

Dynamic Redeployment to Counter Congestion/ Starvation in Vehicle Sharing Systems

Supriyo Ghosh, Pradeep Varakantham School of Information Systems, Singapore Management University

Yossiri Adulyasak, Patrick Jaillet Singapore MIT Alliance for Research and Technology (SMART), MIT

Motivation: Bike Sharing Systems

Examples

 Bike Sharing (Capital Bikeshare, Hubway, etc.): 747 active systems

School of Information Systems

Motivation: Bike Sharing Systems

- Examples
 - Bike Sharing (Capital Bikeshare, Hubway, etc.): 747 active systems
- Alternative transportation to reduce carbon emissions and traffic congestion

Motivation: Bike Sharing Systems

- Problem: Lost demand because of insufficient vehicles at right places/times
 - Increased use of private transportation and hence carbon emissions
 - Reduced revenue

School of Information Systems

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue Stations are imbalanced during the day.

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue Stations are imbalanced during the day.
- Dynamic Redeployment (matching of producer and consumer station)
 - Shu et al. (2013, 2010), O'Mahony and Shmoys (2015)
 - Issue Does not consider the routing cost which is a major cost driver.

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue Stations are imbalanced during the day.
- Dynamic Redeployment (matching of producer and consumer station)
 - Shu et al. (2013, 2010), O'Mahony and Shmoys (2015)
 - Issue Does not consider the routing cost which is a major cost driver.
- Myopic/Online Redeployment
 - Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)
 - Issue Perform poorly in reality as it does not consider the future demands.

School of

- Static Redeployment (once at the end of day)
 - Raviv and Kolka (2013), Raviv et al. (2013), Raidl et al. (2013)
 - Issue Stations are imbalanced during the day.
- Dynamic Redeployment (matching of producer and consumer station)
 - Shu et al. (2013, 2010), O'Mahony and Shmoys (2015)
 - Issue Does not consider the routing cost which is a major cost driver.
- Myopic/Online Redeployment
 - Schuijbroek et al. (2013), Pfrommer et al. (2014), Singla et al. (2015)
 - Issue Perform poorly in reality as it does not consider the future demands.

• Our Approach:

- MILP to jointly consider dynamic routing and redeployment problem [DRRP]
- Lagrangian dual decomposition to improve the scalability.
- Abstraction mechanism by grouping the nearby base stations to reduce the decision problems.

Challenge

Input: A DRRP is compactly defined using following tuple

$$\left\langle \mathcal{S}, \mathcal{V}, \mathbf{C}^{\#}, \mathbf{C}^{*}, \mathbf{d}^{\#,0}, \mathbf{d}^{*,0}, \{\sigma_{v}^{0}\}, \mathbf{F}, \mathbf{R}, \mathbf{P} \right\rangle$$

Challenge

• Input: A **DRRP** is compactly defined using following tuple $\int \mathbf{C} \mathbf{V} \mathbf{C}^{\#} \mathbf{C}^{*} \mathbf{d}^{\#,0} \mathbf{d}^{*,0} [\mathbf{c}^{0}] \mathbf{E} \mathbf{D} \mathbf{D}$

$$\langle \mathcal{S}, \mathcal{V}, \mathbf{C}^{\#}, \mathbf{C}^{*}, \mathbf{d}^{\#,0}, \mathbf{d}^{*,0}, \{\sigma_{v}^{0}\}, \mathbf{F}, \mathbf{R}, \mathbf{P} \rangle$$

- Outputs:
 - Number of vehicles to be redeployed, y
 - Routes for carriers, z to make redeployments

School of Information Systems

Challenge

Input: A DRRP is compactly defined using following tuple

$$\left\langle \mathcal{S}, \mathcal{V}, \mathbf{C}^{\#}, \mathbf{C}^{*}, \mathbf{d}^{\#,0}, \mathbf{d}^{*,0}, \{\sigma_{v}^{0}\}, \mathbf{F}, \mathbf{R}, \mathbf{P}
ight
angle$$

- Outputs:
 - Number of vehicles to be redeployed, y
 - Routes for carriers, z to make redeployments
- Objective: Maximize revenue (increasing satisfied demand + reducing carrier fuel costs)

