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Motivation: Bike Sharing Systems
Examples 


Bike Sharing (Capital Bikeshare, Hubway, etc.): 747 
active systems


Alternative transportation to reduce carbon 
emissions and traffic congestion


Problem: Lost demand because of insufficient vehicles at 
right places/times


Increased use of private transportation and hence 
carbon emissions

Reduced revenue
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Related Work
Static Redeployment (once at the end of day)


Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)

Issue - Stations are imbalanced during the day.
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Related Work
Static Redeployment (once at the end of day)


Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)

Issue - Stations are imbalanced during the day.


Dynamic Redeployment (matching of producer and consumer station)

Shu et al. (2013, 2010), O’Mahony and Shmoys (2015)

Issue - Does not consider the routing cost which is a major cost driver.


Myopic/Online Redeployment 

Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)

Issue - Perform poorly in reality as it does not consider the future demands.


Our Approach:

MILP to jointly consider dynamic routing and redeployment problem [DRRP]

Lagrangian dual decomposition to improve the scalability. 

Abstraction mechanism by grouping the nearby base stations to reduce the 
decision problems. 
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Challenge
Input: A DRRP is compactly defined using following tuple

the challenging nature of setting up such systems to operate
efficiently, there have been a wide variety of research pa-
pers addressing the problem of lost demand and other issues
pertinent to it. The key distinction from existing research on
bike sharing is that we consider the dynamic redeployment
of bikes in conjunction with the routing problem for carriers.

DRRP is an NP-Hard problem and therefore, we focus
on principled approximations. Specifically, our key contri-
butions are as follows :
(1) A mixed integer and linear optimization formulation to
maximize profit for the bike sharing company by trading off
between:
• computing the optimal re-deployment strategy (i.e., how

many vehicles have to be picked or dropped from each
base station and when) for bikes; and

• computing the optimal routing policy (i.e., what is the or-
der of base stations according to which redeployment hap-
pens) for each of the carriers.

(2) A Lagrangian dual decomposition method to exploit the
weak dependency between the component which computes
re-deployment strategy for bikes and the component which
computes routing policy for carriers.
(3) An abstraction mechanism that groups nearby base sta-
tions to reduce the size of the decision problem and conse-
quently, improve scalability.
Extensive computational results on real-world datasets of
two bike-sharing companies, namely Capital Bikeshare
(Washington, DC) and Hubway (Boston, MA) demonstrate
that our techniques improve revenue and operational effi-
ciency of bike-sharing systems.

Figure 1: Number of instances of empty/full stations in Capi-
talBikeShare Company

2 Related Work
Given the practical benefits of bike sharing systems, they
have been studied extensively in the literature. We focus on
three threads of research that are of relevance to this paper.
First thread of papers focus on the problem of finding routes
at the end of the day for a fixed set of carriers to achieve
the desired configuration of bikes across the base stations.
(Schuijbroek, Hampshire, and van Hoeve 2013; Raviv and
Kolka 2013; Raviv, Tzur, and Forma 2013; Rainer-Harbach
et al. 2013) have provided scalable exact and approximate
approaches to this routing problem by either abstracting base
stations into mega stations or by employing insights from

inventory management or by using variable neighborhood
search based heuristics. All the papers in this thread assume
there is only one fixed redeployment of bikes that happens
at the end of the day. In contrast, our approaches focus on
dynamic redeployment(s) during the day.

The second thread of research focuses on the placement
of base stations and on performing dynamic redeployment
of bikes during the day. (Shu et al. 2013; 2010) predict the
stochastic demand from user trip data of Singapore metro
system using poisson distribution and provide an optimiza-
tion model that suggests the best location of the stations and
a dynamic redeployment model to minimize the number of
unsatisfied customers. However, they assume that redeploy-
ment of bikes from one station to another is always possi-
ble without considering the routing of carriers, which is a
major cost driver for the bike-sharing company. A dynamic
redeployment model was proposed in (Contardo, Morency,
and Rousseau 2012) to deal with unmet demand in rush
hours. They provide a myopic redeployment policy by con-
sidering the current demand. They employed Dantzig-Wolfe
and Benders decomposition techniques to make the decision
problem faster. (Pfrommer et al. 2014) also provides a my-
opic online decisions based on assessment of demand for
the next 30 minutes. As can be observed from the data, cus-
tomer demand of bikes varies over time stochastically and
hence a myopic redeployment policy can significantly fal-
ter and may lead to circular movements for the carriers as it
does not consider the future demand. Our approaches differ
from this thread of research as we consider dynamic rede-
ployment and routing of carriers together and consider the
multi-step expected demand in determining the dynamic re-
deployment policy.

The third thread of research which is complementary to
the work presented in this paper is on demand prediction
and analysis. (Nair and Miller-Hooks 2011) provides a ser-
vice level analysis of the Bike Sharing System using a dual-
bounded joint-chance constraints where they predict the near
future demands for a short period of time. While, this may
not be applicable for a large system with a small set of car-
riers, the insights generated are practical and useful in de-
mand prediction. (Leurent 2012) represent the bike shar-
ing system as a dual markovian waiting system to predict
the actual demand. As we already highlighted, given its
generality and applicability over an entire horizon, we also
employ the demand prediction model by (Shu et al. 2013;
2010) and assume that demand follows a poisson distribu-
tion. However, we learn the parameter, � that governs the
poisson distribution from real data.

3 Motivation: Bike Sharing
In this section, we formally describe a bike sharing system.
It is compactly described using the following tuple:

D
S,V,C#,C⇤, d#,0, d⇤,0, {�0

v},F,R,P
E

S represents the set of base stations. V represents the set of
carrier vehicles that can be employed to redeploy bikes. C#

is a vector representing docking capacity of all stations, with
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stations into mega stations or by employing insights from
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search based heuristics. All the papers in this thread assume
there is only one fixed redeployment of bikes that happens
at the end of the day. In contrast, our approaches focus on
dynamic redeployment(s) during the day.

The second thread of research focuses on the placement
of base stations and on performing dynamic redeployment
of bikes during the day. (Shu et al. 2013; 2010) predict the
stochastic demand from user trip data of Singapore metro
system using poisson distribution and provide an optimiza-
tion model that suggests the best location of the stations and
a dynamic redeployment model to minimize the number of
unsatisfied customers. However, they assume that redeploy-
ment of bikes from one station to another is always possi-
ble without considering the routing of carriers, which is a
major cost driver for the bike-sharing company. A dynamic
redeployment model was proposed in (Contardo, Morency,
and Rousseau 2012) to deal with unmet demand in rush
hours. They provide a myopic redeployment policy by con-
sidering the current demand. They employed Dantzig-Wolfe
and Benders decomposition techniques to make the decision
problem faster. (Pfrommer et al. 2014) also provides a my-
opic online decisions based on assessment of demand for
the next 30 minutes. As can be observed from the data, cus-
tomer demand of bikes varies over time stochastically and
hence a myopic redeployment policy can significantly fal-
ter and may lead to circular movements for the carriers as it
does not consider the future demand. Our approaches differ
from this thread of research as we consider dynamic rede-
ployment and routing of carriers together and consider the
multi-step expected demand in determining the dynamic re-
deployment policy.

