arg minαGn(α) should be close to α∗N for any

N > n, and indeed, for N =∞— this precisely means we can transfer the optimal c∗n or α∗n for a
smaller problem (say Fn) to a larger problem (say FN ): GN is approximately minimized by α∗n and
FN is approximately minimized by c∗n

√
n/N . Because the transfer algorithm is simply copying α,

we say the parametrization c = α/
√
n is the correct parametrization for this problem.

In the scenario studied in this paper, x1, . . . , xn are akin to randomly initialized parameters of a
width-n neural network, c is akin to a HP such as learning rate, and f is the test-set performance
of the network after training, so that Fn gives its expectation over random initializations. Just as
in this example, if we parametrize the learning rate and other HPs correctly, then we can directly
copy the optimal HPs for a narrower network into a wide network and expect approximately optimal
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performance — this is the (zero-shot) hyperparameter transfer we propose here. It turns out the
Maximal Update Parametrization (µP) introduced in [54] is correct (akin to the parametrization in α
above), while the standard parametrization (SP) is incorrect (akin to the parametrization in c). We will
review both parametrizations shortly. Theoretically, a µP network has a well-defined infinite-width
limit — akin to (x1 + · · ·+ xn)/

√
n having a N (0, 1) limit by CLT — while a SP network does not

(the limit will blow up) [54].4 In fact, based on the theoretical foundation laid in [54], we argue in
Appendix J.3 that µP should also be the unique parametrization that allows HP transfer across width.
For a more formal discussion of the terminologies parametrization and transfer, see Appendix A

We emphasize that, to ensure transferability of any hyperparameter (such as learning rate), it’s not
sufficient to reparametrize only that hyperparameter, but rather, we need to identify and correctly
reparametrize all hyperparameters in Table 2. For example, in Fig. 1, the wide models in SP still
underperform their counterparts in µP, even with learning rate tuned optimally. This is precisely
because SP does not scale parameter multipliers and input/output layer learning rates correctly in
contrast to µP (see Table 3). See Appendix C for more intuition via a continuation of our example
here. We shall also explain this more concretely in the context of neural networks in Section 5.

3 Hyperparameters Don’t Transfer Conventionally

In the community there seem to be conflicting assumptions about HP stability. A priori, models
of different sizes don’t have any reason to share the optimal HPs. Indeed, papers aiming for state-
of-the-art results often tune them separately. On the other hand, a nontrivial fraction of papers in
deep learning fixes all HPs when comparing against baselines, which reflects an assumption that
the optimal HPs should be stable — not only among the same model of different sizes but also
among models of different designs — therefore, such comparisons are fair. Here, we demonstrate HP
instability across width explicitly in MLP and Transformers in the standard parametrization. We will
only look at training loss to exclude the effect of regularization.

MLP with Standard Parametrization We start with a 2-hidden-layer MLP with activation func-
tion φ, using the standard parametrization5 with LeCun initialization6 akin to the default in PyTorch:

f(ξ) = W 3>φ(W 2>φ(W 1>ξ + b1) + b2)

with init. W 1 ∼ N (0, 1/din), W {2,3} ∼ N (0, 1/n), b{1,2} = 0,
(2)
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Figure 3: MLP width different hidden sizes trained
for 20 epoch on CIFAR-10 using SGD. Left uses stan-
dard parametrization (SP); right uses maximal update
parametrization (µP). µP networks exhibit better learning
rate stability than their SP counterparts.

where W 1 ∈ Rdin×n, b1 ∈ Rn,
W 2 ∈ Rn×n, b2 ∈ Rn, W 3 ∈
Rn×dout and din, n, and dout are
the input, hidden, and output dimen-
sions. The particular MLP we use has
φ = ReLU and a cross-entropy (xent)
loss function. We define the width of
MLP as the hidden size n, which is
varied from 256 to 8192. The mod-
els are trained on CIFAR-10 for 20
epochs, which is more than enough to
ensure convergence.

As shown on the left in Fig. 3, the
optimal learning rate shifts by roughly
an order of magnitude as the width
increases from 256 to 8192; using the
optimal learning of the smallest model
on the largest model gives very bad performance, if not divergence.

Transformer with Standard Parametrization This perhaps unsurprising observation holds for
more complex architectures such as Transformer as well, as shown in Fig. 1 (left). We define width

4The more theoretically astute reader may observe that SP with a Θ(1/width) learning rate induces a
well-defined infinite-width limit exists as well. Nevertheless, this does not allow HP transfer because this limit is
in kernel regime as shown in [54]. See Appendix J.3 for more discussions.

5i.e. the default parametrization offered by common deep learning frameworks. See Table 3 for a review.
6The key here is that the init. variance ∝ 1/fan_in, so the same insights here apply with e.g. He initialization.
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Table 3: µP[54] and SP for General Neural Networks. Here, we emphasize the scaling with width
(fan_in or fan_out); in practice, we may insert tunable multipliers in front of fan_in and fan_out as
in Eq. (4). The fan_out of a bias vector is its dimension (whereas fan_in is 1). Purple text highlights
key differences from standard parametrization (SP); Gray text recalls the corresponding SP. SGD
(resp. Adam) here can be replaced by variants such as SGD with momentum (resp. Adagrad, etc);
see Appendix B.3 for other optimizers. In general, the three columns here can be interpreted as
linear layers that have {finite, infinite, infinite} input dimension and {infinite, finite, infinite} output
dimension in an infinite-width network; this description generalizes more readily to other parameters
such as those of layernorm. Transformer µP requires one more modification (1/d attention instead
of 1/

√
d); see Definition 4.1. This version of µP gets rid of parameter multipliers; for the version

similar to that in [54], see Table 9. Also see Table 8 for a µP formulation that is easier to implement
(and compatible with input/output weight sharing). Further explanation of this table can be found in
Appendix B. Its derivation can be found in Appendix J.

Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_in 1/fan_in2 (1/fan_in) 1/fan_in

SGD LR fan_out (1) 1/fan_in (1) 1
Adam LR 1 1/fan_in (1) 1/fan_in (1)

as dmodel, with dk = dq = dv = dmodel/nhead and dffn = 4dmodel. The models are trained on
wikitext-2 for 5 epochs. In Fig. 18 in the appendix we also show the instability of initialization scale
and other HPs.

4 Unlocking Zero-Shot Hyperparameter Transfer with µP

We show that µP solves the problems we see in Section 3.

MLP with µP For the MLP in Section 3, to switch to µP, we just need to modify Eq. (2)’s
initialization of the last layer and its learning rates of the first and last layer as well as of the biases.
The basic form is7

initialize W 1 ∼ N (0, 1/din), W 2 ∼ N (0, 1/n), W 3 ∼ N (0, 1/n2), b{1,2} = 0

with SGD learning rates ηW 1 = ηb1 = ηb2 = ηn, ηW 2 = η, ηW 3 = ηn−1.
(3)

Here, η specifies the “master” learning rate, and we highlighted in purple the differences in the two
parametrizations. This basic form makes clear the scaling with width n of the parametrization, but in
practice we will often insert (possibly tune-able) multiplicative constants in front of each appearance
of n. For example, this is useful when we would like to be consistent with a SP MLP at a base width
n0. Then we may insert constants as follows: For ñ def

= n/n0,

initialize W 1 ∼ N (0, 1/din), W 2 ∼ N (0, 1/n), W 3 ∼ N (0, 1/n·ñ), b{1,2} = 0

with SGD learning rates ηW 1 = ηb1 = ηb2 = ηñ, ηW 2 = η, ηW 3 = ηñ−1.
(4)

Then at width n = n0, all purple factors above are 1, and the parametrization is identical to SP
(Eq. (2)) at width n0. Of course, as n increases from n0, then Eq. (4) quickly deviates from Eq. (2).
In other words, for a particular n, µP and SP can be identical up to the choice of some constants (in
this case n0), but µP determines a different “set" of networks and optimization trajectory than SP as
one varies n. As we will see empirically in the next section, this deviation is crucial for HP transfer.

Indeed, in Fig. 3(right), we plot the CIFAR10 performances, over various learning rates and widths,
of µP MLPs with n0 = 128. In contrast to SP, the optimal learning rate under µP is stable. This
means that, the best learning rate for a width-128 network is also best for a width-8192 network in µP
— i.e. HP transfer works — but not for SP. In addition, we observe performance for a fixed learning
rate always weakly improves with width in µP , but not in SP.

This MLP µP example can be generalized easily to general neural networks trained under SGD or
Adam, as summarized in Table 3, which is derived in Appendix J.

7While superficially different, this parametrization is equivalent to the µP defined in [54].
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Figure 4: Empirical validation of the stability of four representative hyperparameters on pre-
LN Transformers in µP: learning rate, last layer weight multiplier αoutput, weight initialization
standard deviation, and learning rate schedule. We use the following learning rate schedules: (a)
linear decay; (b) StepLR @ [5k, 8k] with a decay factor of 0.1; (c) StepLR @ [4k, 7k] with a decay
factor of 0.3; (d) cosine annealing; (e) constant; (f) inverse square-root decay. All models are trained
on wikitext-2 for 10k steps. When not specified in the legend, the width used is 256, depth 2, batch
size 20, sequence length 256, and LR schedule constant. We sweep a particular HP, corresponding to
each column, while fixing all others constant. See Section 6.1 for discussion of these results.

Transformers with µP We repeat the experiments with base width n0 = 128 for Transformers:
Definition 4.1. The Maximal Update Parametrization (µP) for a Transformer is given by Table 3
and 1/d attention instead of 1/

√
d, i.e. the attention logit is calculated as q>k/d instead of q>k/

√
d

where query q and key k have dimension d.8

The results are shown on the right in Fig. 1, where the optimal learning rate is stable, and the
performance improves monotonically with width. See Appendix B for further explanation of µP.

5 The Defects of SP and How µP Fixes Them

The question of SP vs µP has already been studied at length in [54]. Here we aim to recapitulate the
key insights, with more explanations given in Appendix J.3.

An Instructive Example As shown in [54] and Appendix J.3, in SP, the network output will blow
up with width after 1 step of SGD. It’s instructive to consider a 1-hidden-layer linear perceptron
f(x) = V >Ux with scalar inputs and outputs, as well as weights V,U ∈ Rn×1. In SP, Vα ∼
N (0, 1/n) ad Uα ∼ N (0, 1) for each α ∈ [n]. This sampling ensures that f(x) = Θ(|x|) at
initialization. After 1 step of SGD with learning rate 1, the new weights are V ′ ← V + θU,U ′ ←
U + θV , where θ is some scalar of size Θ(1) depending on the inputs, labels, and loss function. But
now

f(x) = V ′>U ′x = (V >U + θU>U + θV >V + θ2U>V )x (5)

blows up with width n because U>U = Θ(n) by Law of Large Numbers.

Now consider the same network in µP. According to Table 3, we now have Vα ∼ N (0, 1/n2) in
contrast to SP, but Uα ∼ N (0, 1) as before, with learning rates ηV = 1/n, ηU = n. After 1 step of
SGD, we now have

f(x) = (V >U + θn−1U>U + θnV >V + θ2U>V )x,

8This is roughly because during training, q and k will be correlated so q>k actually scales like d due to Law
of Large Numbers, in contrast to the original motivation that q, k are uncorrelated at initialization so Central
Limit applies instead. See Appendix J.2.1 for a more in-depth discussion.
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Figure 5: Logits and attention logits, but not word embeddings, of a Transformer blow up with
width in SP after 1 step of training. In contrast, all three are well-behaved with width in µP. Here
we measure how much different values change coordinatewise from initialization over 4 steps of
Adam updates, as a function of width. Specifically, we plot the standard deviation of the coordinates
of xt − x0, for t = 0, . . . , 4, and x ∈ {logits, attention logits, word embeddings}, where t = 0
indicates initialization.

and one can verify this is Θ(1) and thus does not blow up with width.9

Some Layers Update Too Fast, Others Too Slow One can observe the same behavior in more
advanced architectures like Transformers and optimizers like Adam; in fact, in SP, other hidden
quantities like attention logits will also blow up with width after 1 step, but in µP still remain bounded,
as shown in Fig. 5(middle).

One might think scaling down the learning rate with width can solve this problem in SP. However,
other hidden activations like the word embedding (Fig. 5(right)) in a Transformer update by a width-
independent amount for each step of training, so scaling down the learning rate will effectively mean
the word embeddings are not learned in large width models. Similar conclusions apply to other
models like ResNet (in fact, one can observe in the SP linear MLP example above, the input layer
is updated much more slowly than the output layer). On the other hand, µP is designed so that all
hidden activations update with the same speed in terms of width (see Appendix J.2 for why).

Performance Advantage of µP This is why a wide model tuned with µTransfer should in general
outperform its SP counterpart with (global) learning rate tuned. For example, this is the case for
the width-8192 Transformer in Fig. 1, where, in SP, the optimal learning rate needs to mollify the
blow-up in quantities like logits and attention logits, but this implies others like word embeddings do
not learn appreciably. This performance advantage means µTransfer does more than just predicting
the optimal learning rate of wide SP models. Relatedly, we observe, for any fixed HP combination,
training performance never decreases with width in µP, in contrast to SP (e.g., the µP curves in
Figs. 1, 3 and 16 do not cross, but the SP curves do; see also Section 8).

6 Which Hyperparameters Can Be µTransferred?

In this section, we explore how common HPs fit into our framework. In general, they can be divided
into three kinds, summarized in Table 1:

1. those that can transfer from the small to the large model, such as learning rate (Table 2);
2. those that primarily control regularization and don’t work well with our technique; and
3. those that define training scale, such as width as discussed above as well as others like depth

and batch size, across which we transfer other HPs.

Those in the first category transfer across width, as theoretically justified above in Section 2. To
push the practicality and generality of our technique, we empirically explore the transfer across

9Note in this example, Glorot initialization [13] (i.e. with variance 1/(fan_in + fan_out)) would scale
asymptotically the same as µP and thus is similarly well-behaved. However, if one adds layernorm or batchnorm,
then Glorot will cause logit blowup like SP, but µP still will not.
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the other dimensions in the third category. Note that µTransfer across width is quite general, e.g.
it allows varying width ratio of different layers or number of attention heads in a Transformer;
see Appendix E.2. This will be very useful in practice. For the second category, the amount of
regularization (for the purpose of controlling overfitting) naturally depends on both the model size
and data size, so we should not expect transfer to work if the parametrization only depends on model
size. We discuss these HPs in more detail in Appendix E.1.

6.1 Empirical Validation and Limitations

Our empirical investigations focus on Transformers (here) and ResNet (in Appendix G.1.1), the
most popular backbones of deep learning models today. We train a 2-layer pre-layernorm µP10

Transformer with 4 attention heads on Wikitext-2. We sweep one of four HPs (learning rate, output
weight multiplier, initialization standard deviation, and learning rate schedule) while fixing the others
and sweeping along width and depth (with additional results in Fig. 19 on transfer across batch size,
sequence length, and training time). Fig. 4 shows the results averaged over 5 random seeds.