School of Information Systems

$$\min_{\mathbf{y}^+, \mathbf{y}^-, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t$$

Maximize revenue

School of Information Systems

12

$$\min_{\mathbf{y}^+, \mathbf{y}^-, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t$$

$$d_{s}^{\#,t} + \underbrace{\sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k}}_{k,s'} + \underbrace{\sum_{v} (y_{s,v}^{-,t} - y_{s,v}^{+,t})}_{v} = d_{s}^{\#,t+1}, \ \forall t,s$$

Bikes inflow

Redeployed bikes

Maximize revenue

Flow preservation of bikes at stations

13

$$\min_{\mathbf{y}^+, \mathbf{y}^-, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t$$

$$d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_v (y_{s,v}^{-,t} - y_{s,v}^{+,t}) = d_s^{\#,t+1}, \ \forall t,s$$

$$x_{s,s'}^{t,k} \le d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}}, \qquad \forall t,k,s,s'$$

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

14

$$\min_{\mathbf{y}^+, \mathbf{y}^-, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^t$$

$$d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_{v} (y_{s,v}^{-,t} - y_{s,v}^{+,t}) = d_s^{\#,t+1}, \ \forall t,s$$

$$x_{s,s'}^{t,k} \le d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}}, \qquad \forall t,k,s,s'$$

$$d_v^{*,t} + \sum_{s \in S} [(y_{s,v}^{+,t} - y_{s,v}^{-,t})] = d_v^{*,t+1}, \quad \forall t, v$$

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

Flow preservation of vehicles in carriers

ICAPS 06/2015

$$\begin{split} \min_{\mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{z}} &- \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'} \cdot z_{s, s', v}^{t} \\ d_{s}^{\#, t} + \sum_{k, \hat{s}} x_{\hat{s}, s}^{t-k, k} - \sum_{k, s'} x_{s, s'}^{t, k} + \sum_{v} (y_{s, v}^{-, t} - y_{s, v}^{+, t}) = d_{s}^{\#, t+1}, \ \forall t, s \\ x_{s, s'}^{t, k} &\leq d_{s}^{\#, t} \cdot \frac{F_{s, s'}^{t, k}}{\sum_{k, \hat{s}} F_{s, \hat{s}}^{t, k}}, \qquad \forall t, k, s, s' \\ d_{v}^{*, t} + \sum_{s \in S} [(y_{s, v}^{+, t} - y_{s, v}^{-, t})] = d_{v}^{*, t+1}, \quad \forall t, v \\ \sum_{k \in S} z_{s, k, v}^{t} - \sum_{k \in S} z_{k, s, v}^{t-1} = \sigma_{v}^{t}(s), \qquad \forall t, s, v \\ \sum_{j \in S, v \in \mathcal{V}} z_{s, j, v}^{t} \leq 1, \qquad \forall t, s \end{split}$$

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

Flow preservation of vehicles in carriers

Enforcing right movement of carriers between stations

ICAPS 06/2015

$$\begin{split} \min_{\mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{z}} &- \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s',v}^{t} \\ d_{s}^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \sum_{v} (y_{s,v}^{-,t} - y_{s,v}^{+,t}) = d_{s}^{\#,t+1}, \ \forall t,s \\ x_{s,s'}^{t,k} &\leq d_{s}^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}}, \qquad \forall t,k,s,s' \\ d_{v}^{*,t} + \sum_{s \in S} [(y_{s,v}^{+,t} - y_{s,v}^{-,t})] = d_{v}^{*,t+1}, \quad \forall t,v \\ \sum_{k \in \mathcal{S}} z_{s,k,v}^{t} - \sum_{k \in \mathcal{S}} z_{k,s,v}^{t-1} = \sigma_{v}^{t}(s), \qquad \forall t,s,v \\ \sum_{j \in \mathcal{S}, v \in \mathcal{V}} z_{s,j,v}^{t} \leq 1, \qquad \forall t,s \\ y_{s,v}^{+,t} + y_{s,v}^{-,t} \leq C_{v}^{*} \cdot \sum_{s,i,v} z_{s,i,v}^{t}, \qquad \forall t,s,v \end{split}$$