The third thread of research which is complementary to
the work presented in this paper is on demand prediction
and analysis. (Nair and Miller-Hooks 2011) provides a ser-
vice level analysis of the Bike Sharing System using a dual-
bounded joint-chance constraints where they predict the near
future demands for a short period of time. While, this may
not be applicable for a large system with a small set of car-
riers, the insights generated are practical and useful in de-
mand prediction. (Leurent 2012) represent the bike shar-
ing system as a dual markovian waiting system to predict
the actual demand. As we already highlighted, given its
generality and applicability over an entire horizon, we also
employ the demand prediction model by (Shu et al. 2013;
2010) and assume that demand follows a poisson distribu-
tion. However, we learn the parameter, � that governs the
poisson distribution from real data.

3 Motivation: Bike Sharing
In this section, we formally describe a bike sharing system.
It is compactly described using the following tuple:
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is a vector representing docking capacity of all stations, with
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Challenge
Input: A DRRP is compactly defined using following tuple


Outputs:

Number of vehicles to be redeployed, y

Routes for carriers, z to make redeployments


Objective: Maximize revenue (increasing satisfied demand + 
reducing carrier fuel costs)

the challenging nature of setting up such systems to operate
efficiently, there have been a wide variety of research pa-
pers addressing the problem of lost demand and other issues
pertinent to it. The key distinction from existing research on
bike sharing is that we consider the dynamic redeployment
of bikes in conjunction with the routing problem for carriers.

DRRP is an NP-Hard problem and therefore, we focus
on principled approximations. Specifically, our key contri-
butions are as follows :
(1) A mixed integer and linear optimization formulation to
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tions to reduce the size of the decision problem and conse-
quently, improve scalability.
Extensive computational results on real-world datasets of
two bike-sharing companies, namely Capital Bikeshare
(Washington, DC) and Hubway (Boston, MA) demonstrate
that our techniques improve revenue and operational effi-
ciency of bike-sharing systems.

Figure 1: Number of instances of empty/full stations in Capi-
talBikeShare Company
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vice level analysis of the Bike Sharing System using a dual-
bounded joint-chance constraints where they predict the near
future demands for a short period of time. While, this may
not be applicable for a large system with a small set of car-
riers, the insights generated are practical and useful in de-
mand prediction. (Leurent 2012) represent the bike shar-
ing system as a dual markovian waiting system to predict
the actual demand. As we already highlighted, given its
generality and applicability over an entire horizon, we also
employ the demand prediction model by (Shu et al. 2013;
2010) and assume that demand follows a poisson distribu-
tion. However, we learn the parameter, � that governs the
poisson distribution from real data.
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In this section, we formally describe a bike sharing system.
It is compactly described using the following tuple:
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S represents the set of base stations. V represents the set of
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Approach: Linear Optimization

Maximize revenue

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition

Decision
y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y+,y�,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y�,t
s,v � y+,t

s,v ) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ

, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(y+,t
s,v � y�,t

s,v )] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

y+,t
s,v + y�,t

s,v  C⇤
v ·

X

i2S

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  y+,t
s,v  C⇤

v ,

0  y�,t
s,v  C⇤

v , 0  d⇤,tv  C⇤
v (8)

zti,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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Approach: Linear Optimization

Maximize revenue

Flow preservation of bikes at 
stations

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition

Decision
y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y+,y�,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y�,t
s,v � y+,t

s,v ) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y�,t
s,v � y+,t

s,v ) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
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s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

Our goal in this work is to solve the QP relaxation of RC-
DCOP in table 1 in a distributed manner. We achieve this goal
via the following:
• We first transform the RC-DCOP problem to that of like-

lihood maximization (LM) in a mixture of Bayesian net-
works. The likelihood maximization problem is exactly
equivalent to solving the QP in table 1.

• We then use the well known Expectation-Maximization
(EM) framework [Dempster et al., 1977] to maximize the
likelihood in the Bayes net mixture. However, the M-step
in this EM formulation does not admit a closed form so-
lution. Therefore, we use tools from convex optimization
such as block coordinate descent, and tools from algebra
such as polynomial root finding to develop a message-
passing algorithm to efficiently perform the M-step.

Once the EM algorithm has converged, we use a sim-
ilar message-passing based rounding technique proposed
in [Ravikumar and Lafferty, 2006] to extract an integral vari-
able assignment from the QP solution.

4 Expectation-Maximization For RC-DCOPs

In this section, we follow the similar strategy as in [Kumar
and Zilberstein, 2010] to recast the RC-DCOP as a likeli-
hood maximization problem. The key idea is to decompose
the constraint network into a mixture model of simpler Bayes
nets with many hidden variables – all the variables xi of the
RC-DCOP. To incorporate the constraint functions ✓’s of RC-
DCOP and achieve equivalence between the likelihood and
the RC-DCOP objective, a special binary reward variable ✓̂

is introduced with its conditional distribution proportional to
potentials ✓.

For each edge (i, j) in the constraint network, we create
a depth-1 Bayes net (BN). Notice that we do not consider
edges between resources and agents during this process. Each
Bayes net consists of a binary reward variable ✓̂ with its par-
ents being the variables xi and xj . Fig. 2(a) shows the RACN
for a RC-DCOP instance over four variables. Fig. 2(b) shows
the equivalent mixture of Bayes nets for each of the four
agent-to-agent edges in this network. The mixture random
variable l (with domain being agent-agent edge set E), is used
to identify the Bayes nets for the corresponding edge. It has
a uniform distribution (= 1/|E|).