Empirically, we find that for language modeling on Transformers, HPs generally transfer across scale
dimensions if some minimum width (e.g. 256), depth (e.g., 4), batch size (e.g., 32), sequence length
(e.g., 128), and training steps (e.g., 5000) are met, and the target scale is within the “reasonable range”
as in our experiments. Now, there are some caveats. While the exact optimum can shift slightly
with increasing scale, this shift usually has very small impact on the loss, compared to SP (Figs. 1
and 3(left)). However, there are some caveats. For example, the best initialization standard deviation
does not seem to transfer well across depth (2nd row, 3rd column), despite having a stabler optimum
across width. In addition, while our results on width, batch size, sequence length, and training time
still hold for post-layernorm (Fig. 17),11 the transfer across depth only works for pre-layernorm
Transformer. Nevertheless, in practice (e.g. our results in Section 7.3) we find that fixing initialization
standard deviation while tuning other HPs works well when transferring across depth.

7 Efficiency and Performance of µTransfer

Now that the plausibility of µTransfer has been established in toy settings, we turn to more realistic
scenarios to see if one can achieve tangible gains. Specifically, we perform HP tuning only on a
smaller proxy model, test the obtained HPs on the large target model directly, and compare against
baselines tuned using the target model. We seek to answer the question: Can µTransfer make HP
tuning more efficient while achieving performance on par with traditional tuning? As we shall see by
the end of the section, the answer is positive. We focus on Transformers here, while experiments on
ResNets on CIFAR10 and Imagenet can be found as well in Appendix G.1. All of our experiments
are run on V100 GPUs.

7.1 Transformer on IWSLT14 De-En

Setup IWSLT14 De-En is a well-known machine translation benchmark. We use the default IWSLT
(post-layernorm) Transformer implemented in fairseq [31] with 40M parameters, which we denote
as the 1x model.12 For µTransfer, we tune on a 0.25x model with 1/4 of the width, amounting to
4M parameters. For this experiment, we tune via random search the learning rate η, the output layer
parameter multiplier αoutput, and the attention key-projection weight multiplier αattn. See the grid
and other experimental details in Appendix F.1.

We compare transferring from the 0.25x model with tuning the 1x model while controlling the total
tuning budget in FLOPs.13 To improve the reproducibility of our result: 1) we repeat the entire HP
search process (a trial) 25 times for each setup, with number of samples as indicated in Table 4, and
report the 25th, 50th, 75th, and 100th percentiles in BLEU score; 2) we evaluate each selected HP
combination using 5 random initializations and report the mean performance.14

10“2 layers” means the model has 2 self-attention blocks. To compare with SP Transformer, see Fig. 18.
11in fact, post-layernorm Transformers are much more sensitive to HPs than pre-layernorm, so our technique

is more crucial for them, especially for transfer across width. Fig. 1 uses post-layernorm.
12https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md.
13Ideally we would like to measure the wall clock time used for tuning. However, smaller models such as the

proxy Transformer used for IWSLT are not efficient on GPUs, so wall clock time would not reflect the speedup
for larger models like GPT-3. Thus, we measure in FLOPs, which is less dependent on hardware optimization.

14We do not report the standard deviation over random initializations to avoid confusion.
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Table 4: Transformer on IWSLT14 De-En. 1x and 0.25x refers to scaling of width only. Compared
to traditional tuning (“Tuning on 1x”), µTransfer from 0.25x provides better and more reliable
outcome given fixed amount of compute. On the other hand, naive transfer (i.e. with SP instead of
µP) fails completely. The percentiles are over independent trials, with each trial involving the entire
tuning process with a new HP random search.

Val. BLEU Percentiles
Setup Total Compute #Samples 25 50 75 100

fairseq[31] default - - - - - 35.40

Tuning on 1x 1x 5 33.62 35.00 35.35 35.45
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 35.27 35.33 35.45 35.53

We pick the HP combination that achieves the lowest validation loss15 for each trial. The reported
best outcome is chosen according to the validation loss during tuning. We compare against the default
in fairseq, which is presumably heavily tuned. The result is shown in Table 4.
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Figure 6: Efficiency-performance Pareto fron-
tier of µTransfer compared to conventional tuning,
on IWSLT Transformer, using random HP search
as the base method. We plot the median BLEU
score over 25 trials (Left) against relative compute
budget in log scale and (Right) against number
of HP samples taken. While with the same num-
ber of samples, µTransfer slightly underperforms
conventional tuning, this gap vanishes with more
samples, and in terms of compute, our Pareto fron-
tier strongly and consistently dominates that of
conventional tuning. Note that, in larger models
(e.g. BERT or GPT-3, not shown here), we believe
our efficiency advantage will only widen as our
small proxy model can stay the same size while
the target model grows.

Performance Pareto Frontier The result
above only describes a particular compute bud-
get. Is µTransfer still preferable when we have
a lot more (or less) compute? To answer this
question, we produce the compute-performance
Pareto frontier in Fig. 6(left), where we repeat
the above experiment with different compute
budgets. Evidently, our approach completely
dominates conventional tuning.

Sample Quality of Proxy Model vs Target
Model The Pareto frontier in Fig. 6(right) sug-
gests that, given a fixed number of random sam-
ples from the HP space, 1) tuning the target
model directly yields slightly better results than
tuning the proxy model (while taking much
more compute of course), but 2) this perfor-
mance gap seems to vanish as more samples
are taken. This can be explained by the intu-
ition that the narrower proxy model is a “noisy
estimator” of the wide target model [54].With
few samples, this noise can distort the random
HP search, but with more samples, this noise is
suppressed.

7.2 Transformer on WMT14 En-De

We scale up to WMT14 En-De using the large (post-layernorm) Transformer from [47] with 211M
parameters. We tune on a proxy model with 15M parameters by shrinking dmodel, dffn, and nhead.
For this experiment, we tune via random search the learning rate η, the output layer parameter
multiplier αoutput, and the attention key-projection weight multiplier αattn following the grid
in Appendix F.2. The result is shown in Table 5: While random search with 3 HP samples far
underperforms the fairseq default, we are able to match it via transfer using the same tuning budget.

7.3 BERT

Finally, we consider large-scale language model pretraining where HP tuning is known to be challeng-
ing. Using Megatron (pre-layernorm) BERT [40] as a baseline, we hope to recover the performance
of the published HPs by only tuning a proxy model that has roughly 13M parameters, which we call
BERT-prototype. While previous experiments scaled only width, here we will also scale depth, as
discussed in Section 6 and validated in Fig. 4. We use a batch size of 256 for all runs and follow the

15We find this provides more reliable result than selecting for the best BLEU score.
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Table 5: Transformers on WMT14 En-De. 1x and 0.25x refers to scaling of width only. We report
BLEU fluctuation over 3 independent trials, i.e., 3 independent random HP searches.

Val. BLEU Percentiles
Setup Total Compute #Samples Worst Median Best

fairseq[31] default - - - - 26.40

Tuning on 1x 1x 3 training diverged 25.69
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 25.94 26.34 26.42

standard finetuning procedures. For more details on BERT-prototype, what HPs we tune, and how we
finetune the trained models, see Appendix F.3.

During HP tuning, we sample 256 combinations from the search space and train each combination
on BERT-prototype for 105 steps. The total tuning cost measured in FLOPs is roughly the same as
training 1 BERT-large for the full 106 steps; the exact calculation is shown in Appendix F.3. The
results are shown in Table 6. Notice that on BERT-large, we obtain sizeable improvement over the
well-tuned Megatron BERT-large baseline.

Table 6: BERT pretraining. HP transfer outperforms published baselines without tuning the full
model directly at all. We tune BERT-base and BERT-large simultaneously via a single proxy model,
BERT-prototype. The total tuning cost = the cost of pretraining a single BERT-large. Model speedup
refers to the training speedup of BERT-prototype over BERT-base or BERT-large. Total speedup in
addition includes time saving from transferring across training steps. Both speedups can be interpreted
either as real-time speedup on V100s or as FLOPs speedup (which turn out to be empirically very
similar in this case).

Model Method Model Speedup Total Speedup Test loss MNLI (m/mm) QQP

BERTbase Megatron Default 1x 1x 1.995 84.2/84.2 90.6
BERTbase Naive Transfer 4x 40x training diverged
BERTbase µTransfer (Ours) 4x 40x 1.970 84.3/84.8 90.8

BERTlarge Megatron Default 1x 1x 1.731 86.3/86.2 90.9
BERTlarge Naive Transfer 22x 220x training diverged
BERTlarge µTransfer (Ours) 22x 220x 1.683 87.0/86.5 91.4

7.4 GPT-3

In order to further verify µTransfer at scale, we applied it to GPT-3 6.7B [7] with relative attention.
This target model consists of 32 residual blocks with width 4096. We form the small proxy model by
shrinking width to 256, resulting in roughly 40 million trainable parameters, 168 times smaller than
the target model. HPs were then determined by a random search on the proxy model. The total tuning
cost was only 7% of total pretraining cost. Details of the HP sweep can be found in Appendix F.4.

In order to exclude code difference as a possible confounder, we also re-trained GPT-3 6.7B from
scratch using the original HPs from [7]. Unfortunately, after we have finished all experiments, we
found this baseline mistakenly used absolute attention (like models in [7]) when it was supposed to
use relative attention like the target model. In addition, during training of the µTransfer model we
encountered numerical issues that lead to frequent divergences. In order to avoid them, the model was
trained using FP32 precision, even though the original 6.7B model and our re-run were trained using
FP16.16 17 The resulting µTransfer model outperforms the 6.7B from [7], and is in fact comparable
to the twice-as-large 13B model across our evaluation suite (see Table 11). Selected evaluation results
can be found in Table 7 and further details are given in Table 10 and Appendix F.4.

16While we are mainly focused on the efficacy of µTransfer regardless of precision, it would be interesting to
ablate the effect of precision in our results, but we did not have enough resources to rerun the baseline in FP32

17It is quite interesting that µTransfer identified a useful region of hyperparameters leading to much improved
performance, which probably would be difficult to discover normally because 1) researchers usually change
hyperparameters to accomodate precision and 2) there was no precise enough justification to go against this
judgment until µTransfer.
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Table 7: GPT-3 6.7B Pretraining. Selected evaluation results for the GPT-3 6.7B model tuned
with µTransfer (transfered from a small proxy model of 40M parameters), compared to the results
published in [7] and a re-run with original HPs, as well as the 13B model in [7] for reference. Note
that the perplexities in this table are based on a custom tokenization and are not comparable to the
literature. The validation loss refers to the loss achieved on a random held-out part of our dataset.
Zero-shot, One-Shot and Few-Shot refer to the number of additional query and answer pairs passed in
the context when performing the sampling-based evaluations. See Appendix F.4 for full evaluation.

Task Metric 6.7B+µP 6.7B re-run 6.7B [7] 13B [7]

Validation loss cross-entropy 1.98 2.03 - -
PTB perplexity 11.4 13.0 - -
WikiText-103 perplexity 8.56 9.13 - -
One Billion Words perplexity 20.5 21.7 - -
LAMBADA Zero-Shot accuracy 73.5 70.8 70.3 72.5
LAMBADA One-Shot accuracy 69.9 64.8 65.4 69.0
LAMBADA Few-Shot accuracy 74.7 77.1 79.1 81.3
HellaSwag Zero-Shot accuracy 72.0 66.7 67.4 70.9
HellaSwag One-Shot accuracy 71.1 65.9 66.5 70.0
HellaSwag Few-Shot accuracy 72.4 66.4 67.3 71.3
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Figure 7: Wider is always better in training loss under µP, but not in SP, given the same HP.
Learning curves for µP and SP with different learning rates, aggregated over 5 seeds. (Left) Wider
µP models always achieve better training loss at any time in training. (Middle) If using a small
learning rate, SP models can appear to do so up to some large width, at which point the pattern fails
(at width 2048 in our plot). (Right) If using a large learning rate, SP model can strictly do worse with
width; here the SP model is identical to the µP model in (Left) at width 128.
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Figure 8: Stress-testing “wider-is-better” in µP.
Here we trained a GPT-3 transformer with 4 layers
and widths from 256 to 32,768. Modulo a brief
period around 1e8 training tokens, wider is better
throughout training.

In earlier plots like Figs. 1 and 3, we saw that
at the end of training, wider is always better
in µP but not in SP. In fact, we find this to
be true throughout training, as seen in Fig. 7,
modulo noise from random initialization and/or
data ordering, and assuming the output layer is
zero-initialized (which has no impact on perfor-
mance as discussed in Appendix D.2). We then
stress-tested this on a µP GPT-3 Transformer
(on the GPT-3 training data) by scaling width
from 256 to 32,768 using a fixed set of HPs
(Fig. 8). Wider models consistently match or
outperform narrower models at each point in
training (except a brief period around 1e8 train-
ing tokens, likely due to noise because we ran
only 1 seed due to computational cost). Our ob-
servation suggests that wider models are strictly
more data-efficient if scaled appropriately. By
checking “wider-is-better” early in training, one can also cheaply debug a µP implementation.
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9 Useful Hyperparameter Transfer: A Theoretical Puzzle

We want to tune HPs on a small model with width N such that its HP landscape looks like that of
a large model with width� N . Our intuition in Section 2 and Appendices C and J leads us to µP.
However, for this to be useful, we do not want the small model (as a function) after training to be
close to that of the large model — otherwise there is no point in training the large model to begin
with. So N 1) must be large enough so that the HP optimum converges, but 2) cannot be so large
that the functional dynamics (and the loss) converges. The fact that such N exists, as demonstrated
by our experiments, shows that: In some sense, the HP optimum is a “macroscopic” or “coarse”
variable which converges quickly with width, while the neural network function (and its loss) is a very
“microscopic” or “fine” detail that converges much more slowly with width. However, theoretically,
it is unclear why this should happen, and where else we should expect such useful HP transfer. We
leave an explanation to future work.

10 Related Works

10.1 Hyperparameter Tuning

Many have sought to speedup HP tuning beyond the simple grid or random search. Snoek et al.
[42] treated HP tuning as an optimization process and used Bayesian optimization by treating the
performance of each HP combination as a sample from a Gaussian process (GP). Snoek et al. [43]
further improved the runtime by swapping the GP with a neural network. Another thread of work
investigated how massively parallel infrasture can be used for efficient tuning under the multi-arm
bandit problem [18, 21]. There are also dedicated tools such as Optuna [4] and Talos [3] which
integrate with existing deep learning frameworks and provide an easy way to apply more advanced
tuning techniques.

Our approach is distinct from all of the above in that it does not work on the HP optimization process
itself. Instead, it decouples the size of the target model from the tuning cost, which was not feasible
prior to this work. This means that no matter how large the target model is, we can always use a
fixed-sized proxy model to probe its HP landscape. Nevertheless, our method is complementary,
as the above approaches can naturally be applied to the tuning of the proxy model; it is only for
scientific reasons that we use either grid search or random search throughout this work.

10.2 Hyperparameter Transfer

Many previous works explored transfer learning of HP tuning (e.g. [15, 34, 44, 59]). However, to the
best of our knowledge, our work is the first to explore zero-shot HP transfer. In addition, we focus on
transferring across model scale rather than between different tasks or datasets. Some algorithms like
Hyperband [22] can leverage cheap estimates of HP evaluations (like using a small model to proxy a
large model) but they are not zero-shot algorithms, so would still be very expensive to apply to large
model training. Nevertheless, all of the above methods are complementary to ours as they can be
applied to the tuning of our proxy model.

10.3 Previously Proposed Scaling Rules of Hyperparameters

(Learning Rate, Batch Size) Scaling [41] proposed to scale learning rate with batch size while
fixing the total epochs of training; [14] proposed to scale learning rate as

√
batchsize while fixing

the total number of steps of training. However, [38] showed that there’s no consistent (learning
rate, batch size) scaling law across a range of dataset and models. Later, [28] studied the trade-off
of training steps vs computation as a result of changing batch size. They proposed an equation of
a/(1 + b/batchsize), where a and b are task- and model-specific constants, for the optimal learning
rate (see their fig 3 and fig 5). This law suggests that for sufficiently large batch size, the optimal
learning rate is roughly constant.18 This supports our results here as well as the empirical results in
[38, fig 8].

