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Motivation: Bike Sharing Systems

~ Examples

~ Bike Sharing (Capital Bikeshare, Hubway, etc.):
active systems
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Motivation: Bike Sharing Systems

~ Examples

© Bike Sharing (Capital Bikeshare, Hubway, etc.). 747
active systems

- Alternative transportation to reduce carbon
emissions and traffic congestion
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~ Problem: Lost demand because of insufficient vehicles at
right places/times

© Increased use of private transportation and hence
carbon emissions
~ Reduced revenue
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Related Work

© Static Redeployment (once at the end of day)
< Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
o Issue - Stations are imbalanced during the day.
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Related Work

© Static Redeployment (once at the end of day)
< Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
o Issue - Stations are imbalanced during the day.
- Dynamic Redeployment (matching of producer and consumer station)
© Shuetal. (2013, 2010), O'Mahony and Shmoys (2015)
o Issue - Does not consider the routing cost which is a major cost driver.

Schon o < SMU
Information Systems SINGAPORE MANAGEMENT
UN I

IVERSITY



Related Work

© Static Redeployment (once at the end of day)
< Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
o Issue - Stations are imbalanced during the day.
- Dynamic Redeployment (matching of producer and consumer station)
© Shuetal. (2013, 2010), O'Mahony and Shmoys (2015)
o Issue - Does not consider the routing cost which is a major cost driver.

< Myopic/Online Redeployment

©  Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)
o Issue - Perform poorly in reality as it does not consider the future demands.
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Related Work

© Static Redeployment (once at the end of day)
© Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
o Issue - Stations are imbalanced during the day.
~ Dynamic Redeployment (matching of producer and consumer station)
v Shuetal. (2013, 2010), O'Mahony and Shmoys (2015)
o Issue - Does not consider the routing cost which is a major cost driver.
~  Myopic/Online Redeployment
©  Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)
o Issue - Perform poorly in reality as it does not consider the future demands.

©  Our Approach:
~  MILP to jointly consider dynamic routing and redeployment problem [DRRP]
© Lagrangian dual decomposition to improve the scalability.

~  Abstraction mechanism by grouping the nearby base stations to reduce the
decision problems.
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Challenge

< Input: ADRRP is compactly defined using following tuple
<8, V,C#,C*,d*0, d*°, {5}, F, R, P>
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Challenge

~ Input: ADRRP is compactly defined using following tuple
<8, V,C#,C*,d*0, a0, {s°),F, R, P>

~  Outputs:
<~ Number of vehicles to be redeployed, y
~ Routes for carriers, z to make redeployments
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Challenge

~ Input: ADRRP is compactly defined using following tuple
<8, V,C#,C*,d*0, a0, {s°),F, R, P>

~  Outputs:
<~ Number of vehicles to be redeployed, y
~ Routes for carriers, z to make redeployments

~ Objective: Maximize revenue (increasing satisfied demand +
reducing carrier fuel costs)

'y l\". v } -

e %
- N

R .‘\"'\‘-"‘\r‘

JuM{ll' —

l R =

School of
Information Systems X\ SMHN GEMENT

UNIVERSITY



Approach: Linear Optimization

. t.k t.k t
min — E R, -x07, + 5 Ps,s’°z,’, . .
yty— .z oot Maximize revenue

/ /
t,k,s,s t,v,s,s
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Approach: Linear Optimization

: t & tk {
min -— E Rs,s’ . xs,s’ + E Ps,s’ " Zs,s’ v

yryTa b0 as! Maximize revenue

i+ a - +Z(ys S -yl =4 vt,s  Flow preservation of bikes at
~ g stations
Bikes inflow Redeployed bikes
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Approach: Linear Optimization

: t & tk {
min -— E Rs,s’ . 5’75,3/ + E Ps,s’ " Zs,s’ v

mir -
yryTa b0 as! Maximize revenue

d#t+Z e +Z(y —y)=d#", vt,s  Flow preservation of bikes at
stations
t,k
k s,s’ /
zoh, <dit = Vt, k, s, s Actual flow = Observed Flow
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Approach: Linear Optimization