The parameters to estimate in this mixture are the probabil-
ities pi(xi) for each node xi. Intuitively, these are the same
as the variables in the QP of table 1. Furthermore, differ-
ent Bayes nets share the same parameter pi for any common
variable xi. E.g., variable x2 in figure 2(b) is involved in two
Bayes nets for l=(1, 2) and l=(2, 3). Therefore, p2(x2) is the
same for these two Bayes nets. The space ⇥ of all the valid
parameters is specified by the following linear constraints:

⇥ :
X

xi2Di

pi(xi)=1 8i ;
X

i2Nb(r)

X

xi

pi(xi)ui(r, xi)C(r)8r2R

Non-negativity of each pi is also included in ⇥. Therefore,
the constraint on valid parameters in this BN mixture repli-
cate those of in table 1. Next we set the conditional proba-
bility distribution of the variable ✓̂ for each of the Bayes nets.

x1

x4

x3

x2

r1

r2

l=(1, 2) l=(1, 4) l=(2, 3) l = (3, 4)

x1 x1 x2 x4

�̂ �̂ �̂ �̂

x2 x4 x3 x3

Mixture of Bayes nets

1

Figure 2: a) A RC-DCOP instance; b) Equivalent mixture represen-
tation

For a BN l involving variables xi and xj , it is set as follows:

P
�
✓̂=1|xi, xj , l=(i, j)

�
= ✓̂xi,xj =

✓ij(xi, xj)�✓min

✓max�✓min
(7)

where ✓max and ✓min are the maximum and minimum value
over all constraint functions. The probabilities ✓̂xi,xj are
essentially normalized constraint functions ✓ij for the RC-
DCOP instance.
Theorem 3. For each BN l, let the CPT of binary reward

variable ✓̂ be set as per (7). Then maximizing the likelihood

L
p = P (✓̂ = 1;p) of observing the reward variable in the

mixture of Bayes nets is equivalent to solving the QP relax-

ation of RC-DCOP in table 1.

The proof is similar to the one in [Kumar and Zilberstein,
2010] that shows the equivalence of likelihood maximization
and the QP formulation (3) for DCOP. The only difference in
our case is that the space of possible parameters ⇥ includes
resource constraints, which makes the likelihood maximiza-
tion approach applicable to RC-DCOPs.

4.1 Expected Log-Likelihood

To derive the EM algorithm for BN mixture of figure 2(b),
we assume that only the reward variable ✓̂ = 1; rest of the
variables are hidden. The full-joint for a BN l is given as:

P (✓̂=1, xi, xj , l=(i, j);p) =
1
|E| ✓̂xi,xjpi(xi)pj(xj) (8)

The EM algorithm maximizes the following expected log-
likelihood, Q(p,p?), w.r.t.p? iteratively [Kumar and Zilber-
stein, 2010; Dempster et al., 1977]:
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where xl1 and xl2 denote the two variables that are involved
in the BN l, p denotes the previous iteration’s parameters and
p? denote the new parameters to be optimized. We take the
log of (8), and simplify Q(p,p?) as follows:
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In the above expression, we have ignored terms independent
of p?. We simplify the above expression by grouping together
terms for each variable xi:
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tion approach applicable to RC-DCOPs.
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To derive the EM algorithm for BN mixture of figure 2(b),
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Approach: Linear Optimization

Maximize revenue

Flow preservation of bikes at 
stations

Actual flow ∝ Observed Flow

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition

Decision
y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables
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v , 0  d⇤,tv  C⇤
v (8)

zti,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
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(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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k,ŝ F
t,k
s,ŝ
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using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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k,ŝ F
t,k
s,ŝ
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torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
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what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
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and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
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ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
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s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
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represents the penalty for any carrier vehicle to travel from
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Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
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using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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Maximize revenue

Flow preservation of bikes at 
stations

Actual flow ∝ Observed Flow

Flow preservation of vehicles 
in carriers
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
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ease of notation in the optimization formulation, we use the
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obtained by the company if a bike is hired at time t from
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represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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is set to 1 if carrier v is stationed at station s initially1. For
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generic �t
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represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).
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alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
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ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
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s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
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represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
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xt�k,k
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are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).
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Proof Sketch. We show that DRRP is a generalisation of
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ing DRRP with expected demand values, F that are obtained
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decision and intermediate variables employed in the formu-
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We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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Maximize revenue

Flow preservation of bikes at 
stations

Actual flow ∝ Observed Flow

Flow preservation of vehicles 
in carriers

Enforcing right movement of 
carriers between stations

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition

Decision
y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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xt�k,k
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using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y+,y�,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ
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, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(y+,t
s,v � y�,t

s,v )] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

y+,t
s,v + y�,t

s,v  C⇤
v ·

X

i2S

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  y+,t
s,v  C⇤

v ,

0  y�,t
s,v  C⇤

v , 0  d⇤,tv  C⇤
v (8)

zti,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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Number of bikes picked from s by
carrier v at time t
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s,v
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carrier v at time t
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from s to s0 at time t)
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torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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Approach: Linear Optimization

Maximize revenue

Flow preservation of bikes at 
stations

Actual flow ∝ Observed Flow

Flow preservation of vehicles 
in carriers

Enforcing right movement of 
carriers between stations

Redeployment should respect 
the routing strategy

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

Category Variable Definition
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y+,t
s,v

Number of bikes picked from s by
carrier v at time t

y�,t
s,v

Number of bikes dropped at s by
carrier v at time t
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Set to 1 if carrier v has to move
from s to s0 at time t)
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ate xt,k
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Number of bikes moving from s at
time t to s0 at t+ k

d#,t
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Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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Number of bikes moving from s at
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Number of bikes present in station
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d⇤,tv
Number of bikes present in carrier
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Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-

C#
s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
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larly, C⇤ is a vector representing storage capacity of different
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s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
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To represent the trade-off between lost demand (or equiv-
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hicles accurately, we employ the dollar value of both quanti-
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larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
demand over all the Mondays. Rt,k

s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
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ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y�,t
s,v � y+,t

s,v ) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
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of bikes and it should be noted that because of redeploy-
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what was observed in the training dataset. Hence, flow of
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suggested by our MILP will be different from the observed
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and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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s representing docking capacity of a station s 2 S . Simi-

larly, C⇤ is a vector representing storage capacity of different
carriers. Note that we assumed a fixed set of carriers in our
model. However, in deciding the optimal number of carriers,
our optimization approach can be run multiple times with
different numbers of carriers to perform sensitivity analysis.

Distribution of bikes at a base station s at any time t is
given by d#,t

s . Hence, initial distribution at any station s
(provided as input) is denoted by d#,0

s . Similarly, total num-
ber of bikes present in a carrier v at any time t is given by
d⇤,tv while the initial allotment of bikes d⇤,0v is provided as
input. �0

v(s) captures the initial distribution of a carrier and
is set to 1 if carrier v is stationed at station s initially1. For
ease of notation in the optimization formulation, we use the
generic �t

v(s) and set it to 0, if t > 0.
F t,k
s,s0 represents the expected demand at time step t go-

ing out from station s and reaching station s0 after k time
steps. For instance, to compute a redeployment and routing
strategy for Mondays, this would be computed by averaging
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s,s0 represents the revenue
obtained by the company if a bike is hired at time t from
station s and returned at station s0 after k time steps. Ps,s0

represents the penalty for any carrier vehicle to travel from
s to s0.

Given the customer demand of bikes between different
stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
carriers, our model can easily be extended such that carriers are
enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the right trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.
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and the number of bikes available in the source station after
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an intermediate variable that is proxy to expected demand,
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stations, the goal is to maximize profit 2 or minimize loss of
the bike sharing company by redeploying bikes using carrier
vehicles (to satisfy customer demand). Notice that, minimiz-
ing lost demand would also minimize number of stations that
are empty or full. As indicated earlier, we refer to this as the
Dynamic Redeployment and Routing Problem (DRRP).