Learning Rate Scaling with Width Assuming that the optimal learning rate should scale with
batch size following [41], [32] empirically investigated how the optimal “noise ratio” LR/batchsize
scales with width for MLP and CNNs in NTK parametrization (NTP) or standard parametrization

18while the optimal learning is roughly linear in batch size when the latter is small
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(SP) trained with SGD. They in particular focus on test loss in the regime of small batch size and
training to convergence. In this regime, they claimed that in networks without batch normalization,
the optimal noise ratio is constant in SP but scales like 1/width for NTP. However, they found this
law breaks down for networks with normalization.

In contrast, here we focus on training loss, without training to convergence and with a range of batch
sizes from small to very large (as is typical in large scale pretraining). Additionally, our work applies
universally to 1) networks with normalization, along with 2) Adam and other adaptive optimizers;
furthermore 3) we empirically validate transfer across depth and sequence length, and 4) explicitly
validate tuning via µTransfer on large models like BERT-large and GPT-3.

Finally, as argued in [54] and Appendix J.3, SP and NTP lead to bad infinite-width limits in contrast
to µP and hence are suboptimal for wide neural networks. For example, sufficiently wide neural
networks in SP and NTP would lose the ability to learn features, as concretely demonstrated on
word2vec in [54].

Input Layer Parametrization The original formulation of µP in [54] (see Table 9, which is
equivalent to Table 3) uses a fan-out initialization for the input layer. This is atypical in vision
models, but in language models where the input and output layers are shared (corresponding to word
embeddings), it can actually be more natural to use a fan-out initialization (corresponding to fan-in
initialization of the output layer). In fact, we found that fairseq [31] by default actually implements
both the fan-out initialization and the

√
fan_out multiplier.

Other Scaling Rules Many previous works proposed different initialization or parametrizations
with favorable properties, such as better stability for training deep neural networks [5, 13, 16, 25, 37,
56, 57, 63]. Our work differs from these in that we focus on the transferability of optimal HPs from
small models to large models in the same parametrization.

10.4 Infinite-Width Neural Networks: From Theory to Practice and Back

[54] introduced µP as the unique parametrization that enables all layers of a neural network to learn
features in the infinite-width limit, especially in contrast to the NTK parametrization [17] (which
gives rise to the NTK limit) that does not learn features in the limit. Based on this theoretical insight,
in Appendix J.3, we argue that µP should also be the unique parametrization (in the sense of [54]) that
allows HP transfer across width; in short this is because it both 1) preserves feature learning, so that
performance on feature learning tasks (such as language model pretraining) does not become trivial
in the limit, and 2) ensures each parameter tensor is not stuck at initialization in the large width limit,
so that its learning rate does not become meaningless. At the same time, our results here suggest
that µP is indeed the correct parametrization for wide neural networks and thus provide empirical
motivation for the theoretical study of the infinite-width µP limit. Note, parametrization here refers
to a rule to scale hyperparameters with width (“how should my initialization and learning rate change
when my width doubles?”), which is coarser than a prescription for setting hyperparameters at any
particular width (“how should I set my initialization and learning rate at width 1024?”).

11 Conclusion

Leveraging the discovery of a feature learning neural network infinite-width limit, we hypothesized
and verified that the HP landscape across NNs of different width is reasonably stable if parametrized
according to Maximal Update Parametrization (µP). We further empirically showed that it’s possible
to transfer across depth, batch size, sequence length, and training time, with a few caveats. This
allowed us to indirectly tune a very large network by tuning its smaller counterparts and transferring
the HPs to the full model. Our results raise an interesting new theoretical question of how useful HP
transfer is possible in neural networks in the first place.

Venues of Improvement Nevertheless, our method has plenty of room to improve. For example,
initialization does not transfer well across depth, and depth transfer generally still does not work for
post-layernorm Transformers. This begs the question whether a more principled parametrization in
depth could solve these problems. Additionally, Fig. 4 shows that the optimal HP still shifts slightly
for smaller models. Perhaps by considering finite-width corrections to µP one can fix this shift.
Finally, it will be interesting to study if there’s a way to transfer regularization HPs as a function of
both the model size and data size, especially in the context of finetuning of pretrained models.
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[35] Martin Popel and Ondřej Bojar. Training Tips for the Transformer Model. The Prague Bulletin
of Mathematical Linguistics, 110(1):43–70, April 2018. ISSN 1804-0462. doi: 10.2478/
pralin-2018-0002. URL http://content.sciendo.com/view/journals/pralin/110/
1/article-p43.xml.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. arXiv:1910.10683 [cs, stat], July 2020. URL http://arxiv.org/
abs/1910.10683.

[37] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Infor-
mation Propagation. arXiv:1611.01232 [cs, stat], November 2016. URL http://arxiv.org/
abs/1611.01232.

[38] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,
and George E. Dahl. Measuring the Effects of Data Parallelism on Neural Network Training.
arXiv:1811.03600 [cs, stat], November 2018. URL http://arxiv.org/abs/1811.03600.

[39] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive Learning Rates with Sublinear Memory
Cost. April 2018. URL https://arxiv.org/abs/1804.04235v1.

[40] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

[41] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t Decay the Learning Rate,
Increase the Batch Size. arXiv:1711.00489 [cs, stat], November 2017. URL http://arxiv.
org/abs/1711.00489.

[42] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms, 2012.

[43] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian optimization using
deep neural networks, 2015.

[44] Danny Stoll, Jörg K.H. Franke, Diane Wagner, Simon Selg, and Frank Hutter. Hyperparameter
transfer across developer adjustments, 2021. URL https://openreview.net/forum?id=
WPO0vDYLXem.

[45] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. MLP-Mixer: An all-MLP Architecture for Vision. arXiv:2105.01601 [cs],
June 2021. URL http://arxiv.org/abs/2105.01601.

[46] Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby,
Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé
Jégou. ResMLP: Feedforward networks for image classification with data-efficient training.
arXiv:2105.03404 [cs], June 2021. URL http://arxiv.org/abs/2105.03404.

16

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
http://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1611.01232
http://arxiv.org/abs/1611.01232
http://arxiv.org/abs/1811.03600
https://arxiv.org/abs/1804.04235v1
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://openreview.net/forum?id=WPO0vDYLXem
https://openreview.net/forum?id=WPO0vDYLXem
http://arxiv.org/abs/2105.01601
http://arxiv.org/abs/2105.03404


[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

[48] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
EMNLP 2018, page 353, 2018.

[49] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational
Linguistics, 2018. URL http://aclweb.org/anthology/N18-1101.

[50] Greg Yang. Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Archi-
tecture are Gaussian Processes. arXiv:1910.12478 [cond-mat, physics:math-ph], December
2019. URL http://arxiv.org/abs/1910.12478.

[51] Greg Yang. Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process
Behavior, Gradient Independence, and Neural Tangent Kernel Derivation. arXiv:1902.04760
[cond-mat, physics:math-ph, stat], February 2019. URL http://arxiv.org/abs/1902.
04760.

[52] Greg Yang. Tensor Programs II: Neural Tangent Kernel for Any Architecture. arXiv:2006.14548
[cond-mat, stat], August 2020. URL http://arxiv.org/abs/2006.14548.

[53] Greg Yang. Tensor Programs III: Neural Matrix Laws. arXiv:2009.10685 [cs, math], September
2020. URL http://arxiv.org/abs/2009.10685.

[54] Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. arXiv, 2020.

[55] Greg Yang and Etai Littwin. Tensor Programs IIb: Architectural Universality of Neural
Tangent Kernel Training Dynamics. arXiv:2105.03703 [cs, math], May 2021. URL http:
//arxiv.org/abs/2105.03703.

[56] Greg Yang and Sam S. Schoenholz. Deep Mean Field Theory: Layerwise Variance and
Width Variation as Methods to Control Gradient Explosion. February 2018. URL https:
//openreview.net/forum?id=rJGY8GbR-.

[57] Greg Yang and Samuel S. Schoenholz. Mean Field Residual Networks: On the Edge of Chaos.
arXiv:1712.08969 [cond-mat, physics:nlin], December 2017. URL http://arxiv.org/abs/
1712.08969.

[58] Greg Yang, Michael Santacroce, and Edward J Hu. Efficient computation of deep nonlinear
infinite-width neural networks that learn features. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=tUMr0Iox8XW.

[59] Dani Yogatama and Gideon Mann. Efficient Transfer Learning Method for Automatic Hyperpa-
rameter Tuning. In Artificial Intelligence and Statistics, pages 1077–1085. PMLR, April 2014.
URL http://proceedings.mlr.press/v33/yogatama14.html.

[60] Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional Networks.
arXiv:1708.03888 [cs], September 2017. URL http://arxiv.org/abs/1708.03888.

[61] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large Batch Optimization
for Deep Learning: Training BERT in 76 minutes. arXiv:1904.00962 [cs, stat], January 2020.
URL http://arxiv.org/abs/1904.00962.

[62] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

[63] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual Learning Without Normalization
via Better Initialization. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1gsz30cKX.

17

http://arxiv.org/abs/1706.03762
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/1910.12478
http://arxiv.org/abs/1902.04760
http://arxiv.org/abs/1902.04760
http://arxiv.org/abs/2006.14548
http://arxiv.org/abs/2009.10685
http://arxiv.org/abs/2105.03703
http://arxiv.org/abs/2105.03703
https://openreview.net/forum?id=rJGY8GbR-
https://openreview.net/forum?id=rJGY8GbR-
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1712.08969
https://openreview.net/forum?id=tUMr0Iox8XW
http://proceedings.mlr.press/v33/yogatama14.html
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1904.00962
https://openreview.net/forum?id=H1gsz30cKX


Contents

1 Introduction 1

2 Parametrization Matters: A Primer 3

3 Hyperparameters Don’t Transfer Conventionally 4

4 Unlocking Zero-Shot Hyperparameter Transfer with µP 5

5 The Defects of SP and How µP Fixes Them 6

6 Which Hyperparameters Can Be µTransferred? 7
6.1 Empirical Validation and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Efficiency and Performance of µTransfer 8
7.1 Transformer on IWSLT14 De-En . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7.2 Transformer on WMT14 En-De . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.4 GPT-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Wider is Better in µP Throughout Training 11

9 Useful Hyperparameter Transfer: A Theoretical Puzzle 12

10 Related Works 12
10.1 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

10.2 Hyperparameter Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

10.3 Previously Proposed Scaling Rules of Hyperparameters . . . . . . . . . . . . . . . 12

10.4 Infinite-Width Neural Networks: From Theory to Practice and Back . . . . . . . . 13

11 Conclusion 13

A Parametrization Terminologies 21

B Further Explanations of the µP Tables 21
B.1 Walkthrough of µP Implementation in a Transformer . . . . . . . . . . . . . . . . 23

B.2 Other Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.3 Optimizer Variants and Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 24

C Parametrization Matters: A Primer for Multiple Hyperparameters 25

D Practical Considerations 25
D.1 Verifying µP Implementation via Coordinate Checking . . . . . . . . . . . . . . . 26

D.2 Zero Initialization for Output Layers and Query Layers in Attention . . . . . . . . 26

D.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

18



D.4 Enlarge dk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.5 Non-Gaussian vs Gaussian Initialization . . . . . . . . . . . . . . . . . . . . . . . 27

D.6 Using a Larger Sequence Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D.7 Tuning Per-Layer Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 27

E Which Hyperparameters Can Be Transferred? (Continued) 27
E.1 Further Discussions on Hyperparameter Categories . . . . . . . . . . . . . . . . . 27

E.2 On the Definitions of Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

F Experimental Details 30
F.1 IWSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F.2 WMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

F.4 GPT-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G Additional Experiments 34
G.1 Experiments on ResNets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

G.1.1 ResNet on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

G.1.2 Wide ResNet on ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . 36

G.2 Experiments on Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

G.2.1 Verifying Transfer across Batch Size, Sequence Length, and Training Time
on Wikitext-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

G.2.2 Post-Layernorm Transformers . . . . . . . . . . . . . . . . . . . . . . . . 36

G.2.3 Hyperparameter Instability of SP Transformers . . . . . . . . . . . . . . . 36

H Implementing µTransfer in a Jiffy 37

I Reverse-µTransfer for Diagnosing Training Instability in Large Models 40

J An Intuitive Introduction to the Theory of Maximal Update Parametrization 41
J.1 Behaviors of Gaussian Matrices vs Tensor Product Matrices . . . . . . . . . . . . 41

J.1.1 Preparation for the Derivations . . . . . . . . . . . . . . . . . . . . . . . . 42

J.1.2 Linear Tensor Product Matrix (e.g. SGD Updates) . . . . . . . . . . . . . 42

J.1.3 Nonlinear Tensor Product Matrix (e.g. Adam Updates) . . . . . . . . . . . 42

J.1.4 Vector Case (e.g. Readout Layer) . . . . . . . . . . . . . . . . . . . . . . 43

J.1.5 Gaussian Matrix (e.g. Hidden Weights Initialization) . . . . . . . . . . . . 43

J.2 Deriving µP for Any Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 44

J.2.1 µP Derivation From the Desiderata . . . . . . . . . . . . . . . . . . . . . 45

J.3 Why Other Parametrizations Cannot Admit Hyperparameter Transfer . . . . . . . 46

List of Figures

1 Training loss against learning rate on Transformers of varying dmodel trained with
Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

19



2 Illustration of µTransfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 SP vs µP for MLPs on CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Empirical validation of the stability of four representative hyperparameters on pre-LN
Transformers in µP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Activations blow up in SP but maintain a consistent scale in µP . . . . . . . . . . . 7

6 Efficiency-performance Pareto frontier of µTransfer . . . . . . . . . . . . . . . . 9

7 Wider is always better in training loss under µP, but not in SP, given the same HP . 11

8 Stress-testing “wider-is-better” in µP . . . . . . . . . . . . . . . . . . . . . . . . . 11

9 Squashing activation functions reduce transfer quality. . . . . . . . . . . . . . . . 26

10 Enlarging dk makes µTransfer more precise in Transformers . . . . . . . . . . . . 27

11 Schematics of each Transformer layer . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Width ratio can be varied arbitrarily in µTransfer . . . . . . . . . . . . . . . . . . 29

13 µTransfer can handle increasing nhead while fixing dhead as well as increasing dhead
while fixing nhead, or a mix of both . . . . . . . . . . . . . . . . . . . . . . . . . 30

14 Results of the random search over reduced-width GPT-3 proxy models . . . . . . . 32

15 The training curves of the GPT-3 6.7B model with µTransfer and a re-run with the
original settings from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 Verifying µP hyperparameter stability on ResNet . . . . . . . . . . . . . . . . . . 35

17 Verifying hyperparameter stability under µP for Post-LN Transformers . . . . . . . 37

18 µTransfer vs naive transfer for post-layernorm Transformers on Wikitext-2 . . . . . 38

19 Empirical validation of µTransfer across Batch Size, Sequence Length, and Training
Time on pre-LN Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

20 Learning rate landscape is highly unstable under standard parametrization in IWSLT 39

21 Replicating training instability issue on a small Transformer by reverse-µtransferring
hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

List of Tables

1 Hyperparameters That Can Be µTransferred, Not µTransferred, or µTransferred Across 2

2 Examples of µTransferable Hyperparameters . . . . . . . . . . . . . . . . . . . . 3

3 µP[54] and SP for General Neural Networks . . . . . . . . . . . . . . . . . . . . . 5

4 µTransfer results for Transformer on IWSLT14 De-En . . . . . . . . . . . . . . . 9

5 µTransfer results for Transformer on WMT14 En-De . . . . . . . . . . . . . . . . 10

6 µTransfer results for BERT pretraining . . . . . . . . . . . . . . . . . . . . . . . . 10

7 µTransfer results for GPT-3 pretraining . . . . . . . . . . . . . . . . . . . . . . . 11

8 Alternative (Equivalent) µP Formulation for Easier Implementation . . . . . . . . 22

9 µP Formulation in the Style of [54] . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 Full evaluation results of our GPT-3 6.7B models . . . . . . . . . . . . . . . . . . 33

11 Our µTransferred GPT-3 6.7B model performs comparably to the twice-as-large
GPT-3 13B model from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12 µTransfer results for ResNet on CIFAR10 . . . . . . . . . . . . . . . . . . . . . . 36

13 µTransfer results for Wide ResNet on ImageNet . . . . . . . . . . . . . . . . . . . 36

14 Expected output size of matrix multiplication between different types of random
matrices and a random vector, as preparation for deriving µP . . . . . . . . . . . . 42

20



A Parametrization Terminologies

This section seeks to make formal and clarify some of the notions regarding parametrization discussed
informally in the main text.
Definition A.1 (Multiplier and Parameter Multiplier). In a neural network, one may insert a “multiply
by c” operation anywhere, where c is a non-learnable scalar hyperparameter. If c = 1, then this
operation is a no-op. This c is called a multiplier.