. t,k
min — E Rs,s’. /‘l_ E Pss' ssv

yt,y— .z Maximize revenue

t,kJ,S,S, t ’U,S,S
d#t+z - +Z(y —yhhy=d""" vt,s  Flow preservation of bikes at
k, s’ .
stations
t, k
k s,s’ /
Ty Sdt S Vi, k, 5, 5 Actual flow =« Observed Flow
4+ SOy — ye)] = Y, v Flow preservation of vehicles
S€S in carriers

School of I
Information Systems 3 §JM}MJANAGEMENT

UNIVERSITY



Approach: Linear Optimization

. t,k
min — E Rs,s’. /‘l_ E Pss' ssv

I e
yryTa b0 as! Maximize revenue
d#t+z - +Z(y —yhhy=d""" vt,s  Flow preservation of bikes at
k, s’ .
stations
t, k
k s,s’ /
Ty Sdt S Vi, k, 5, 5 Actual flow =« Observed Flow
4+ SOy — ye)] = Y, v Flow preservation of vehicles
€5 In carriers
Z 25k — z,f;;v = o (s), Vt,s,v
kes kes Enforcing right movement of
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D> Fge =1, Ve, s carriers between stations
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Approach: Linear Optimization

. t,k
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vhyma e R aximize revenue
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k:s’ .
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Z Ze kv z,tc,slv o, (Ss) Vt, s, v
kes kes Enforcing right movement of
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D> Fge =1, Ve, s carriers between stations
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

~  Observation: S Z Rs gt S/ n Z Pou-zta,
. s Y.z
< Minimal dependency k5o tv,8,9"
between y (redeployment) st. df" + Z D DL A
and z (routing variables b
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

~  Observation: min— S R ot 4 S Pl
. . Y.z
< Minimal dependency tk,s,s” tv,s,s”
between y (redeployment) sit. d#t+z et = DTt

k,s’
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( J ) Y (Fow — Jaw) = dTT, Vs

RedepJoyment
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

~  Observation: min— S R ot 4 S Pl
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

~  Observation: min— S R ot 4 S P
. . Y.z
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Key Idea 1: Lagrangian Dual Decomposition (LDD)

~  Observation:

~  Minimal dependency
between y (redeployment)
and z (routing variables)

~ Lagrangian Dual decomposition
on joint constraints

~ Update price variable in the
master function.

- Primal extraction based on
routing feasibility

~ Strong upper and lower
bounds
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Key Ildea 2: Abstraction

T=) Tl =

® o .

- Absiract_station ? Abstract_station ]

© Grouping of stations
© Group base stations into abstract stations
~ Solve abstract problem using LDD
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Key Ildea 2: Abstraction

=0 El

1=2
T=) T=l =
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Abstract_station 2

Absizct_staion 2 Abstract_station ? Abstract_station | Abstract station 3

Absiraci_statioa |

~ Grouping of stations
© Group base stations into abstract stations
~ Solve abstract problem using LDD
~ Retrieve redeployment and routing strategy from solution
to the abstract problem
~ Involves solving an optimization problem

Information Systems
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LDD+Abstraction

Input:
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Experimental Results

~ One synthetic data set and two real data sets:
~ Capital Bikeshare (305 stations, 6 carriers)
~  Hubway (95 stations, 4 carriers)

~ Strategy of redeployment and routing for the entire day (30 minute
decisions)

~ Obtain strategy from part of the datasets and execute on another part
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Experimental Results

~ One synthetic data set and two real data sets:
~ Capital Bikeshare (305 stations, 6 carriers)
~  Hubway (95 stations, 4 carriers)

~ Strategy of redeployment and routing for the entire day (30 minute
decisions)
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Experimental Results