Proposition 1 Solving DRRP is an NP-Hard problem.

Proof Sketch. We show that DRRP is a generalisation of
3-set partitioning problem, a known NP-Hard problem. ⌅

4 Solution Approach
We employ a data driven approach to solve DRRP. That
is to say, we compute redeployment and routing strategies
for a given training data set of demand values and evaluate
the performance of the computed redeployment and routing
strategies on a testing data set. Specifically, we provide a
Mixed Integer Linear Problem (MILP) formulation for solv-
ing DRRP with expected demand values, F that are obtained
from the training data set. For ease of understanding, the
decision and intermediate variables employed in the formu-
lation are provided in Table 1.

We have access to flow of bikes in F. Note that we only
have the information about successful bike trips, thus we
employ a standard method adopted in (Shu et al. 2013) to
predict the actual demand, where the demand is represented

1While we provide a generalized model for initial location of
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enforced to start and return in a particular depot.

2We do not directly minimize lost demand, because that can
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Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y+,y�,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y�,t
s,v � y+,t

s,v ) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ

, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(y+,t
s,v � y�,t

s,v )] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

y+,t
s,v + y�,t

s,v  C⇤
v ·

X

i2S

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  y+,t
s,v  C⇤

v ,

0  y�,t
s,v  C⇤

v , 0  d⇤,tv  C⇤
v (8)

zti,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()
using a Poisson distribution with mean computed from his-
torical data. One of our goals is to compute a redeployment
of bikes and it should be noted that because of redeploy-
ment, the number of bikes at a station will be different to
what was observed in the training dataset. Hence, flow of
bikes between station s and s0 at time step t for k time steps
suggested by our MILP will be different from the observed
flow of bikes in the data, i.e., F t,k

s,s0 . To represent this, we in-
troduce a proxy variable, xt,k

s,s for F t,k
s,s0 that is set based on F

and the number of bikes available in the source station after
redeployment. x is included in the objective to ensure most
of the expected demand is satisfied. For this reason, x is only
an intermediate variable that is proxy to expected demand,
F. The lost demand is calculated as the difference between
demand sample (F) and the served demand (x).

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
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Observation:

Minimal dependency 
between y (redeployment) 
and z (routing variables)

Category Variable Definition

Decision
ŷt
s,v

Number of bikes picked from s by
carrier v at time t

y̌t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y̌t
s,v � ŷt

s,v) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ

, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(ŷt
s,v � y̌t

s,v)] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

ŷt
s,v + y̌t

s,v  C⇤
v ·

X

i

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  ŷt
s,v, y̌

t
s,v  C⇤

v

(8)

0  d⇤,tv  C⇤
v , z

t
i,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()

that is set based on F and the number of bikes available in
the source station after redeployment. x is included in the
objective to ensure most of the expected demand is satis-
fied. For this reason, x is only an intermediate variable that
is proxy to expected demand, F.

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
ties and combine them into overall profit2. This objective is
represented in Equation 1 of the MILP in SOLVEDRRP().
Intuitively, we have the following flow preservation, move-
ment and capacity constraints for bikes, stations and carriers:
1. Flow of bikes in and out of stations is preserved: Con-
straints (2) enforce this flow preservation by ensuring equiv-

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the correct trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

alence of the number of bikes in and out of a station at each
time step.
2. Flow of bikes between any two stations follows the

transition dynamics observed in the data: As a subset of
arrival customers can be served if number of bikes present in
the station is less than arrival demand, constraints (3) ensure
that flow of bikes between any two station s and s0 should be
less than the product of number of bikes present in the source
station s and the transition probability that a bike will move
from s to s0 .
3. Flow of bikes in and out of carriers is preserved: Con-
straints (4) enforce this flow is preserved by ensuring equiv-
alence of the number of bikes in and out of a carrier at each
time step.
4. Flow of carriers in and out of stations is preserved:
Since �t

v = 0 for all t > 0, constraints (5) ensure that flow
out of a station s for a carrier v at time t (i.e.,

P
k2S zts,k,v)

is equivalent to flow of v into the station s at time t� 1 (i.e.,P
k2S zt�1

k,s,v). For t = 0, depending on �0
v is given as input,

this constraint will ensure carrier flow moves appropriately
out of the initial locations.
5. Only one carrier can be in one station at a time step:
Constraints (6) ensure this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by

being at the station: Constraints (7) enforce that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying

bikes: Constraints (8) ensure that the number of bikes at a
station, s is lower than the number of docks available at that
station (i.e., C#

s ).
8. Carrier capacity is not exceeded when redeploying

bikes: Constraints (9) ensure that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

Decomposition Approach for Solving DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:

• ŷ and y̌ variables capture the solution for the redeploy-
ment problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.

In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on
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Observation:

Minimal dependency 
between y (redeployment) 
and z (routing variables)

Category Variable Definition

Decision
ŷt
s,v

Number of bikes picked from s by
carrier v at time t

y̌t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y̌t
s,v � ŷt

s,v) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ

, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(ŷt
s,v � y̌t

s,v)] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

ŷt
s,v + y̌t

s,v  C⇤
v ·

X

i

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  ŷt
s,v, y̌

t
s,v  C⇤

v

(8)

0  d⇤,tv  C⇤
v , z

t
i,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()

that is set based on F and the number of bikes available in
the source station after redeployment. x is included in the
objective to ensure most of the expected demand is satis-
fied. For this reason, x is only an intermediate variable that
is proxy to expected demand, F.

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
ties and combine them into overall profit2. This objective is
represented in Equation 1 of the MILP in SOLVEDRRP().
Intuitively, we have the following flow preservation, move-
ment and capacity constraints for bikes, stations and carriers:
1. Flow of bikes in and out of stations is preserved: Con-
straints (2) enforce this flow preservation by ensuring equiv-

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the correct trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

alence of the number of bikes in and out of a station at each
time step.
2. Flow of bikes between any two stations follows the

transition dynamics observed in the data: As a subset of
arrival customers can be served if number of bikes present in
the station is less than arrival demand, constraints (3) ensure
that flow of bikes between any two station s and s0 should be
less than the product of number of bikes present in the source
station s and the transition probability that a bike will move
from s to s0 .
3. Flow of bikes in and out of carriers is preserved: Con-
straints (4) enforce this flow is preserved by ensuring equiv-
alence of the number of bikes in and out of a carrier at each
time step.
4. Flow of carriers in and out of stations is preserved:
Since �t

v = 0 for all t > 0, constraints (5) ensure that flow
out of a station s for a carrier v at time t (i.e.,

P
k2S zts,k,v)

is equivalent to flow of v into the station s at time t� 1 (i.e.,P
k2S zt�1

k,s,v). For t = 0, depending on �0
v is given as input,

this constraint will ensure carrier flow moves appropriately
out of the initial locations.
5. Only one carrier can be in one station at a time step:
Constraints (6) ensure this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by

being at the station: Constraints (7) enforce that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying

bikes: Constraints (8) ensure that the number of bikes at a
station, s is lower than the number of docks available at that
station (i.e., C#

s ).
8. Carrier capacity is not exceeded when redeploying

bikes: Constraints (9) ensure that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

Decomposition Approach for Solving DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:

• ŷ and y̌ variables capture the solution for the redeploy-
ment problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.