Relatedly, for any parameter tensor W in a neural network, we may replace W with cW for some
non-learnable scalar hyperparameter c. When c = 1, we recover the original formulation. This c is
referred to as a parameter multiplier.

For example, in the attention logit calculation 〈k, q〉/
√
dhead where q = Wx, the 1/

√
dhead factor is

a multiplier. It may also be thought of as the parameter multiplier of W if we rewrite the attention
logit as 〈k, (W/

√
dhead)x〉.

Note parameter multipliers cannot be absorbed into the initialization in general, since they affect
backpropagation. Nevertheless, after training is done, parameter multipliers can always be absorbed
into the weight.
Definition A.2 (Parametrization). In this work, a parametrization is a rule for how to change
hyperparameters when the widths of a neural network change, but note that it does not necessarily
prescribes how to set the hyperparameters for any specific width. In particular, for any neural network,
an abc-parametrization is a rule for how to scale a) the parameter multiplier, b) the initialization, and
c) the learning rate individually for each parameter tensor as the widths of the network change, as
well as any other multiplier in the network; all other hyperparameters are kept fixed with width.

For example, SP and µP are both abc-parametrizations. Again, we note that, in this sense, a
parametrization does not prescribe, for example, that the initialization variance be 1/fan_in, but
rather that it be halved when fan_in doubles.
Definition A.3 (Zero-Shot Hyperparameter Transfer). In this work, we say a parametrization admits
zero-shot transfer of a set of hyperparametersH w.r.t. a metric L if the optimal combination of values
of H w.r.t. L converges as width goes to infinity, i.e. it stays approximately optimal w.r.t. L under
this parametrization as width increases.

Throughout this paper, we takeL to be the training loss, but because regularization is not the bottleneck
in our experiments (especially large scale pretraining with BERT and GPT-3), we nevertheless see
high quality test performance in all of our results. We also remark that empirically, using training loss
as the metric can be more robust to random seed compared to validation loss and especially BLEU
score. See Table 1(left) forH. By our arguments in Appendix J.3 and our empirical results, µP is the
unique abc-parametrization admitting zero-shot transfer for suchH and L in this sense.

More generally, one may define a K-shot transfer algorithm of a set of hyperparametersH w.r.t. a
metric L as one that 1) takes width values n and n′ and an approximately optimal combination of
values ofH w.r.t. L at a width n and 2) returns an approximately optimal combination of values ofH
w.r.t. L at width n′, given 3) a budget of K evaluations of candidate hyperparameter combinations on
models of width n′. However, we will have no use for this definition in this paper.

B Further Explanations of the µP Tables

In addition to Table 3, we provide Table 8 as an equivalent µP formulation that is easier to implement,
as well as Table 9 for those more familiar with the original µP formulation in [54]. Below, we provide
some commentary on corner cases not well specified by the tables. Ultimately, by understanding
Appendix J, one can derive µP for any architecture, new or old.

Matrix-Like, Vector-Like, Scalar-Like Parameters We can classify any dimension in a neural
network as “infinite” if it scales with width, or “finite” otherwise. For example, in a Transformer,
dmodel, dffn, dhead, nhead are all infinite, but vocab size and context size are finite. Then we can
categorize parameter tensors by how many infinite dimensions they have. If there are two such
dimensions, then we say the parameter is matrix-like; if there is only one, then we say it is vector-like;
if there is none, we say it is scalar-like. Then in Tables 3, 8 and 9, “input weights & all biases” and
“output weights” are all vector-like parameters, while hidden weights are matrix-like parameters. An
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Table 8: Alternative (Equivalent) µP Formulation for Easier Implementation. Same format as
in Table 3. In contrast to the formulation in Table 3, here all “vector-like” parameters (i.e. those
that have only one dimension tending to infinity), including input and output weights and biases,
have the same width scaling for initialization variance and SGD/Adam LR (note the 1/fan_in for
input weight/bias init. var. is Θ(1) in width). This has two benefits in practice: 1) implementation
is unified and simplified for all “vector-like” parameters; 2) input and output weights can now be
tied, in contrast to Table 3, which is a common design feature of Transformer models. Note that in
this table, for biases, the fan_in is 1 (compare to PyTorch nn.Linear default initialization of biases,
where fan_in refers to fan_in of the layer.) This table can be derived from Table 3 via Lemma J.1.
See Appendix B for further explanations.

Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_in 1 (1/fan_in) 1/fan_in

Multiplier 1 1/fan_in (1) 1
SGD LR fan_out (1) fan_in (1) 1
Adam LR 1 1 1/fan_in (1)

Table 9: µP Formulation in the Style of [54]. This table can be derived from Table 3 via Lemma J.1.
Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_out (1/fan_in) 1/fan_in 1/fan_in

Multiplier
√

fan_out (1) 1/
√
fan_in (1) 1

SGD LR 1 1 1
Adam LR 1/

√
fan_out (1) 1/

√
fan_in (1) 1/fan_in (1)

advantage of Table 8 is that it gives a uniform scaling rule of initialization and learning rate for all
vector-like parameters. The multiplier rule in Table 8 can be more interpreted more generally as
the following: a multiplier of order 1/fan_in should accompany any weight that maps an infinite
dimension to a finite one. This interpretation then nicely covers both the output logits and the attention
logits (i.e. 1/d attention).

Scalar-like parameters are not as common as matrix-like and vector-like ones, but we will mention a
few examples in Appendix B.2. The scaling rule for their initialization, learning rate (for both SGD
and Adam), and multiplier is very simple: hold them constant with width.

Initialization Mean We did not specify the initialization mean in the tables, since most commonly
the mean is just set to 0, but it can be nonzero for vector-like parameters (e.g., layernorm weights)
and scalar-like parameters but must be 0 for matrix-like parameters.

Zero Initialization Variance The initialization scaling rules in our tables can all be trivially satis-
fied if the initialization variance is set to 0. This can be useful in some settings (e.g., Appendix D.2)
but detrimental in other settings (e.g., hidden weights).

What Are Considered Input Weights? Output Weights? Here, input weights very specifically
refer to weights that map from an infinite dimension to a finite dimension. As a counterexample, in
some architectures, the first layer can actually map from a finite dimension to another finite dimension,
e.g., a PCA layer. Then this is not an “input weight”; if the next layer maps into an infinite dimension,
then that’s the input weight. A similar, symmetric discussion applies to output weights.

What Counts As a “Model”? Does the MLP in a Transformer Count As a “Model”? For our
tables, a model is specifically a function that maps a finite dimension to another finite dimension,
consistent with the discussion above. For example, for an image model on CIFAR10, it maps from
3×32×32 = 3072 dimensions to 10 dimensions, and these numbers are fixed regardless of the width
of the model. Likewise, for an autoregressive Transformer model, the input and output dimension are
both the vocab size, which is independent of the width. In contrast, an MLP inside a Transformer is
not a “model” in this sense because its input and output dimension are both equal to the width of the
Transformer.
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B.1 Walkthrough of µP Implementation in a Transformer

To ground the abstract description in Tables 3, 8 and 9, we walk through the parameters of a typical
Transformer and discuss concretely how to parametrize each.

We assume that the user wants to replicate SP when the model widths are equal to some base widths,
for example, when dmodel = dmodel,0 = 128, dffn = dffn,0 = 512, etc, as in the MLP example in
Section 4. For this purpose, it’s useful to define d̃model = dmodel/dmodel,0, d̃ffn = dffn/dffn,0,
and so on. One can always take dmodel,0 = dffn,0 = · · · = 1 for a “pure” µP.

Below, we introduce hyperparameters σ•, η• for each parameter tensor, as well as a few multipliers
α•. One may always tie σ• (resp. η•) across all parameter tensors, but in our experiments, we found
it beneficial to at least distinguish the input and output layer initialization and learning rates.

Input Word Embeddings The input word embedding matrix Wwordemb has size dmodel ×
vocabsize, where vocabsize is the fan-in and dmodel is the fan-out. Follow the “input weight
& all biases” column in Tables 3, 8 and 9. For example, for Tables 3 and 8,

Wwordemb ∼ N (0, σ2
wordemb), with Adam LR ηwordemb

Note here, because fan-in (vocabsize) here is independent of width (dmodel), the “1/fan_in” for
the initialization variance in these tables is equivalent to “1”, i.e. the initialization variance can be
anything fixed with width. In this case of the word embedding, setting the variance to 1, for example,
is more natural than setting the variance to 1/fan_in, because the embedding is one-hot (1/fan_in
would be more natural for image inputs).

Positional Embeddings The (absolute or relative) positional embedding matrix W posemb has size
dmodel × contextsize, where contextsize is the fan-in and dmodel is the fan-out. With the same
discussion as above for input word embeddings, follow the “input weight & all biases” column in
Tables 3, 8 and 9. For example, for Tables 3 and 8,

W posemb ∼ N (0, σ2
posemb), with Adam LR ηposemb

Layernorm Weights and Biases Layernorm weights wLN and biases bLN both have shape dmodel
and can be thought of “input weights” to the scalar input of 1. Hence one should follow the “input
weight & all biases” column in Tables 3, 8 and 9. In particular, the usual initialization of layernorm
weights as all 1s and biases as all 0s suffice (where the initialization variance is 0). For example, for
Tables 3 and 8,

wLN ← 1, with Adam LR ηLNw, and bLN ← 0, with Adam LR ηLNb

Self-Attention There are 4 matrices, W q,W k ∈ R(dknhead)×dmodel , W v ∈ R(dvnhead)×dmodel ,
and W o ∈ Rdmodel×(dvnhead) (where the shapes are Rfan_out×fan_in). Since dmodel, (dknhead), and
(dvnhead) all scale with width (where the latter two are commonly just set to dmodel), all 4 matrices
should be parametrized according to the “hidden weights” column in Tables 3, 8 and 9. For example,
for Tables 3 and 8,

W q ∼ N (0, σ2
q/dmodel), with Adam LR ηq/d̃model

W k ∼ N (0, σ2
k/dmodel), with Adam LR ηk/d̃model

W v ∼ N (0, σ2
v/dmodel), with Adam LR ηv/d̃model

W o ∼ N (0, σ2
o/(dvnhead)), with Adam LR ηo/(d̃vñhead).

Attention Logit Scaling We use 1/d instead of 1/
√
d attention. To be compatible with 1/

√
d

attention when at a particular base dhead = dhead,0, we set

AttnLogit = αattn

√
dhead,0

dhead
q>k,

where αattn is a tunable multiplier.
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MLP There are 2 matrices, W 1 ∈ Rdffn×dmodel ,W 2 ∈ Rdmodel×dffn (where the shapes are
Rfan_out×fan_in), where dffn is commonly set to 4dmodel. Since both dmodel, dffn scale with width,
both matrices are considered “hidden weights.” For example, for Tables 3 and 8,

W 1 ∼ N (0, σ2
q/dmodel), with Adam LR ηq/d̃model

W 2 ∼ N (0, σ2
k/dffn), with Adam LR ηk/d̃ffn

Word Unembeddings Symmetric to the discussion on input word embeddings, the output word
unembeddings should be parametrized according to the “output weights” column of Tables 3, 8 and 9.
Often, the unembeddings are tied with the embeddings, and Tables 8 and 9 allow for this as their
initialization schemes are symmetric between input and output weights.

For example, for Table 3, we’d set

Wunemb ∼ N (0, σ2
unemb/(dmodeld̃model)), with Adam LR ηunemb/d̃model.

For Table 8, we would instead have

Wunemb ∼ N (0, σ2
unemb/dmodel,0), with Adam LR ηunemb,

(note dmodel,0 here is the base width and therefore is a constant) and the output is computed as

logits =
αoutput

d̃model
Wunembz

where z is the final layer embedding of a token, and αoutput is a tunable multiplier.

B.2 Other Parameters

Learnable scalar multipliers For learnable scalar multipliers (e.g., softmax inverse temperature),
one can initialize them to 1 and use a constant (in width) learning rate for both SGD and Adam. This
is compatible with Tables 3, 8 and 9.

Positional Bias Some Transformers use positional bias (of size contextsize×contextsize, which
are added to the attention logits). They are considered “scalar-like” in that it has no width dimension.
One can initialize them to 0 and use a constant (in width) learning rate for both SGD and Adam. This
is compatible with Tables 3, 8 and 9.

Spatial MLPs Recent works [12, 23, 29, 45, 46] on MLP-only architectures in NLP and CV replace
the self-attention layer in Transformers with MLPs across tokens or spatial locations. In our language
here, such MLPs have finite input and output dimensions (the context size) and infinite hidden
dimensions, so their input, output, and hidden weights should be parametrized via the corresponding
columns in Tables 3, 8 and 9.

B.3 Optimizer Variants and Hyperparameters

AdamW Exactly the same as Adam in all of our tables, with the added benefit that weight decay is
automatically scaled correctly in AdamW (but is incompatible with µP Adam). For this reason, we
recommend using AdamW when weight decay is desired (which is consistent with current standard
practice).

Frobenius Normalization LARS [60], Adafactor [39], Lamb [61], Layca [8], Fromage [6], Nero
[27] all involve a normalization step in which the update g (which may be obtained from SGD,
Adam, or other optimzers) is normalized to have Frobenius norm equal to that of the parameter
w: g ← ‖w‖F

‖g‖F g. They can be made compatible with µP in Table 8 by scaling their learning rate
for hidden weights like 1/

√
fan_in (for Table 3, the output weight learning rate should be likewise

scaled). The intuitive reasoning (which can be formalized straightforwardly using Tensor Programs)
is as follows.

This normalization implicitly encodes a width scaling: If one initializes a weight matrix with variance
1/fan_in, then an n×nmatrix (e.g., a hidden weight matrix) has Frobenius norm

√
n at initialization.