~ One synthetic data set and two real data sets:
~ Capital Bikeshare (305 stations, 6 carriers)
~  Hubway (95 stations, 4 carriers)

~ Strategy of redeployment and routing for the entire day (30 minute
decisions)

~ Obtain strategy from part of the datasets and execute on another part
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Experimental Results on Real Datasets

~  Comparison with current practice

_ Whole day Peak period
(abstraction + LDD) (5am-12am) (5am-12pm)
. . Lost Lost
-~ Demand follows poisson with mean Rev;r;ue demand Revaeillllue demand
observed flow 8 reduction 8 reduction
. . Mean| 3.47 % | 22.72 % 774 % 30.58 %
- CapitalBikeshare Data: Mon | 233% | 22.46 % 148% | 2555 %
©  Revenue increased by 3% Tue | 3.07% | 28.56 % 786 % 37.10 %
Wed | 3.30 % 31.16 % 8.95 % 44.88 %
~  Lost demand reduced by up to Thu | 2.86% | 33.76 % 6.04 % 35.97 %
33.76% Fri 251 % | 2737 % 450 % 2815 %
Sat | 387 % | 23.61 % 433 % 2430 %
Sun | 3.01% | 26.00% 4.04 % 3651 %
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Experimental Results on Real Datasets

-/

Comparison with current practice

_ Whole day Peak period
(abstraction + LDD) (5am-12am) (5am-12pm)
. . Lost Lost
- Demand follows poisson with mean Rev;rlllue demand Rev;llllue demand
observed flow 5 reduction 8 reduction
. : Mean| 3.47 % 22.72 % 7.74 % 30.58 %
~ CapitalBikeshare Data: Mon | 233% | 22.46 % 148% | 2555%
P Revenue increased by 3% Tue 3.07 % 28.56 % 7.86 % 37.10 %
Wed 3.30 % 31.16 % 8.95 % 44 .88 %
©  Lost demand reduced by up to Thu | 2.86% | 33.76 % 6.04 % 35.97 %
33.76% Fri 251 % 27.37 % 4.50 % 28.15 %
Robust t Il ch . Sat 3.87 % 23.61 % 4.33 % 24.30 %
- ODUSt 1o small changes In meéan —,,— 3051 % [ 2600 % 104 % 3651 %
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Experimental Results on Real Datasets (2)

<~ Hubway Data:
~ Revenue increased by 5%

~  Lost demand reduced by 60% on
average

Mon Tue Wed Thu Fri Sat Sun
?Ug"’““e Gain | 304 593 445 5.90 627 220 3.15
Lost Demand
Reduction(%) 42.6 60.7 58.5 54.7 772 69.8 74.0
Isri?ooi:':;tion Systems 3 %%%ymmm



Experimental Results on Real Datasets (2)

©  Hubway Data:
~ Revenue increased by 5% ol s
©  Lost demand reduced by 60% on : al SR
average ;
© Better matching of demand and supply
© ldeally all the points should lie on the

identity Iine 0 0.5 1 1.5 2 2.5 3 3.5 4

Actual Demand

Matching without redeployment

Mon Tue Wed Thu Fri Sat Sun
R n in s | ﬁﬁ*"fﬁ#ﬁﬂ ‘ :
(Uge veGan | 394 593 445 590 627 220 315 | |
Lost Deman 5 ol P
ostDemand | 4 ¢ 607 585 547 772 698 40 | | | e
Reduction(%)

Matching using :j;re::deployment
Isr?f]g::ﬁ;tion Systems o SM

SINGAPORE MANAGEMENT
UNIVERSITY



Summary

~ Dynamic redeployment of bikes
~ Important large-scale problem with relevance to
many cities
~ Two techniques (Decomposition, Abstraction) to

improve scalability and provide near-optimal
solutions

~ Reduces lost demand by over 20% on both datasets
~ Robust to small changes in demand
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Questions???

@ supriyod.2013@phdis.smu.edu.sg
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