In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on

Redeployment
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

Observation:

Minimal dependency 
between y (redeployment) 
and z (routing variables)

Category Variable Definition

Decision
ŷt
s,v

Number of bikes picked from s by
carrier v at time t

y̌t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
y,z

�
X

t,k,s,s0

Rt,k
s,s0 · x

t,k
s,s0 +

X

t,v,s,s0

Ps,s0 · zts,s0,v (1)

s.t. d#,t
s +

X

k,ŝ

xt�k,k
ŝ,s �

X

k,s0

xt,k
s,s0+

X

v

(y̌t
s,v � ŷt

s,v) = d#,t+1
s , 8t, s (2)

xt,k
s,s0  d#,t

s ·
F t,k
s,s0P

k,ŝ F
t,k
s,ŝ

, 8t, k, s, s0 (3)

d⇤,tv +
X

s2S

[(ŷt
s,v � y̌t

s,v)] = d⇤,t+1
v , 8t, v (4)

X

k2S

zts,k,v �
X

k2S

zt�1
k,s,v = �t

v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

ŷt
s,v + y̌t

s,v  C⇤
v ·

X

i

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  ŷt
s,v, y̌

t
s,v  C⇤

v

(8)

0  d⇤,tv  C⇤
v , z

t
i,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()

that is set based on F and the number of bikes available in
the source station after redeployment. x is included in the
objective to ensure most of the expected demand is satis-
fied. For this reason, x is only an intermediate variable that
is proxy to expected demand, F.

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
ties and combine them into overall profit2. This objective is
represented in Equation 1 of the MILP in SOLVEDRRP().
Intuitively, we have the following flow preservation, move-
ment and capacity constraints for bikes, stations and carriers:
1. Flow of bikes in and out of stations is preserved: Con-
straints (2) enforce this flow preservation by ensuring equiv-

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the correct trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

alence of the number of bikes in and out of a station at each
time step.
2. Flow of bikes between any two stations follows the

transition dynamics observed in the data: As a subset of
arrival customers can be served if number of bikes present in
the station is less than arrival demand, constraints (3) ensure
that flow of bikes between any two station s and s0 should be
less than the product of number of bikes present in the source
station s and the transition probability that a bike will move
from s to s0 .
3. Flow of bikes in and out of carriers is preserved: Con-
straints (4) enforce this flow is preserved by ensuring equiv-
alence of the number of bikes in and out of a carrier at each
time step.
4. Flow of carriers in and out of stations is preserved:
Since �t

v = 0 for all t > 0, constraints (5) ensure that flow
out of a station s for a carrier v at time t (i.e.,

P
k2S zts,k,v)

is equivalent to flow of v into the station s at time t� 1 (i.e.,P
k2S zt�1

k,s,v). For t = 0, depending on �0
v is given as input,

this constraint will ensure carrier flow moves appropriately
out of the initial locations.
5. Only one carrier can be in one station at a time step:
Constraints (6) ensure this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by

being at the station: Constraints (7) enforce that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying

bikes: Constraints (8) ensure that the number of bikes at a
station, s is lower than the number of docks available at that
station (i.e., C#

s ).
8. Carrier capacity is not exceeded when redeploying

bikes: Constraints (9) ensure that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

Decomposition Approach for Solving DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:

• ŷ and y̌ variables capture the solution for the redeploy-
ment problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.

In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on

Redeployment

Routing
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Observation:

Minimal dependency 
between y (redeployment) 
and z (routing variables)


Lagrangian Dual decomposition 
on joint constraints


Update price variable in the 
master function.

Category Variable Definition

Decision
ŷt
s,v

Number of bikes picked from s by
carrier v at time t

y̌t
s,v

Number of bikes dropped at s by
carrier v at time t

zts,s0,v
Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables

min
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X
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s,v)] = d⇤,t+1
v , 8t, v (4)

X

k2S
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X

k2S

zt�1
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v(s), 8t, s, v (5)

X

j2S,v2V

zts,j,v  1, 8t, s (6)

ŷt
s,v + y̌t

s,v  C⇤
v ·

X

i

zts,i,v, 8t, s, v (7)

0  xt,k
s,s0  F t,k

s,s0 , 0  d#,t
s  C#

s , 0  ŷt
s,v, y̌

t
s,v  C⇤

v

(8)

0  d⇤,tv  C⇤
v , z

t
i,j,v 2 {0, 1} (9)

Table 2: SOLVEDRRP()

that is set based on F and the number of bikes available in
the source station after redeployment. x is included in the
objective to ensure most of the expected demand is satis-
fied. For this reason, x is only an intermediate variable that
is proxy to expected demand, F.

To represent the trade-off between lost demand (or equiv-
alently revenue from bike jobs) and cost of using carrier ve-
hicles accurately, we employ the dollar value of both quanti-
ties and combine them into overall profit2. This objective is
represented in Equation 1 of the MILP in SOLVEDRRP().
Intuitively, we have the following flow preservation, move-
ment and capacity constraints for bikes, stations and carriers:
1. Flow of bikes in and out of stations is preserved: Con-
straints (2) enforce this flow preservation by ensuring equiv-

2We do not directly minimize lost demand, because that can
result in a significant cost due to carrier vehicles. Profit provides
the correct trade-off between minimizing lost demand (maximizing
revenue) and reducing cost due to carriers.

alence of the number of bikes in and out of a station at each
time step.
2. Flow of bikes between any two stations follows the

transition dynamics observed in the data: As a subset of
arrival customers can be served if number of bikes present in
the station is less than arrival demand, constraints (3) ensure
that flow of bikes between any two station s and s0 should be
less than the product of number of bikes present in the source
station s and the transition probability that a bike will move
from s to s0 .
3. Flow of bikes in and out of carriers is preserved: Con-
straints (4) enforce this flow is preserved by ensuring equiv-
alence of the number of bikes in and out of a carrier at each
time step.
4. Flow of carriers in and out of stations is preserved:
Since �t

v = 0 for all t > 0, constraints (5) ensure that flow
out of a station s for a carrier v at time t (i.e.,

P
k2S zts,k,v)

is equivalent to flow of v into the station s at time t� 1 (i.e.,P
k2S zt�1

k,s,v). For t = 0, depending on �0
v is given as input,

this constraint will ensure carrier flow moves appropriately
out of the initial locations.
5. Only one carrier can be in one station at a time step:
Constraints (6) ensure this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by

being at the station: Constraints (7) enforce that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying

bikes: Constraints (8) ensure that the number of bikes at a
station, s is lower than the number of docks available at that
station (i.e., C#

s ).
8. Carrier capacity is not exceeded when redeploying

bikes: Constraints (9) ensure that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

Decomposition Approach for Solving DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:

• ŷ and y̌ variables capture the solution for the redeploy-
ment problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.