Thus, in the first step and, by induction, in any step t, the normalized update to this n× n weight also
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has Frobenius norm Θ(
√
n) (for any fixed t, as n→∞). Heuristically, this means each entry of g is

approximately of size Θ(1/
√
n). But, by the derivation of Appendix J, we want Θ(1/n) and this is

Θ(
√
n) too large! Thus, in wide enough networks, one should see a network blowup after one update,

like demonstrated in Fig. 5.

However, note that the Θ(1/
√
n) coordinate size induced by the normalization here is closer to the

right size Θ(1/n) than Adam, whose update have coordinate size Θ(1). This may partially explain
the apparent benefit of these optimizers. In particular, this may explain the observation that T5 [36],
using Adafactor, was able to train its entire range of models from 220 million to 11 billion parameters
with a fixed set of hyperparameters, while GPT-3 [7], using Adam, needed to decrease its learning
rate with model size.

RAdam RAdam [24] is a variant of Adam that uses SGD with momentum in an initial stage with
learning rate warmup, followed by a second stage of Adam with a particular setting of learning rate
with time. Thus, one can adapt RAdam to µP by individually scaling the learning rates of the initial
SGD stage and the final Adam stage according to Table 3, Table 8, or Table 9.

Adagrad and RMSProp Exactly the same as Adam in all of our tables.

ε in Adam and Its Variants All of our derivations here assume ε is negligible in Adam. If it is set
to a non-negligible number, then it needs to be scaled, for all parameters, like 1/fan_in2 if it is added
before the square root, or like 1/fan_in if it is added after the square root.

Gradient Clipping Gradient (`2-norm-wise) clipping is compatible with Table 3 (as well as
Tables 8 and 9), for either SGD or Adam, if the clip value is held constant with respect to width.

Weight Decay Weight decay should be scaled independently of width in SGD and AdamW, for all
of our tables. However, note it’s not compatible with µP Adam.

Momentum Momentum should be scaled independently of width for all of our tables.

C Parametrization Matters: A Primer for Multiple Hyperparameters

Here we give more intuition why we need to reparametrize all hyperparameters. In practice, neural
networks have multitudes of hyperparameters all interacting together. In our example of Section 2,
hyperparameter optimization would be akin to minimizing the function19

Fn(c1, . . . , ck)
def
= E

x1,...,xn

f((c1 + · · ·+ ck)(x1 + · · ·+ xn)).

where x1, . . . , xn are as in Eq. (1) and c1, . . . , ck are analogous to k hyperparameters. For the same
reasoning in Section 2, the correct parametrization is in (α1, . . . , αk) where αi = ci

√
n.

While this is straightforward, in practice, researchers often fix some hyperparameters (e.g., they tune
only learning rate but neglects to scale parameter multipliers or initialization correctly). For example,
if we only partially reparametrize and optimize in α1 while fixing c2, . . . , ck, then the optimal α1 is
(α1)∗ = α∗− (c1 + . . .+ ck)

√
n where α∗ is the optimal α for Eq. (1). Thus, as n→∞, (α1)∗ still

blows up even though we parametrized α1 correctly. More generally, the incorrect parametrization
of some hyperparameters forces other hyperparameters to increasingly compensate for it as width
grows, distorting their optima, even if the latter are correctly parametrized.

D Practical Considerations

In this section, we outline several useful tips and tricks that can improve the quality of hyperparameter
transfer in practice.

19Here, for simplicity of the example, we model the interaction between “hyperparameters” c1, . . . , ck as
additive, but in real neural networks such interactions are usually much more complicated.
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D.1 Verifying µP Implementation via Coordinate Checking

Even though µP is neatly encapsulated by Table 3, implementing it correctly can in practice be
error-prone, just like how implementing autograd by hand can be error-prone even though the math
behind is just chain-rule. In the case of autograd, gradient checking is a simple way of verifying
implementation correctness; similarly, we propose coordinate checking to verify the correctness
of µP implementation: Exemplified by Fig. 5, one calculates the average coordinate size of every
(pre)activation vector in the network over a few steps of training, as width is varied over a large
range. An incorrect implementation will see some activation vector blow up or shrink to zero with
width (like in the top row of Fig. 5). In the mup package we release with this paper, we include an
easy-to-use method for coordinate checking.

D.2 Zero Initialization for Output Layers and Query Layers in Attention

We find that the optimal hyperparameters of small and large width models match more closely when
we initialize output layers at 0 (i.e. with variance σ2/fan_in where σ = 0 instead of positive σ).
This is because the neural network in µP is approximately a Gaussian process (GP) at initialization
with variance on the order Θ(σ2/width) (contrast this with SP networks, which approximates a GP
with Θ(σ2) variance) [50, 54]. Of course, when width is large, this variance vanishes, but this can
be far from so in the small proxy model. This discrepancy in the initial GP can cause the training
trajectory of the proxy model to be very different from the trajectory of the large target model,
causing a mismatch in the optimal hyperparameters. By initializing the output layer at 0, we remove
this mismatch in the initial GP. Empirically we do not find this modification to be detrimental to
performance.

A similar consideration applies to the query layer in self-attention, and more generally, any layer
that goes from an “infinite” dimension (i.e. width) to a “finite” dimension (e.g. output dimension or
sequence length).

D.3 Activation Functions
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Figure 9: Squashing activation functions reduce transfer quality. MLP of different hidden sizes
with tanh activation trained for 20 epoch on CIFAR-10 using SGD. Left uses cross-entropy as loss
function; right uses mean squared error; columns alternate between standard parametrization (SP)
and maximal update parametrization (µP). Compared to ReLU, tanh exhibits slower convergence for
µP, yet it still outperforms SP when width is increased

When the network is narrow, its approximation to the infinite-width behavior becomes crude, which
is manifested as large fluctuations in preactivation coordinates. When using a squashing activation
functions like softmax or tanh, this causes narrower networks to saturate the activation more than
wider ones, which results in a systematic bias toward small gradients and therefore distorting the
hyperparameter landscape. This can be seen in Fig. 9, where we use tanh as the network activation
function.

Therefore, we recommend replacing non-essential squashing activation functions with ReLU, whose
derivative depends only on the sign of the pre-activation. A similar reasoning can be applied to
superlinear activation functions, where the distribution of activation values can have heavy tails,
leading to slow convergence to the infinite-width limit. However, such activations are rarely used in
practice.
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Figure 10: Enlarging dk makes µTransfer more precise. Here we plot all curves after subtracting
their minima for easier visual comparison. Transformer on IWSLT 14 similar to the setup in Ap-
pendix F.1 where the dmodel = 512 for a width multiplier of 1, nhead = 4, and dq = dk. (Left) We
leave dq = dk = dmodel/nhead, so dk = 8 for width-multiplier 0.0625. The optimum for the attention
logit multiplier cattn is noisy and does not accurately transfer across width. (Right) We enlarge
dq = dk to a minimum of 128. The HP landscape is much smoother than in (Left), and the optima
align between narrow and wide models.

D.4 Enlarge dk

We find that small dhead = dk can lead to a highly noisy HP landscape, as shown in Fig. 10. This
can significiantly decrease the quality of random HP search on the small proxy model. To solve this,
we find it useful to decouple dk from dmodel (so that dmodel 6= dk · nhead) and maintain a relatively
large dk even as dmodel is shrunk in the proxy model. For example, pegging dk = 32 is generally
effective. Training or inference speed are not usually affected much by the larger dk because of
CUDA optimizations. By Appendix E.2, this decoupling of dk from dmodel is theoretically justified,
and as shown in Fig. 10, it significantly denoises the HP landscape.

D.5 Non-Gaussian vs Gaussian Initialization

We find non-Gaussian (e.g. uniform) initialization can sometimes cause wider models to perform
worse than narrower models, whereas we do not find this behavior for Gaussian initialization. This is
consistent with theory, since in the large width limit, one should expect non-Gaussian initialization
to behave like Gaussian initializations anyway (essentially due to Central Limit Theorem, or more
precisely, universality), but the non-Gaussianity slows down the convergence to this limit.

D.6 Using a Larger Sequence Length

For Transformers, we empirically find that we can better transfer initialization standard deviation
from a narrower model (to a wide model) if we use a larger sequence length. It is not clear why this
is the case. We leave an explanation to future work.

D.7 Tuning Per-Layer Hyperparameters

The techniques in this paper allow the transfer across width of (learning rate, initialization, multipliers)
simultaneously for all parameter tensors. Thus, to get the best results, one should ideally tune all
such hyperparameters. In practice, we find that just tuning the global learning rate and initialization,
along with input, output, and attention multipliers, yield good results.

E Which Hyperparameters Can Be Transferred? (Continued)

E.1 Further Discussions on Hyperparameter Categories

Below, we discuss the reasoning behind each kind, which are supported by our empirical evidence
collected in Fig. 4 on Transformers as well as those in Appendix G.1 on ResNet.
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Transferable Hyperparameters In Table 2, we summarize which HPs can be transferred across
training scale. The transfer across width, as explained in Section 2, is theoretically justified, while we
present the transfer across the other dimensions as empirical results.

These cover most of the well-known and important HPs when the need for regularization is not
paramount, e.g., during large scale language model pretraining. Parameter Multipliers are not well-
known HPs, yet we include them here as they serve a bridge between SP and µP and can impact
model performance in practice. Concretely, any SP and µP neural networks of the same width can
have their Parameter Multipliers tuned so that their training dynamics become identical.

Hyperparameters That Don’t Transfer Well Not all HPs transfer well even if we use µP. In
particular, those whose primary function is to regularize training to mitigate “overfitting" tend not to
transfer well. Intuitively, regularization needs to be applied more heavily in larger models and when
data is scarce, but µP does not know the data size so cannot adjust the regularization accordingly.

To the best of our knowledge, there is no strict separation between HPs that regularize and those that
don’t. However, conventional wisdom tells us that there exists a spectrum of how much regularizing
effect a HP has. For example, dropout probability and weight decay are among those whose primary
function is to regularize, whereas batch size and learning rate might regularize training in some cases
but affect the dynamics more so in other ways. Our empirical exploration tells us that the former do
not transfer well, while the latter do. Our subsequent discussion will focus on the latter; we leave to
future works the expansion to the former.

Hyperparameters Transfered Across We have left out a category of HPs that defines the training
scale, or in practical terms, training cost. This includes 1) those that define how many operations a
model’s forward/backward pass takes, such as the model’s width, depth, and in the case of language
modeling, sequence length; and 2) those that define how many such passes are performed, such as
batch size and number of training steps.

As recent works have shown [7, 19], improvements along any of these scale dimensions lead to
apparently sustainable gain in performance; as a result, we are primarily interested in transferring
other HPs across these dimensions that define scale, rather than finding the optimal scale.20 This
category of HPs is particularly crucial as one can speedup training by downsizing in one or multiple
such dimensions. Indeed, it’s very common for practitioners to implicitly transfer HPs across the
number of training samples by tuning on only a subset of the full training data.

Our insights from the infinite-width limit inspired us to explore HP tranfer across width, which
does not work under SP as we have shown earlier. Building upon our success with width, which
is well explained theoretically, we hope to push the limit of compute-saving by investigating the
other dimensions empirically. To the best of our knowledge, the transferability of optimal HPs across
depth, batch size, sequence length, and training time has not been rigorously investigated previously,
with the main exception of the literature on (learning rate, batch size) scaling [38, 41] where our
transferability result of learning rate across batch size recapitulates [28].21 See Section 10.3 on how
our results relate to prior works. We will primarily focus on the Transformer architecture in the main
text with evidence for ResNet in Appendix G.1.

E.2 On the Definitions of Width

Our theory allows more general notions of width. This is especially relevant in Transformers,
where dmodel, dhead = dk, dv, nhead, dffn (see Fig. 11) can all be construed as measures of width.
We briefly discuss these here, with more theoretical justification in Appendix J.2.1 and empirical
validation below.

Varying Width Ratio So far we have assumed that every hidden layer is widened by the same
factor. But in fact we can widen different hidden layers differently. This is useful, for example, in a
Transformer where we may want to use a smaller dffn during tuning. If we are using Adam, as long

20In particular, we are not fixing the total training FLOPs when we scale, which requires understanding the
tradeoff of different scale HPs. For example, when we transfer across batch size, we fix the number of steps of
training (not the number of epochs), so that the total FLOPs scales linearly.

21There’s also a literature on the proper initialization for training deep networks effectively (e.g. [5, 16, 25,
37, 56, 57, 63]), but they do not study the transferability per se. See Section 10.3
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Figure 11: Schematics of each Transformer layer. Commonly, the key and value dimensions dk
and dv are both set to dmodel/nhead, and this is referred to as dhead.
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Figure 12: Learning rate landscape in µP is stable even if we vary dffn by a factor of 32, fixing
dmodel.

as the width of every layer still tends to infinity, we still obtain approximately the same limit22, so the
µTransfer remains theoretically justified.

See Fig. 12 for an empirical validation on IWSLT-14 using a Transformer.

Number of Attention Heads In attention-based models, one typically splits hidden size into
multiple attention heads following dmodel = dhead × nhead. So far we have assumed dhead and
dmodel to be width, but it’s possible and potentially advantageous to fix dhead and treat nhead as
the width, or increasing both simultaneously. This allows our technique to handle many popular
models, including GPT-3 [7], which scale up by fixing dhead and increasing nhead. See Fig. 13 for
an empirical validation on Wikitext-2.

Varying Just the Width of Attention Heads A specific useful instance of varying width ratio is
decoupling the key and value dimensions dk and dv and scaling dk differently from (typically larger
than) dmodel/nhead. This works as long as we use 1/d scaled-attention as in Definition 4.1 (instead
of 1/

√
d as is done commonly). When tuning on the small proxy model, if dk is too small, the HP

landscape can be quite noisy. Keeping dk relatively large while shrinking all other dimensions solves
this problem, while still obtaining significant speedup.

22This also applies for SGD, but we need more involved scaling to keep the limit approximately the same.
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F Experimental Details

F.1 IWSLT

IWSLT14 De-En is a well-known machine translation benchmark. We use a Transformer implemented
in fairseq [31] with a default dmodel = 1/4dffn = 512 and dk = dq = dv = dmodel/nhead = 128
(amounting to 40M parameters), which we denote as the 1x model. For transfer, we tune on a proxy
model with the same nhead but with dmodel and other dimensions 4 times smaller; we will call this
the 0.25x model (but it has 4M parameters). All models are trained with Adam for 100 epochs and
validated at the end of every epoch. We tune via random search the learning rate η, the output layer
parameter multiplier αoutput, and the attention key-projection weight multiplier αattn following the
grid

• η: 5× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}
• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}
• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}

F.2 WMT

We scale up to WMT14 En-De using the large Transformer from [47], with a dmodel = 1/4dffn =
1024 and dq = dk = dv = dmodel/nhead = 64. We use the exact same setup and reproduce their
result as our baseline. Then, we build the proxy model by shrinking the target model’s dmodel from
the original 1024 to 256, dffn from 4096 to 256 and nhead from 16 to 4. This reduces the total
parameter count from 211M to 15M. We then perform the HP search on the proxy model and take the
best according to validation loss, before testing on the target model. We tune via random search the
learning rate η, the output layer parameter multiplier αoutput, and the attention key-projection weight
multiplier αattn following the grid

• η: 6× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}
• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}
• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}

F.3 BERT

Details of BERT Prototype Our proxy model has 10 Transformer layers with dmodel = dffn =
256. We also reduce the number of attention heads to 8 with a dhead of 32. We call it BERT Prototype
since we can increase its width and depth according to our definitions to recover both BERT Base and
BERT Large, which enables us to sweep HPs once and use for both models. Overall, BERT Prototype
has 13M trainable parameters, a fraction of the 110M in BERT Base and the 350M in BERT Large.

Hyperparameters Tuned for Pretraining We tune the following HPs for pretraining: Adam
learning rate η, embedding learning rate ηemb, output weight multiplier αoutput, attention logits
multiplier αattn, layernorm gain multiplier αLNgain

, and bias multiplier αbias.

We sample 256 combinations from the follow grid:

• η: 1× 10−4 × 2z,where z ∈ {1.5, 2, 2.5, 3, 3.5}
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• ηemb: 1× 10−4 × 2z,where z ∈ {−1,−0.5, 0, 0.5, 1}
• αoutput: 2z,where z ∈ {2, 4, 6}
• αattn: 2z,where z ∈ {3, 3.5, 4, ..., 7}
• αLNgain

: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}

• αbias: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}

The ranges are chosen to include the implicit choices of these HPs in SP BERT Large.

Finetuning Procedure and Hyperparameters We hand-pick the finetuning HPs after training the
full-sized model. As regularization is an essential ingredient in successful finetuning, we do not
transfer such HPs (at least via the suite of techniques presented in this work) (see Table 1). We focus
on MNLI [49] and QQP, which are two representative tasks from GLUE [48]. Following [26], we
used Adam [20] with a learning rate of 5× 10−5 and a batch size of 64. The maximum number of
epochs was set to 5. A linear learning rate decay schedule with warm-up of 0.1 was used. All the
texts were tokenized using wordpieces and were chopped to spans no longer than 128 tokens.

F.4 GPT-3

Baseline 6.7B GPT-3 Transformer As the GPT-3 codebase has evolved since the publication of
[7], we re-trained the 6.7B model from scratch to remove changes in our codebase as a possible
confounder. The main differences to [7] are 1) a modified learning rate decay schedule, where
the learning rate is decayed to zero at the end of training rather than being decayed to 0.1 of the
initial value, and 2) use of relative attention in place of absolute attention. Unfortunately, after all
experiments were finished, we found this re-run baseline used absolute attention instead of relative
attention, while the µTransfer model still used relative attention.

Random Search using Reduced-Width Proxy Model In order to find a good set of hyperparam-
eters for the µTransfer version of the 6.7B model, we performed a hyperparameter search over a
reduced version of the model (i.e., the proxy model), where the width is set to 256 hidden units. This
proxy model inherits changes from the evolved GPT-3 codebase: it uses relative [10] (instead of
absolute) position encoding. Early on, we noted that on the proxy model, linear learning rate decay
outperformed the default cosine schedule, so all subsequent experiments for the proxy models use a
linear decay schedule. By Fig. 4, µTransferring this linear decay schedule to the full model should
maintain such a performance advantage over the cosine schedule.

The hyperparameter search space consists of the following hyperparameters:

• learning rate: Sampled from 10Uniform(−4,−1)

• initialization scale: All the parameters are multiplied - sampled from 10Uniform(−1,1)

• attention temperature: Reciprocal of the multiplier applied to the input to attention soft-
max. Sampled from 4Uniform(−1,1).

• output temperature: Reciprocal of the multiplier applied to the input to softmax that
produces the distribution over output tokens. Sampled from 4Uniform(−1,1).

• embedding multiplier: Scalar by which we multiply the output of the embedding layer.
Sampled from 10Uniform(−1,1).

• relative position embedding multiplier: Scalar by which we multiply vectors representing
relative position. Sampled from 10Uniform(−1,1).

In order to make the search more efficient we reduced the total number of training tokens. We
hypothesized that tuning hyperparameters on a reduced total number of tokens does not significantly
affect optimal hyperparameters. To verify, we trained two different horizons and compared the results.
While the target model was to be trained on 300 billion tokens, we tuned the proxy model on only
subsets consisting of 4 billion and 16 billion tokens. This impacts both the total training time and the
length of the linear learning rate decay schedule. Other than hyperparameters explicitly listed above
and the training horizon, the rest was the same as what we intended to use for the full width 6.7B
training run.
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Figure 14: Results of the random search over reduced-width GPT-3 proxy models trained on 4
(left) and 16 (right) billion tokens. Only the best performing runs are highlighted.

Analyzing the Results of the Random Search We performed 467 training runs of the proxy
model, out of which 350 were for 4 billion tokens (286 completed without diverging) and 117 for
16b tokens (80 completed without diverging). See Fig. 14 for summary of the results.

As suspected, we observed that the results are well-aligned for both 4 and 16 billion tokens versions.
We observe learning rate and initialization scale impact the results the most. Based on the results we
chose 0.006 for the former and 2.5 for the latter. Since most other hyperparameters appear to have
negligible effect on performance, they were kept at their default values of 1, the only exception being
the embedding scale, where higher values seem to perform better and it was therefore set to 10.

Training the µTransfer Model We encountered frequent divergences in our initial attempt to train
the µTransfer model. We traced the issue back to underflow of FP16 tensors in the backwards pass
and therefore switched to training the model in FP32. This allowed us to finish the training run
without divergences. We hypothesize that the divergence issue is related to µTransfer picking more
aggressive hyperparameters, for example a higher learning rate on linear weight tensors compared
to the original model. In order to exclude code differences as a possible confounder, we re-trained
GPT-3 6.7B from scratch using the original hyperparameters. The only difference compared to the
version published in [7] is that the learning rate was decayed fully, whereas the learning rate of the
model from [7] was only decayed to 10% of its starting value. The retrained model performs slightly
worse than the original published in [7]. We suspect that this is because it made less progress during
the last phase of training where the learning rate is close to zero. The training curves of the µTransfer
model and the re-run of the original 6.7B can be seen in Fig. 15. Detailed evaluation results can be
found in Table 10 and Table 11.

Ratio of Tuning Cost to Pretraining Cost in FLOPs can be approximated as

s(t1N1 + t2N2)

ST
≈ 0.07

where

• s = 40 Million is number of parameters of the proxy model

• S = 6.7 Billion is number of parameters of the target model

• t1 = 4 Billion is the number of training tokens for the short horizon HP search, and
N1 = 350 is the corresponding number of random HP search trials.

• t2 = 16 Billion is the number of training tokens for the longer horizon HP search, and
N1 = 117 is the corresponding number of random HP search trials.

• T = 300 Billion is the number of training tokens for the 6.7B target model.

Here we are using the fact that the training FLOPs of a Transformer per token is roughly proportional
to its number of parameters.
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Table 10: Full evaluation results of our GPT-3 6.7B models: The new model tuned with µTransfer
(marked µP), the original model from [7], and a re-training of this model from scratch with the
original hyperparameter settings (marked re-run). The sampling-based evaluations shown here are
a subset of the ones from [7]. Since the sampling-based evaluations are subject to high variance,
Wikitext 103 and the LM1B benchmark have been added to help distinguish the relative performance
of the µP and non-µP model. Note that Wikitext-103 [30] and the LM1B [9] benchmarks overlap
with the training dataset. Accuracies and F1 scores have been multiplied by 100. The perplexities
reported in this table are based on a custom BPE encoding and are not comparable to other results in
the literature. The number k of examples in the context for each task is identical to [7].
Note: Zero-shot, One-Shot and Few-Shot refer to the number of additional query and answer pairs
passed in the context when performing the sampling-based evaluations, not the ”shots” involved in
hyperparameter transfer.

Zero-shot One-shot Few-shot

Task Split Metric µP [7] re-run µP [7] re-run µP [7] re-run

Validation dataset valid ce 1.98 2.03
PTB test ppl 11.4 13.0
Wikitext 103 test ppl 8.56 9.13
LM1B test ppl 20.5 21.7

HellaSwag dev acc 72.0 67.4 66.7 71.1 66.5 65.9 72.4 67.3 66.4
LAMBADA test acc 73.5 70.3 70.8 69.9 65.4 64.8 74.7 79.1 77.1
StoryCloze test acc 79.4 77.7 77.3 80.6 78.7 78.3 84.2 81.2 81.1
NaturalQS test acc 9.86 5.79 7.20 14.7 9.78 10.6 20.2 17.0 15.7
TriviaQA dev acc 47.0 38.7 37.5 50.4 44.4 42.5 55.5 51.6 49.9
WebQS test acc 11.3 7.73 9.79 20.2 15.1 16.2 33.0 27.7 28.2
Ro→En 16 test BLEU-sb 26.9 8.75 13.7 36.5 34.2 33.5 38.2 36.2 35.6
En→Ro 16 test BLEU-sb 18.1 5.31 4.40 21.0 18.2 17.3 22.0 19.6 18.8
Fr→En 14 test BLEU-sb 29.8 15.5 19.6 31.7 31.6 30.1 38.0 36.4 36.5
En→Fr 14 test BLEU-sb 29.6 11.4 11.6 28.8 28.3 26.0 33.3 33.3 31.2
De→En 16 test BLEU-sb 31.7 18.2 21.7 33.3 31.9 31.1 38.9 36.5 36.2
En→De 16 test BLEU-sb 23.1 9.36 9.00 24.6 21.7 21.1 27.6 24.1 24.5
Winograd test acc 85.3 85.7 86.8 84.6 84.6 84.2 86.4 85.4 83.9
Winogrande dev acc 66.8 64.5 62.5 67.6 65.8 64.5 71.0 67.4 67.2
PIQA dev acc 79.1 78.0 78.0 77.3 76.3 76.9 79.2 77.8 77.7
ARC (Challenge) test acc 42.1 41.4 42.5 44.0 41.5 42.4 43.8 43.7 42.7
ARC (Easy) test acc 64.3 60.2 61.9 65.3 62.6 63.4 67.3 65.8 65.3
OpenBookQA test acc 54.4 50.4 52.6 56.4 53.0 52.8 58.4 55.2 54.4
Quac dev f1 41.8 36.1 38.2 43.1 39.0 39.5 44.0 39.9 39.9
RACE-h test acc 45.0 44.1 43.2 44.9 44.3 42.9 45.2 44.7 43.4
RACE-m test acc 58.4 54.4 54.0 57.9 54.7 53.8 58.6 55.4 55.4
SQuADv2 dev f1 59.9 52.7 50.9 64.9 57.1 54.7 68.9 62.1 58.4
CoQA dev f1 78.5 72.8 72.9 80.9 75.1 74.4 81.3 77.3 75.4
DROP dev f1 17.1 17.0 17.4 23.3 27.3 25.7 33.9 29.7 28.7
BoolQ dev acc 69.4 65.4 60.9 74.1 68.7 65.0 73.9 70.0 69.7
CB dev acc 21.4 28.6 37.5 60.7 33.9 32.1 62.5 60.7 66.1
Copa dev acc 82.0 80.0 77.0 81.0 82.0 81.0 88.0 83.0 82.0
RTE dev acc 55.2 55.2 46.2 61.0 54.9 58.8 52.7 49.5 59.9
WiC dev acc 0. 0. 0. 50.0 50.3 50.3 50.5 53.1 51.3
ANLI R1 test acc 33.7 32.3 33.4 32.4 31.6 31.7 30.9 33.1 30.7
ANLI R2 test acc 33.8 33.5 33.0 34.8 33.9 33.7 35.0 33.3 32.2
ANLI R3 test acc 32.7 34.8 33.4 34.8 33.1 33.3 36.9 33.9 32.3
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Figure 15: The training curves of the GPT-3 6.7B model with µTransfer (orange) and a re-run
with the original settings from [7] (blue). The µTransfer model uses relative attention while the
re-run uses absolute attention. In addition, the former was trained using FP32 activations and weights
after initially encountering stability issues with the hyperparameters computed using µP, while the
re-run used the original FP16 training. The µTransfer model seems to underperform in the middle
of training, but achieves a much better final validation loss once the learning rate is fully decayed.
While the original model uses a cosine schedule, the µTransfer model uses a linear learning rate
decay schedule transferred from the proxy model.

G Additional Experiments

G.1 Experiments on ResNets

G.1.1 ResNet on CIFAR-10

Setup For this case we use Davidnet [2], a ResNet variant that trains quickly on CIFAR-10, so as
to efficiently investigate its HP landscape. We train with SGD on CIFAR-10 for 10 epochs; all results
are averaged over 15 random seeds. We use a width multiplier to identify models of different width,
and a multiplier of 1 corresponds to the original model in [2]. We look at validation accuracy here as
the model barely overfits, and our observations will hold for the training accuracy as well. We first
conduct a learning rate sweep for models of different widths using SP; the result is shown in Fig. 16,
on the left.

Hyperparameter Stability Note that the best model with a width multiplier of 8 under-performs
that with a multiplier of 4. We run the same sweep with µP, along with a sweep of the output
multiplier (αoutput); the result is shown in Fig. 16, on the right. We notice that wider models always
perform better under µP and that the optimal learning rate η and αoutput are stable across width.

Hyperparameter Transfer Next, we perform a grid search for learning rate (η) and αoutput on
the 0.5x model for both SP and µP.23 Then, we take the best combination and test on the 8x model,
simulating how a practitioner might use µTransfer. The result is shown in Table 12, where µP
outperforms SP by 0.43%± .001%.

23Here we tune the 0.5x model instead of the 1x model to simulate the situation that one does “exploratory
work” on the 1x model but, when scaling up, would like to tune faster by using a smaller proxy model.
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Table 11: Evaluation results comparing the GPT-3 6.7B model tuned with µTransfer against
the twice-as-large GPT-3 13B model from [7]. The two models have similar performance on most
of the evaluation tasks.