In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on

Redeployment

Routing

Redeployment + Routing
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

Observation:

Minimal dependency 
between y (redeployment) 
and z (routing variables)


Lagrangian Dual decomposition 
on joint constraints


Update price variable in the 
master function.

Primal extraction based on 
routing feasibility

Strong upper and lower 
bounds 

Category Variable Definition
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ŷt
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Set to 1 if carrier v has to move
from s to s0 at time t)

Intermedi-
ate xt,k

s,s0
Number of bikes moving from s at
time t to s0 at t+ k

d#,t
s

Number of bikes present in station
s at time-step t

d⇤,tv
Number of bikes present in carrier
v at time t

Table 1: Decision and Intermediate Variables
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Table 2: SOLVEDRRP()

that is set based on F and the number of bikes available in
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revenue) and reducing cost due to carriers.

alence of the number of bikes in and out of a station at each
time step.
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P
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5. Only one carrier can be in one station at a time step:
Constraints (6) ensure this by restricting the maximum car-
rier flow in a station as one.
6. Carrier can pick up or drop off bikes from a station by

being at the station: Constraints (7) enforce that the num-
ber of bikes picked up or dropped off at a time is bounded
by whether the station is visited at that time step.
7. Station capacity is not exceeded when redeploying

bikes: Constraints (8) ensure that the number of bikes at a
station, s is lower than the number of docks available at that
station (i.e., C#

s ).
8. Carrier capacity is not exceeded when redeploying

bikes: Constraints (9) ensure that the number of bikes
dropped off or picked up from any station at every time step
and in aggregation is always less than the carrier capacity.

Decomposition Approach for Solving DRRP

We now provide a decomposition approach to exploit the
minimal dependency that exists in the MILP of SOLVE-
DRRP() between the routing problem (how to move carrier
vehicles between base stations to pick up or drop off bikes)
and the redeployment problem (how many bikes and from
where to pick up and drop off bikes). The following obser-
vation highlights this minimal dependency:

Observation 1 In the MILP of Table 2:

• ŷ and y̌ variables capture the solution for the redeploy-
ment problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (7).
In all other constraints of the optimization problem, the rout-
ing and redeployment problems are completely independent.

In order to exploit Observation 1, we use the well known
Lagrangian Dual Decomposition (Fisher 1985; Gordon et al.
2012) technique. While this is a general purpose approach,
its scalability, usability and utility depend significantly on
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Key Idea 2: Abstraction

Grouping of stations 

Group base stations into abstract stations

Solve abstract problem using LDD

Abstraction Approach 

26 

¾ Create abstract stations, each of which is a grouping of original base 
stations. 

¾ Solve using LDD and redeployment strategy over abstract stations. 
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Key Idea 2: Abstraction

Grouping of stations 

Group base stations into abstract stations

Solve abstract problem using LDD

Abstraction Approach 

26 

¾ Create abstract stations, each of which is a grouping of original base 
stations. 

¾ Solve using LDD and redeployment strategy over abstract stations. 

Retrieve redeployment and routing strategy from solution 
to the abstract problem


Involves solving an optimization problem
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LDD+Abstraction
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Experimental Results
One synthetic data set and two real data sets:


Capital Bikeshare (305 stations, 6 carriers)

Hubway (95 stations, 4 carriers)


Strategy of redeployment and routing for the entire day (30 minute 
decisions)

Obtain strategy from part of the datasets and execute on another part 

(a) (b)
Figure 1: (a) Duality gap (b) Runtime: LDD vs Global MILP

we varied the number of stations from 5 to 50. Y-axis de-
notes the total time taken in seconds on a logarithmic scale.
Except on small scale problems (ex: 5-10 stations), LDD
outperforms global MILP with respect to runtime. More
specifically, global MILP was unable to finish within a cut-
off time of 6 hours for any problem with more than 20 sta-
tions, while LDD was able to solve problems with 50 sta-
tions within an hour.

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure: 1(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 8 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
Although, there is only a reduction of 0.2% on average from
optimal, it gives a significant computational gain.

With Abstraction Without Abstraction

Instance Revenue
Runtime

(sec)
Revenue

Runtime

(sec)

1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 8: Effect of Abstraction
Majority of our results are provided on the CapitalBike-

Share dataset. This data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:9 shows

the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as during the day. We
reduce the lost demand in all the cases by at least 20%, a
significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue

gain

Lost

demand

reduction

Revenue

gain

Lost

demand

reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 9: Revenue and lost demand comparison

The next set of results demonstrate the sensitivity of our
approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our re-
deployment policy and compare it with the traditional pol-
icy. Figure:2 shows the mean and deviation of the revenue
and lost call for each of the weekdays. Even considering
the variance, Figure: 2(a) shows that the revenue generated
by following our redeployment strategy is still better (albeit
by a small amount) than current practice. More importantly,
Figure: 2(b) demonstrates that we are able to significantly
reduce the lost demand on all the cases.

(a) (b)
Figure 2: Sensitivity analysis: (a) Revenue comparison (b)
Lost demand comparison

We have done the same set of experiments with real-world
data set of Hubway. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

In summary, we have shown on multiple real and syn-
thetic data sets, that our dynamic redeployment approach is
not only able to achieve the original goal of reducing lost de-
mand, but is also able to improve revenue for the bike shar-
ing company.
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One synthetic data set and two real data sets:


Capital Bikeshare (305 stations, 6 carriers)

Hubway (95 stations, 4 carriers)


Strategy of redeployment and routing for the entire day (30 minute 
decisions)

Obtain strategy from part of the datasets and execute on another part 
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Figure 1: (a) Duality gap (b) Runtime: LDD vs Global MILP

we varied the number of stations from 5 to 50. Y-axis de-
notes the total time taken in seconds on a logarithmic scale.
Except on small scale problems (ex: 5-10 stations), LDD
outperforms global MILP with respect to runtime. More
specifically, global MILP was unable to finish within a cut-
off time of 6 hours for any problem with more than 20 sta-
tions, while LDD was able to solve problems with 50 sta-
tions within an hour.

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure: 1(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 8 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
Although, there is only a reduction of 0.2% on average from
optimal, it gives a significant computational gain.