Zero-shot One-shot Few-shot

Task Split Metric 6.7B+µP 13B[7] 6.7B+µP 13B[7] 6.7B+µP 13B[7]

HellaSwag dev acc 72.0 70.9 71.1 70.0 72.4 71.3
LAMBADA test acc 73.5 72.5 69.9 69.0 74.7 81.3
StoryCloze test acc 79.4 79.5 80.6 79.7 84.2 83.0
NaturalQS test acc 9.86 7.84 14.7 13.7 20.2 21.0
TriviaQA dev acc 47.0 41.8 50.4 51.3 55.5 57.5
WebQS test acc 11.3 8.22 20.2 19.0 33.0 33.5
Ro→En 16 test BLEU-sb 26.9 20.8 36.5 36.7 38.2 38.4
En→Ro 16 test BLEU-sb 18.1 6.43 21.0 20.8 22.0 21.8
Fr→En 14 test BLEU-sb 29.8 22.4 31.7 31.4 38.0 38.3
En→Fr 14 test BLEU-sb 29.6 15.3 28.8 30.1 33.3 35.5
De→En 16 test BLEU-sb 31.7 24.4 33.3 34.5 38.9 39.1
En→De 16 test BLEU-sb 23.1 11.0 24.6 23.3 27.6 27.7
Winograd test acc 85.3 87.9 84.6 86.1 86.4 82.4
Winogrande dev acc 66.8 67.9 67.6 66.9 71.0 70.0
PIQA dev acc 79.1 78.5 77.3 77.8 79.2 79.9
ARC (Challenge) test acc 42.1 43.7 44.0 43.1 43.8 44.8
ARC (Easy) test acc 64.3 63.8 65.3 66.8 67.3 69.1
OpenBookQA test acc 54.4 55.6 56.4 55.8 58.4 60.8
Quac dev f1 41.8 38.4 43.1 40.6 44.0 40.9
RACE-h test acc 45.0 44.6 44.9 44.6 45.2 45.1
RACE-m test acc 58.4 56.7 57.9 56.9 58.6 58.1
SQuADv2 dev f1 59.9 56.3 64.9 61.8 68.9 67.7
CoQA dev f1 78.5 76.3 80.9 77.9 81.3 79.9
DROP dev f1 17.1 24.0 23.3 29.2 33.9 32.3
BoolQ dev acc 69.4 66.2 74.1 69.0 73.9 70.2
CB dev acc 21.4 19.6 60.7 55.4 62.5 66.1
Copa dev acc 82.0 84.0 81.0 86.0 88.0 86.0
RTE dev acc 55.2 62.8 61.0 56.3 52.7 60.6
WiC dev acc 0. 0. 50.0 50.0 50.5 51.1
ANLI R1 test acc 33.7 33.2 32.4 32.7 30.9 33.3
ANLI R2 test acc 33.8 33.5 34.8 33.9 35.0 32.6
ANLI R3 test acc 32.7 34.4 34.8 32.5 36.9 34.5
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Figure 16: ResNet on CIFAR-10 for different widths (compared to a base network). On the left, the
widest network SP underperforms; on the right, the µP network has a more consistent HP landscape
and performs better. Both networks are tuned at the smallest width for the HP (η or αoutput) not in
the x-axis.
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Table 12: ResNet on CIFAR10: Transferring the best learning rate (η) and αoutput from widening
factor 0.5 to 8; µP significantly outperforms SP given the same search grid. The best HPs are different
as the models are parametrized to be identical at 1x width.23

Transfer Setup Best η Best αoutput Valid. Acc. (0.5x) Valid. Acc. (8x)

SP 0.707 4 92.82% 94.86%
µP 0.5 4 92.78% 95.29%

G.1.2 Wide ResNet on ImageNet

Setup For this case we use Wide-Resnet, or WRN [62], a ResNet variant with more channels per
layer, to further showcase µTransfer across width, i.e., number of channels. We train with SGD
on ImageNet for 50 epochs following standard data augmentation procedures. We use a width
multiplier to identify models of different width, and a multiplier of 1 corresponds to the original
WRN-50-2-bottleneck in [62].

Hyperparameter Transfer We start with a proxy model with a width multiplier of 0.125 and tune
several HPs using the following grid:

• η: 1× 2.048× 2z,where z ∈ {−5,−4,−3, ..., 4}

• αoutput: 10× 2z,where z ∈ {−5,−4,−3, ..., 4}

• weight decay co-efficient γ: 3.05× 10−5 × 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}

• SGD momentum β: 0.875× 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}

The grid is centered around the default HPs used by [1] for ResNet-50; while not expected to be
competitive for WRN, they represent a reasonable starting point for our experiment.

We randomly sample 64 HP combinations from the grid and train for 50 epochs, before selecting
the one with the highest top-1 validation accuracy. Then, we scale up the model following both µP
and SP and run with the same HPs we just selected. The result is shown in Table 13, where µP
outperforms SP by 0.41% in terms of top-1 validation accuracy.

Table 13: ResNet on ImageNet: Transferring the best learning rate (η), αoutput, γ, and β from
widening factor 0.125 to 1; µP significantly outperforms SP given the same search grid.

Transfer Setup Best η Best αoutput Best γ Best β Valid. Acc. (0.125x) Valid. Acc. (1x)

SP 32.768 .625 .000015 .4375 58.12% 76.75%
µP 32.768 .625 .000015 .4375 58.12% 77.16%

G.2 Experiments on Transformers

G.2.1 Verifying Transfer across Batch Size, Sequence Length, and Training Time on
Wikitext-2

See Fig. 19.

G.2.2 Post-Layernorm Transformers

Fig. 17 shows the transferability of learning rate, αoutput, initialization standard deviation, and Adam
β2 across width, batch size, sequence length, and training steps for post-layernorm Transformers.
However, in general, we find transfer across depth to be fragile.

G.2.3 Hyperparameter Instability of SP Transformers

Fig. 18 and Fig. 20 show the HP instability inherent in SP Transformers.
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Figure 17: Empirical validation of µTransfer for Post-LN Transformers. Same setting as Fig. 4.

H Implementing µTransfer in a Jiffy

As we have shown, one can enable µTransfer by just reparametrizing the desired model in Maximal
Update Parametrization (µP). While conceptually simple, switching from Standard Parametrization
(SP) to µP can be error-prone, as popular deep learning frameworks are built around SP. We strive to
build a tool that fulfills two goals:

1. Minimize code changes when switching to µP;

2. Keep model behavior invariant, under this switch, at a given base model shape.

By model shape, we mean the collection of dimensions of all parameters of the model. The latter goal,
which we call parametrization backward compatibility, ensures that any code base works exactly as
before at the base model shape, similar to Eq. (4), e.g. the loss at any time step remains exactly the
same before and after the switch to µP. Of course, when widths start to differ from the base model
shape, the model behavior necessarily changes so that HPs can be transferred.

There are two common approaches to setting the base model shape: 1) If one intends to tune a large
target model, then the user can set the base model shape to be the shape of the target model (e.g.
BERT-large or T5-large), so that the target model itself is in standard parametrization. Then one
can tune a proxy model with e.g. width = 124 to obtain the optimal HPs for the target model. In
addition, if one wishes to scale up further e.g. width = 1024, then these HPs remain optimal. 2)
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Figure 19: Empirical validation of µTransfer across Batch Size, Sequence Length, and Training
Time on pre-LN Transformers. Same setting as Fig. 4. Despite some shift, the optimal HPs are
roughly stable when transferring from batch size 32, sequence length 128, and 5000 training steps.
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If one has done exploration on a new idea with a small model and now wishes to scale up, reusing
the HP found during this exploration, then one can set the base model shape to be the shape of the
exploratory small model. Of course, in both scenarios, depth, batch size, and sequence lengths can
be scaled up and down as well according to Fig. 19 (though note that currently we require users to
recreate the base model shape at new depths, since the number of parameters now change with depth).

The mup Package We provide our tool as a Python package called mup designed to work with
PyTorch. The following example illustrates the usage of our package.
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What Happens in the mup Package Under the hood, mup implements the µP formulation in
Table 8. By invoking set_base_shape(model, base_model), each parameter tensor p of model
gets a p.infshape attribute that stores, for each of its dimensions, the corresponding base dimension
and whether that dimension should be considered “infinite” (i.e. will be scaled up/down, e.g.,
dmodel of a Transformer) or “finite” (i.e. will be fixed, e.g., vocabulary size). This information
is used in the initializers and optimizers to automatically scale the parameters or learning rates
to be compliant with µP. For example, by Table 8, the Adam learning rate of hidden weights p
is calculated as η/p.infshape.width_mult(), where p.infshape.width_mult() essentially
calculates fan_in

base_fan_in .

I Reverse-µTransfer for Diagnosing Training Instability in Large Models

Large Transformers are famously fickle to train [24, 35]. We note that a possible source of this
instability for larger transformers is the failure of naive hyperparameter transfer via the standard
parametrization. This is certainly consistent with Fig. 1, which shows that the optimal learning
rate for small Transformers can lead to trivial performance in large Transformers. We support this
hypothesis further by reverse-µTransferring the instability-inducing HPs from a large Transformer to
a small one and replicating the training instability. This is shown in Fig. 21.

Practically, this reverse-µTransfer technique can be used to diagnose or debug training instability
problems of large models. We offer two case studies toward this claim.

1) When training transformers of width 8192 on Wikitext-2, we found certain HP combinations
caused divergence in the middle of training. We reverse-µTransferred one such HP combination to
a model of width 256 and replicated this divergence. By analyzing this small model’s activations
right before this divergence, we found that the cause is due to attention logits blowing up. Note this
debugging session proceeded much more quickly than if we directly worked with the large model.
Later we confirmed this is indeed the same cause of the width-8192 model’s divergence.

2) A 6B-parameter language model (in standard parametrization) in a separate project experienced
repeated blow-up in the middle of training. We reverse-µTransferred its hyperparameters to a smaller,
100M-parameter model and replicated the training instability. This was solved by a retuning of the
small model via random search.
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Figure 21: Replicating training instability on a small Transformer by reverse-µTransferring
hyperparameters. These experiments concern 2-layer Transformers in Standard Parametrization
(SP) on Wikitext-2, trained with Adam, where width is defined as dmodel = dffn. (Left) LR-vs-
loss for wider and wider Transformers. (Right) Likewise for simulated width: Here each point
(log2 η, loss) for simulated width n indicates the loss from training a width-256 µP Transformer
with base width n and LR η (i.e. loosely speaking, it’s using LR transferred from η in a width-n SP
Transformer). Takeaway: The overall shapes of the curves are identical between the left and right
plots24; in particular, a learning rate leads to instability in a wide model iff it does so when transferred
back to a narrow model.

24 Note that the curves on the left are “lower” than curves on the right. This just reflects the increasing capacity
of wider models able to fit the training data better, so is orthogonal to our point.
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J An Intuitive Introduction to the Theory of Maximal Update
Parametrization

In what follows, we seek to describe useful intuitions and rules of thumb that would be helpful
to practitioners and empirical researchers alike in figuring out what is the right neural network
parametrization. The intuitions we shall describe regarding SGD can be made rigorous as in [53, 54];
those regarding Adam are new, and their formalization will be done in an upcoming paper.

First, we write down the most basic intuition regarding sums of many random elements, which will
underlie all of the calculations that follow.

Law of Large Numbers (LLN) If x1, . . . , xn, . . . “look like” random independent samples of a
random variable X , then

1

n

n∑
i=1

xi → E[X], as n→∞.

Central Limit Theorem (CLT) In the same scenario as above,

1√
n

n∑
i=1

(xi − E[X])→ N (0, σ(X)), as n→∞,

where σ(X) is the standard deviation of the random variable X .

Of course, there are many subtleties one must resolve to make the statements above truly rigorous
(e.g., what is the meaning of “look like”?), but as rules of thumb, they typically give the correct
prediction.

In particular, here we want to note the following basic intuition regarding the size of a sum of xi:

when n is large,
n∑
i=1

xi has typical size
{

Θ(n) if E[X] 6= 0

Θ(
√
n) otherwise

Here, “typical size” can be taken to mean the size 99% of time. Again, we stress that this is a good
rule of thumb that yields the correct prediction in the cases we are concerned with here; the rigorous
versions of this will come from the Tensor Programs framework (e.g., [53]).

J.1 Behaviors of Gaussian Matrices vs Tensor Product Matrices

Central to the derivation of µP for any architecture are key insights on the behaviors of two kinds of
random matrices: 1) iid Gaussian random matrix and 2) tensor product matrix (by which we mean a
sum of outer products) and more generally what we call nonlinear tensor product matrix (see Eq. (7)).
For example, a neural network, randomly initialized in the typical way, will have each weight matrix
look like the former. However, every step of training by gradient descent adds a sum of outer products
to this initial matrix, so that the change in weights constitute a tensor product matrix. For Adam,
the change in weights is not a tensor product but a more general nonlinear tensor product matrix
(see Eq. (7)). In this section, we will particularly focus on the right scaling for the entries of such
matrices, leading to a discussion of the right neural network parametrization in the next section. We
concentrate on the key heuristics but eschew burdensome rigor.

Key Insights Consider a random vector v ∈ Rn with approximately iid entries and a random
matrix A of either size n × n or 1 × n, both having entries of size Θ(1).25 In the context of deep
learning, v for example can be an activation vector in an MLP, a Gaussian A the hidden weights at
initialization, a (nonlinear) tensor product A the change in hidden weights due to training, and a
vector A the readout layer weights. Then Av corresponds to a part of the next layer preactivation
or the network output. To make sure the preactivations and the output don’t blow up, we thus need
to understand the scale of Av, especially in the general case where A is correlated with v.26 This
is summarized in Table 14, with the derivations below. Intuitively, a (nonlinear) tensor product or
vector A will interact with a correlated v via Law of Large Numbers, hence the n-scaling, while a
Gaussian A interacts with v via Central Limit Theorem, hence the

√
n-scaling.

25in the sense that the the variance of the entries are Θ(1)
26Here “correlated” formally means v depends on W> in a Tensor Program. This essentially captures all

scenarios of “v correlated with W ” that occurs in deep learning.
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Table 14: Expected entry size of Av for different matrices A and vector v correlated with each other,
both having entries of size Θ(1).

Standard Gaussian (Nonlinear) Tensor Product Vector
A ∈ Rn×n A ∈ Rn×n A ∈ R1×n

Entry size of Av Θ(
√
n) Θ(n) Θ(n)

In the derivations below, we answer a slightly different but equivalent question of “how to scale A
such that Av has entry size Θ(1)?”

J.1.1 Preparation for the Derivations

By the results of [54], each (pre-)activation vector and its gradient vector in a multi-layer perceptron,
at any time during training, have approximately iid coordinates in the large width limit,27 and
something similar can be said for more advanced networks such as ResNet and Transformers 28.
Definition J.1. We say any such vector v ∈ Rn has Θ(na)-sized coordinates, or just Θ(na)-
coordinates for short, if ‖v‖2/n = Θ(n2a) as n → ∞. Because, by the above discussion, the
coordinates are roughly iid when n is large, this intuitively means that each entry of v has “typical
size” Θ(na). We make similar definitions with Θ replaced by O and Ω.

Furthermore, to each such vector v with Θ(1)-sized coordinates, we can associate a random variable
Zv , independent of n, that represents the coordinate distribution of v, in such a way that: If vector u
is correlated with v, then Zu will also be correlated with Zv , and limn→∞ v>u/n = EZuZv .

J.1.2 Linear Tensor Product Matrix (e.g. SGD Updates)

The case of (linear) tensor product matrix can be reduced to the outer product case by linearity. Given
u, v, x ∈ Rn having approximately iid coordinates (of size Θ(1)) like discussed above, we can form
the outer product

A
def
= u⊗ v/n = uv>/n, (6)

which is the form of a single (batch size 1) gradient update to a weight matrix. Then, by Law of
Large Numbers,

Ax = u
v>x

n
≈ cu, where c = EZvZx.

So Ax also has approximately iid coordinates, distributed like ZAx def
= Zu EZvZx. Likewise, if A is

a sum of outer products A =
∑k
i=1 u

i ⊗ vi/n, then

Ax =

k∑
i=1

ui
vi>x

n
, with coordinates distributed as ZAx =

k∑
i=1

Zu
i

EZv
i

Zx.

Notice that each coordinate of A has size Θ(1/n). The above reasoning shows that, in order for Ax
to have coordinate size Θ(1) (assuming x does), then Θ(1/n) is the right coordinate size for A, in
the general case that vi and x are correlated (as is generically the case during gradient descent, with
A = ∆W for some weights W and x being the previous activations).29

J.1.3 Nonlinear Tensor Product Matrix (e.g. Adam Updates)

When using Adam or another adaptive optimizer that normalizes the gradient coordinatewise before
applying them, we need to modify our argument slightly to obtain the right coordinate size scaling of

27Our intuition here is derived from the assumption that width is much larger than training time; of course, as
illustrated by our myriad experiments, these intuition are very useful even when this is not the case, such as
when training to convergence.

28E.g. in a convnet, the (pre-)activations are iid across channels, but correlated across pixels
29In some corner cases when x is uncorrelated with v, then v>x = Θ(

√
n) by Central Limit, so actually

Ax has Θ(1/
√
n)-coordinates. However, this case does not come up much in the context of training neural

networks.
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the matrix. The gradient update A, after such normalization, will take the form of

Aαβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β), for some ψ : R2k → R and vectors ui, vj∈ Rn. (7)

We say a matrix of this form is a nonlinear tensor product matrix.

First, note the tensor product matrices (e.g. the form of SGD update) discussed previously (Eq. (6))
already takes this form, with ψ(u1α, . . . , u

k
α, v

1
β , . . . , v

k
β) = n−1(u1αv

1
β + · · · + ukαv

k
β), so Eq. (7)

is a strict generalization of linear tensor products. Next, for the example of Adam, each gradient
update is µ/σ where µ (resp. σ2) is the moving average of previous (unnormalized) gradients (resp.
the coordinatewise square of the same).30 If these unnormalized gradients are the outer products
u1 ⊗ v1, . . . , uk ⊗ vk, then the update has coordinates

(µ/σ)αβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)

def
=
∑
i

γiu
i
αv

i
β/

√∑
i

ωi(uiαv
i
β)2, (8)

where γi and ωi are the weights involved in the moving averages.

Now suppose we have some A ∈ Rn×n of the form Eq. (7), where ui, vi ∈ Rn have approximately
iid coordinates (of size Θ(1)), and ψ = n−1ψ̄ where ψ̄ doesn’t depend on n (in terms of Adam where
ψ̄ corresponds to the ψ of Eq. (8), this corresponds to using a learning rate of 1/n). Then for x ∈ Rn
having approximately iid coordinates of size Θ(1), by Law of Large Numbers,

(Ax)α =
1

n

n∑
β=1

ψ̄(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)xβ ≈ E ψ̄(u1α, . . . , u

k
α, Z

v1 , . . . , Zv
k

)Zx
def
= Ψ(u1α, . . . , u

k
α).

Here we made the obvious definition

Ψ : Rk → R, Ψ(r1, . . . , rk)
def
= E ψ̄(r1, . . . , rk, Z

v1 , . . . , Zv
k

)Zx.

Thus Ax also has approximately iid coordinates (of size Θ(1)),

ZAx
def
= Ψ(Zu

1

, . . . , Zu
k

).

For example, in the SGD example with A = u ⊗ v/n and ψ̄(uα, vβ) = uαvβ , this formula gives
ZAx = Ψ(Zu) where Ψ(z) = z EZvZx, recovering the earlier derivation.

In any case, the point here is that A has coordinate size Θ(1/n), and this is the unique scaling that
leads to Ax having coordinate size Θ(1).

J.1.4 Vector Case (e.g. Readout Layer)

The vector A case is similar to the tensor product cases above.

J.1.5 Gaussian Matrix (e.g. Hidden Weights Initialization)

Now consider the case where A ∈ Rn×n is random Gaussian matrix with Aαβ ∼ N (0, 1/n) and
x ∈ Rn has approximately iid coordinates distributed like Zx. In the context of neural network
training, A should be thought of as a randomly initialized weight matrix, and x for example can be
taken to be an activation vector in the first forward pass.

A Quick Intuition By standard random matrix theory, A has Θ(1) operator norm with high
probability. Thus, with high probability, for any “typical” vector x, we expect ‖Ax‖ = Θ(‖x‖), even
if x is correlated with A. If Ax’s coordinates are “evenly distributed”, then this would imply Ax has
Θ(1)-coordinates if x does. However, this is not so clear. Below we provide intuitions for why this
would be the case.

30Adam also has bias correction for the moving averages which can be accomodated easily, but for simplicity
we omit them here.
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Intuition for Evenness of Coordinate Distribution If x is independent from A (or sufficiently
uncorrelated), then each coordinate (Ax)α has variance E(Zx)2 = Θ(1) (so by definition has size
Θ(1)). Thus, here A having Θ(1/

√
n)-coordinates leads to Ax having Θ(1)-coordinates, in contrast

to the tensor product case above.

When x is correlated with A, it turns out the same scaling applies (Θ(1/
√
n) is the unique scaling for

A’s entries such so that Ax has Θ(1) entries), but the reasoning is much more subtle: In the context
of neural network training, it turns out all scenario where x is correlated with A can be reduced
to the case where x = φ(A>y, . . .) for some coordinatewise nonlinearity φ and some other vector
Rn.31 Let’s consider a very simple example with x = A>1 for the all 1s vector 1 ∈ Rn (which has
coordinate size Θ(1) as can be checked easily). Then, for each index α ∈ [n], we can calculate

(AA>1)α =
∑
β,γ

AαβAγβ =
∑
β

A2
αβ +

∑
β

∑
γ 6=α

AαβAγβ .

Since EA2
αβ = 1/n, by the Law of Large Number, the first sum

∑
β A

2
αβ ≈ 1. On the other hand,

there are n summands of the form
∑
γ 6=αAαβAγβ , all iid with variance n−1

n2 = Θ(1/n). Thus by
the Central Limit Theorem, we expect

∑
β

∑
γ 6=αAαβAγβ ≈ N (0, 1). Therefore, each coordinate

of (AA>1)α looks like 1 +N (0, 1) = N (1, 1) and thus has size Θ(1); again this is caused by A
having Θ(1/

√
n)-coordinates.

This example can be generalized to more general x that is correlated with A, but the mathematics is
quite involved. See [53] for more details.

J.2 Deriving µP for Any Architecture

Armed with the insight from the last section, we now outline the key steps to derive µP in Table 3 for
any architecture. In practice, µP implies the following desiderata
Desiderata J.1. At any time during training

1. Every (pre)activation vector in a network should have Θ(1)-sized coordinates32

2. Neural network output should be O(1).

3. All parameters should be updated as much as possible (in terms of scaling in width) without
leading to divergence.

Let’s briefly justify these desiderata. For the desideratum 1, if the coordinates are ω(1) or o(1),
then for sufficiently wide networks their values will go out of floating point range. This problem is
particularly acute for low-precision formats that are essential for training large models such as BERT
or GPT. Moreover, a general nonlinearity is only well-behaved if its input is in a fixed range (although
this is not a problem for homogeneous nonlinearities like relu). For example, for tanh nonlinearity, if
the preactivation is vanishing o(1), then tanh is essentially linear; if the preactivation is exploding
ω(1), then the tanh gradient vanishes.

For the desideratum 2, a similar justification applies to the numerical fidelity of the loss function and
loss derivative. Note that, with desideratum 3, this means the network output should be Θ(1) after
training (but it can go to zero at initialization).

Finally, desideratum 3 means that 1) we are doing “maximal feature learning” [54] and 2) every
parameter contribute meaningfully in the infinite-width limit. This ensures that learning rate “plays
the same role” in the finite-width case as in the infinite-width limit. For example, it prevents the
scenario where a weight matrix gets stuck at initialization in the limit for any learning rate (so
learning rate does not matter) but evolves nontrivially in any finite-width network (so learning rate
does matter).

These desiderata will essentially uniquely single out µP. More formally, µP is the unique parametriza-
tion that admits feature learning in all parameters of the neural network [54], and this property
theoretically guarantees HP transfer across width (for sufficiently large width). However, for the sake

31This is because every “reasonable” deep learning computation can be expressed in a Tensor Program.
32In a convnet, a (pre-)activation vector corresponds to a single pixel across all channels; in general , we

expect (pre-)activations are iid across channels, but correlated across pixels
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of reaching a broader audience, we will focus more on the intuitive derivations from the desiderata
rather than on this formal aspect.

Below, we first assume for simplicity that the width of every layer is n, and we focus only on dense
weights. Later, we will discuss convolutions and varying the widths between layers.

J.2.1 µP Derivation From the Desiderata

Below, we will derive the µP formulation in Table 3. Tables 8 and 9 can be derived from Table 3 via
the following equivalences, which can be easily derived via some simple calculations.

Lemma J.1. Let ft(ξ) denote the neural network function after t steps of training (using any fixed
sequence of batches), evaluated on input ξ. Consider a parameter tensor W with learning rate C,
initialized as W ∼ N (0, B2), and with a multiplier A. Then for any θ > 0, ft(ξ) stays fixed for all t
and ξ if we set

• when the optimizer is SGD

A← Aθ, B ← B/θ, C ← C/θ2

• when the optimizer is Adam,

A← Aθ, B ← B/θ, C ← C/θ;

For example, for output weights, Table 3 has A = 1, B = 1/fan_in, C = η/fan_in for SGD and
Adam. Then taking θ = 1/fan_in, we get the entries in Table 8, with A = 1/fan_in, B = 1,
C = η · fan_in for SGD and C = η for Adam. Taking θ = 1/

√
fan_in instead, we get the entries in

Table 9, with A = 1/
√

fan_in, B = 1/fan_in, C = η for SGD and η/
√

fan_in for Adam. Similar
calculations hold for the input weights scaling in those tables, after taking into consideration that
fan_in is considered a constant in terms of width for the input layer.

We proceed with the derivation of Table 3 below. Recall the definitions of Θ(na)-sized coordinates
or Θ(na)-coordinates from Definition J.1.

Output Weights Suppose W ∈ R1×n is an output weight. By desideratum 1, the input x to W
has Θ(1)-sized coordinates. Thus W should have Θ(1/n)-coordinates so that |Wx| = O(1). We
can initialize W with Θ(1/n)-coordinates and scale its (per-layer) LR so that ∆W has Θ(1/n)-
coordinates as well. This means initializing Wαβ ∼ N (0,Θ(1/n2)) and use Θ(1/n) learning rate
for both SGD and Adam.

Hidden Weights Consider a square weight matrix W ∈ Rn×n. Desiderata 1 guarantees that the
input x to W has Θ(1)-sized coordinates. Generally, x will be correlated with W . By Table 14, we
can immediately derive

Initialization W should be randomly initialized with coordinate size Θ(1/
√
n)

LR The learning rate should be scaled so that ∆W has coordinate size Θ(1/n)

so that (W0 + ∆W )x is Θ(1) if x is, inductively satisfying desideratum 1. With Adam, this just
means the per-layer LR is Θ(1/n). With SGD and the scaling of output layers above, we can calculate
that the gradient of W has Θ(1/n)-coordinates, so the Θ(1) SGD LR derived above suffices as well.

Input Weights Suppose W ∈ Rn×d is an input weight. To satisfy desideratum 1 (i.e. for any
input ξ, Wξ should have Θ(1)-coordinates), we want W to have Θ(1)-coordinates. We can initialize
W with Θ(1)-coordinates and scale its (per-layer) LR so that ∆W has Θ(1)-coordinates as well.
This implies initialization variance of Θ(1) (or Θ(1/fan_in) since fan_in = Θ(1) here) and Adam
learning rate Θ(n). As above, we can calculate that the gradient of W has Θ(1/n)-coordinates, so
we want SGD learning rate Θ(n).

Biases Biases follow the same reasoning as input weights (just think of it as an input weight with
input 1).
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Attention Suppose the key dimension dk is tending to infinity with width with number of heads
nhead fixed. Then the key-query contraction q>k ∈ R scales like Θ(dk) by Law of Large Numbers
(instead of Central Limit Theorem because q and k are generally correlated) and desideratum 1, hence
the 1/dk we propose rather than 1/

√
dk.

Now suppose instead that nhead tends to infinity with width with dk fixed. Let K,Q ∈
RN×dk×nhead , V ∈ RN×dv×nhead be keys, queries, and values across all heads and tokens. Think-
ing of N × dk as constants, we may view attention as a nonlinearity coordinatewise in the nhead
dimension. Then it’s clear that our parametrization described above already works.

Finally, we may freely let dk and nhead both tend to infinity, and the above reasoning shows that our
parametrization still works.

Changing Width Ratios As noted above, at any time in training, every (pre-)activation vector will
have approximately iid coordinates (of order Θ(1) by desideratum 1). Another desideratum for µP is
to ensure that this coordinate distribution (at any particular time) stays roughly invariant as widths
increases. When all layer widths are tied, this is automatic if the other desiderata are satisfied, hence
why we did not list this above.

When width ratios vary, this is not automatic. In this case, we need to choose whether to replace each
n with fan-in or fan-out (or some function of them). Making the wrong choices will let the coordinate
distributions vary with width ratios.

Obviously, we should replace n with fan-in for the output layers and with fan-out for the input layers
since they are the only dimension scaling with n. For the hidden weights, we replace n with fan-in
so that the forward pass is preserved. When using Adam (and assuming the initialization of W is
quickly dominated by the change in W ), this ensures that the (pre-)activation coordinate distributions
are preserved at any time during training even if we vary widths in different layers differently. (For
SGD this doesn’t quite work in general because the varying width ratios change the gradient sizes of
different layers differently, whereas Adam always normalizes the gradient coordinatewise).

Convolution A convolution weight tensor W ∈ Rfan_out×fan_in×s1×s2 with kernel size s1 × s2
can be thought of just as a s1s2 = Θ(1)-sized collection of fan_out× fan_in dense weights. Then
all of our discussions above apply accordingly.

J.3 Why Other Parametrizations Cannot Admit Hyperparameter Transfer

Standard Parametrization (SP) SP doesn’t work essentially because it leads to blow-up in the
infinite-width limit.

1. For Adam with LR Θ(1), ∆W would have Θ(1)-coordinates, causing preactivations to blow
up like Θ(n) by Desideratum 1 and Table 14. We can avoid this blowup with LR Θ(1/n),
but this induces a non-maximal feature learning limit, which, as we argue below, cannot
transfer hyperparameters in all situations.

2. For SGD, the gradient of Rn×n weight has Θ(1/
√
n)-coordinates, so Θ(1) learning rate

would make preactivation scale like Θ(
√
n) and hence blow up. If we use Θ(1/width)

learning rate, then blow-up does not occur. However, this infinite-width limit is in the kernel
regime [54] and thus does not allow HP transfer for the same reason that NTP below does
not.

Neural Tangent Parametrization (NTP) We have concrete examples, e.g. Word2Vec in [54],
where the NTK limit has trivial performance — so HPs have no effect at all — vastly outperformed
by finite-width networks — where HPs matter. More importantly, wider does not always do better in
NTP, especially in tasks where feature learning is crucial [54, 58]. So in the context of modern deep
learning e.g. large language model pretraining, NTP (or SP with Θ(1/width) LR) does not make
sense for wide neural networks.

Other Parametrizations Recall the Dynamical Dichotomy Theorem proven in [54], which says
that any nontrivial stable “natural parametrization” (formally, “abc-parametrization,” [54]) either
admits a feature learning limit or a kernel limit, but not both.

Our argument above against SP and NTP will also work against any parametrization inducing a kernel
limit. Therefore, it remains to ask, can other feature learning parametrizations transfer HPs?
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We argue no. As shown in [54], any other feature learning parametrization differs from µP essentially
only in that some parameters are not updated maximally. By [54, Sec 6.4], in the infinite-width limit,
such parameters can be thought of as being fixed at initialization. Therefore, in such infinite-width
limits, the learning rate of such parameters becomes useless. As such, we cannot hope for the HP
landscape of the limit to reflect the HP landscape of finite-width neural networks.

µP is the unique feature learning parametrization that updates all parameters maximally, so that the
learning rate of each parameter plays approximately the same role in finite-width neural networks
as in the infinite-width limit. Consequently, the HP landscape of the µP limit should reflect the HP
landscape of finite-width neural networks.
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