With Abstraction Without Abstraction

Instance Revenue
Runtime

(sec)
Revenue

Runtime

(sec)

1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 8: Effect of Abstraction
Majority of our results are provided on the CapitalBike-

Share dataset. This data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:9 shows

the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as during the day. We
reduce the lost demand in all the cases by at least 20%, a
significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue

gain

Lost

demand

reduction

Revenue

gain

Lost

demand

reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 9: Revenue and lost demand comparison

The next set of results demonstrate the sensitivity of our
approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our re-
deployment policy and compare it with the traditional pol-
icy. Figure:2 shows the mean and deviation of the revenue
and lost call for each of the weekdays. Even considering
the variance, Figure: 2(a) shows that the revenue generated
by following our redeployment strategy is still better (albeit
by a small amount) than current practice. More importantly,
Figure: 2(b) demonstrates that we are able to significantly
reduce the lost demand on all the cases.

(a) (b)
Figure 2: Sensitivity analysis: (a) Revenue comparison (b)
Lost demand comparison

We have done the same set of experiments with real-world
data set of Hubway. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

In summary, we have shown on multiple real and syn-
thetic data sets, that our dynamic redeployment approach is
not only able to achieve the original goal of reducing lost de-
mand, but is also able to improve revenue for the bike shar-
ing company.

Duality Gap less than 1% on 
20 station problem
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we varied the number of stations from 5 to 50. Y-axis de-
notes the total time taken in seconds on a logarithmic scale.
Except on small scale problems (ex: 5-10 stations), LDD
outperforms global MILP with respect to runtime. More
specifically, global MILP was unable to finish within a cut-
off time of 6 hours for any problem with more than 20 sta-
tions, while LDD was able to solve problems with 50 sta-
tions within an hour.

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure: 1(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 8 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
Although, there is only a reduction of 0.2% on average from
optimal, it gives a significant computational gain.
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Runtime
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1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 8: Effect of Abstraction
Majority of our results are provided on the CapitalBike-

Share dataset. This data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:9 shows

the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as during the day. We
reduce the lost demand in all the cases by at least 20%, a
significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue

gain

Lost

demand

reduction

Revenue

gain

Lost

demand

reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 9: Revenue and lost demand comparison

The next set of results demonstrate the sensitivity of our
approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our re-
deployment policy and compare it with the traditional pol-
icy. Figure:2 shows the mean and deviation of the revenue
and lost call for each of the weekdays. Even considering
the variance, Figure: 2(a) shows that the revenue generated
by following our redeployment strategy is still better (albeit
by a small amount) than current practice. More importantly,
Figure: 2(b) demonstrates that we are able to significantly
reduce the lost demand on all the cases.

(a) (b)
Figure 2: Sensitivity analysis: (a) Revenue comparison (b)
Lost demand comparison

We have done the same set of experiments with real-world
data set of Hubway. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

In summary, we have shown on multiple real and syn-
thetic data sets, that our dynamic redeployment approach is
not only able to achieve the original goal of reducing lost de-
mand, but is also able to improve revenue for the bike shar-
ing company.
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Experimental Results on Real Datasets
Comparison with current practice 
(abstraction + LDD)


Demand follows poisson with mean 
observed flow

CapitalBikeshare Data:


Revenue increased by 3% 

Lost demand reduced by up to 
33.76%

(a) (b)
Figure 1: (a) Duality gap (b) Runtime: LDD vs Global MILP

we varied the number of stations from 5 to 50. Y-axis de-
notes the total time taken in seconds on a logarithmic scale.
Except on small scale problems (ex: 5-10 stations), LDD
outperforms global MILP with respect to runtime. More
specifically, global MILP was unable to finish within a cut-
off time of 6 hours for any problem with more than 20 sta-
tions, while LDD was able to solve problems with 50 sta-
tions within an hour.

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure: 1(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 8 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
Although, there is only a reduction of 0.2% on average from
optimal, it gives a significant computational gain.
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Runtime
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1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 8: Effect of Abstraction
Majority of our results are provided on the CapitalBike-

Share dataset. This data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:9 shows

the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as during the day. We
reduce the lost demand in all the cases by at least 20%, a
significant improvement over current practice.

Whole day
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Peak period
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Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 9: Revenue and lost demand comparison

The next set of results demonstrate the sensitivity of our
approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our re-
deployment policy and compare it with the traditional pol-
icy. Figure:2 shows the mean and deviation of the revenue
and lost call for each of the weekdays. Even considering
the variance, Figure: 2(a) shows that the revenue generated
by following our redeployment strategy is still better (albeit
by a small amount) than current practice. More importantly,
Figure: 2(b) demonstrates that we are able to significantly
reduce the lost demand on all the cases.

(a) (b)
Figure 2: Sensitivity analysis: (a) Revenue comparison (b)
Lost demand comparison

We have done the same set of experiments with real-world
data set of Hubway. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

In summary, we have shown on multiple real and syn-
thetic data sets, that our dynamic redeployment approach is
not only able to achieve the original goal of reducing lost de-
mand, but is also able to improve revenue for the bike shar-
ing company.
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Experimental Results on Real Datasets
Comparison with current practice 
(abstraction + LDD)


Demand follows poisson with mean 
observed flow

CapitalBikeshare Data:


Revenue increased by 3% 

Lost demand reduced by up to 
33.76%

Robust to small changes in mean 

         demand

(a) (b)
Figure 1: (a) Duality gap (b) Runtime: LDD vs Global MILP

we varied the number of stations from 5 to 50. Y-axis de-
notes the total time taken in seconds on a logarithmic scale.
Except on small scale problems (ex: 5-10 stations), LDD
outperforms global MILP with respect to runtime. More
specifically, global MILP was unable to finish within a cut-
off time of 6 hours for any problem with more than 20 sta-
tions, while LDD was able to solve problems with 50 sta-
tions within an hour.

In the second set of results we demonstrate the conver-
gence of LDD. LDD can achieve the optimal solution if the
duality gap i.e. the gap between primal and dual solution be-
comes zero. Figure: 1(a) shows that the duality gap for a 20
station problem is only 1%. While, we do not show the re-
sults here, on larger problems we are able to get a solution
with duality gap of less than 0.5 %.

Finally, we demonstrate the performance of abstraction in
comparison with optimal on a problem with 30 base stations.
We grouped those 30 base stations into 8 abstract stations.
Then we run the LDD based optimization on both the base
station and abstraction station problems. Table: 8 shows the
effect of abstraction on the generated revenue and execution
time based on five random instances of customer demand.
Although, there is only a reduction of 0.2% on average from
optimal, it gives a significant computational gain.

With Abstraction Without Abstraction

Instance Revenue
Runtime

(sec)
Revenue

Runtime

(sec)

1 23580 51 23640 3840
2 23627 106 23678 3540
3 23610 57 23727 3120
4 23613 49 23645 3150
5 23519 45 23590 3119

Table 8: Effect of Abstraction
Majority of our results are provided on the CapitalBike-

Share dataset. This data set has 305 active stations and
we consider 50 abstract stations (obtained through k-means
clustering). The planning horizon is 38 ( 30 minute intervals
during the working hours from 5AM-12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:9 shows

the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as during the day. We
reduce the lost demand in all the cases by at least 20%, a
significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue

gain

Lost

demand

reduction

Revenue

gain

Lost

demand

reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 9: Revenue and lost demand comparison

The next set of results demonstrate the sensitivity of our
approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our re-
deployment policy and compare it with the traditional pol-
icy. Figure:2 shows the mean and deviation of the revenue
and lost call for each of the weekdays. Even considering
the variance, Figure: 2(a) shows that the revenue generated
by following our redeployment strategy is still better (albeit
by a small amount) than current practice. More importantly,
Figure: 2(b) demonstrates that we are able to significantly
reduce the lost demand on all the cases.

(a) (b)
Figure 2: Sensitivity analysis: (a) Revenue comparison (b)
Lost demand comparison

We have done the same set of experiments with real-world
data set of Hubway. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

In summary, we have shown on multiple real and syn-
thetic data sets, that our dynamic redeployment approach is
not only able to achieve the original goal of reducing lost de-
mand, but is also able to improve revenue for the bike shar-
ing company.

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction
Revenue

gain
Lost

demand
reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)
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Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.
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Experimental Results on Real Datasets (2)
Hubway Data:


Revenue increased by 5% 

Lost demand reduced by 60% on 
average

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction
Revenue

gain
Lost

demand
reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)
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Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.



Supriyo Ghosh	 	 	 	 	 	 	 	 ICAPS 06/2015 32

Experimental Results on Real Datasets (2)
Hubway Data:


Revenue increased by 5% 

Lost demand reduced by 60% on 
average

Better matching of demand and supply

Ideally all the points should lie on the 
identity line

Matching without redeployment

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction
Revenue

gain
Lost

demand
reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)
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Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.

Matching using our redeployment

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction
Revenue

gain
Lost

demand
reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)
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Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.

30 minute intervals during the working hours from 5AM-
12AM).

We now provide the performance comparison between
our approaches and current practice (i.e., no redeployment
during the day) with respect to lost demand and revenue gen-
erated for the bike-sharing company. We generate the overall
mean demand as well as the demand for individual week-
days from historical data of trips. We compute the results
for the entire time horizon 5 AM to 12 AM and also for one
of the peak durations from 5 AM to 12 PM. Table:10 shows
the percentage gain in revenue and the percentage reduction
in lost demand in comparison with current practice. With re-
spect to both revenue gain and lost demand, our approach
(abstraction + LDD + MILP) was able to outperform current
practice during the peak time as well as over the entire day.
We reduce the lost demand in all the cases by at least 20%,
a significant improvement over current practice.

Whole day
(5am-12am)

Peak period
(5am-12pm)

Revenue
gain

Lost
demand

reduction
Revenue

gain
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demand
reduction

Mean 3.47 % 22.72 % 7.74 % 30.58 %
Mon 2.33 % 22.46 % 4.48 % 25.55 %
Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44.88 %
Thu 2.86 % 33.76 % 6.04 % 35.97 %
Fri 2.51 % 27.37 % 4.50 % 28.15 %
Sat 3.87 % 23.61 % 4.33 % 24.30 %
Sun 3.01 % 26.00 % 4.04 % 36.51 %

Table 10: Revenue and lost demand comparison
The next set of results demonstrate the sensitivity of our

approach with respect to small variations in demand. We cre-
ated a set of 10 demands for each of the weekdays from the
underlying poisson distribution with mean calculated from
the real world data set. For individual demand instances, we
calculate the revenue and lost demand by applying our rede-
ployment policy and compare it with the traditional policy.
Figure 3 shows the mean and deviation of the revenue and
lost call for each of the weekdays. Even considering the vari-
ance, Figure 3(a) shows that the revenue generated by fol-
lowing our redeployment strategy is still better (albeit by a
small amount) than current practice. More importantly, Fig-
ure 3(b) demonstrates that we are able to significantly reduce
the lost demand on all the cases.

Figure 3: Sensitivity analysis: (a) Revenue comparison (b) Lost
demand comparison

Next, we present the experimental results on the real

world dataset of Hubway. Hubway BSS comprises with 95
active stations and we group them into 25 abstract stations.
In the experiment we have used 4 carriers to redeploy the
bikes. To predict the demands we have used 3-months of
trip history records (3rd quarter of 2012). We took a plan-
ning horizon of 38 time-step (5 AM to 12 AM) in the exper-
iment. Then we generate 7 instances of demand for each of
the weekdays from the historical data.

We produce two sets of results with this data set. Table:
11 provides the comparison results (on revenue and lost de-
mand) between the traditional approach and our dynamic re-
deployment approach. Our approach is able to gain an excess
5% in revenue on average while the lost demand is reduced
by a minimum of 40 %.

Mon Tue Wed Thu Fri Sat Sun
Revenue Gain
(%) 3.94 5.93 4.45 5.90 6.27 2.20 3.15

Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 77.2 69.8 74.0

Table 11: Revenue and lost demand comparison (Hubway)
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Figure 4: Correlation of demand and supply: (a) Without re-
deployment (b) With dynamic redeployment

Lastly, to visualize the effect of redeployment we draw
the correlation between actual demand and served demand
over the entire planning horizon. Since we aim to reduce the
lost customer demand, it is better if most of the points are
near line of equality or identity line. Figure 4(b) illustrates
the correlation between actual demand and demand served
by following our redeployment model. Comparatively, with
redeployment there are many more points closer to the iden-
tity line than with current practice (shown in Figure 4(a)).

8 Conclusion
In this paper we addressed the dynamic redeploy problem
in shared transportation systems. Our approach based on the
Lagrangian Dual Decomposition and an abstraction based
mechanism, addresses two key challenges (a) Provide an
near-optimal policy for the dynamic redeployment of idle
vehicles in conjunction with the routing solution for carri-
ers (b) Provide a scalable solution for the real-world large
scale problems. The empirical results on multiple real and
synthetic data sets shown that our dynamic redeployment
approach is not only able to achieve the original goal of re-
ducing lost demand, but is also able to improve revenue for
the bike sharing company, by using their existing resources.
In future this work can be extended with a robust optimiza-
tion technique which can account for all the realization of
different demand scenarios.
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Summary

Dynamic redeployment of bikes

Important large-scale problem with relevance to 
many cities

Two techniques (Decomposition, Abstraction) to 
improve scalability and provide near-optimal 
solutions

Reduces lost demand by over 20% on both datasets

Robust to small changes in demand
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Questions???
     supriyog.2013@phdis.smu.edu.sg

mailto:supriyog.2013@phdis.smu.edu.sg
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