 $i \in \mathcal{S}$

Maximize revenue

Flow preservation of bikes at stations

Actual flow \propto Observed Flow

Flow preservation of vehicles in carriers

Enforcing right movement of carriers between stations

Redeployment should respect the routing strategy

ICAPS 06/2015

School of Information Systems

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)

$$\begin{split} \min_{\mathbf{y},\mathbf{z}} &- \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s',v}^{t} \\ \mathbf{s.t.} \ d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \\ &\sum_{v} (\check{y}_{s,v}^t - \hat{y}_{s,v}^t) = d_s^{\#,t+1}, \ \forall t,s \\ x_{s,s'}^{t,k} &\leq d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}}, \qquad \forall t,k,s,s' \\ d_v^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^t - \check{y}_{s,v}^t)] = d_v^{*,t+1}, \ \forall t,v \\ &\sum_{k \in S} z_{s,k,v}^t - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_v^t(s), \qquad \forall t,s,v \\ &\sum_{j \in S, v \in \mathcal{V}} z_{s,j,v}^t \leq 1, \qquad \forall t,s \\ \hat{y}_{s,v}^t + \check{y}_{s,v}^t \leq C_v^* \cdot \sum_{i} z_{s,i,v}^t, \qquad \forall t,s,v \end{split}$$

School of Information Systems

Supriyo Ghosh

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)

School of	
Information	Systems

$\min_{\mathbf{y}, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s}$	$' \cdot z^t_{s,s',v}$
s.t. $d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} +$	
$\sum (\check{y}_{s,v}^t - \hat{y}_{s,v}^t) = d_s^{\#,t+}$ Redenlovmer	$\forall t, s$
$x_{s,s'}^{t,k} \le d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}},$	orall t,k,s,s'
$d_v^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^t - \check{y}_{s,v}^t)] = d_v^{*,t+1},$	$\forall t, v$
$\sum_{k \in \mathcal{S}} z_{s,k,v}^t - \sum_{k \in \mathcal{S}} z_{k,s,v}^{t-1} = \sigma_v^t(s),$	orall t, s, v
$\sum_{j \in \mathcal{S}, v \in \mathcal{V}} z_{s,j,v}^t \le 1,$	orall t,s
$\hat{y}_{s,v}^t + \check{y}_{s,v}^t \le C_v^* \cdot \sum_i z_{s,i,v}^t,$	orall t,s,v
	ã smu

ICAPS 06/2015

SINGAPORE MANAGEMENT UNIVERSITY

19

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)

$$\begin{split} \min_{\mathbf{y},\mathbf{z}} &- \sum_{t,k,s,s'} R_{s,s'}^{t,k} \cdot x_{s,s'}^{t,k} + \sum_{t,v,s,s'} P_{s,s'} \cdot z_{s,s',v}^{t} \\ \text{s.t. } d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} + \\ &\sum_{i,j} (\check{y}_{s,v}^t - \hat{y}_{s,v}^t) = d_s^{\#,t+1}, \ \forall t,s \\ & \textbf{Redeployment} \\ x_{s,s'}^{t,k} \leq d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}}, \qquad \forall t,k,s,s' \\ d_v^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^t - \check{y}_{s,v}^t)] = d_v^{*,t+1}, \quad \forall t,v \\ &\sum_{k \in S} z_{s,k,v}^t - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_v^t(s), \qquad \forall t,s,v \\ &\sum_{j \in S, v \in \mathcal{V}} z_{s,j,v}^t \leq \Gamma, \qquad \forall t,s,v \\ &\sum_{j \in S, v \in \mathcal{V}} z_{s,v}^t \leq C_v^* \cdot \sum_{i} z_{s,i,v}^t, \qquad \forall t,s,v \end{split}$$

ICAPS 06/2015

School of Information Systems

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)
- Lagrangian Dual decomposition on joint constraints
 - Update price variable in the master function.

$\min_{\mathbf{y}, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'}$	$\cdot z^t_{s,s',v}$
s.t. $d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} +$	
$\sum (\check{y}_{s,v}^t - \hat{y}_{s,v}^t) = d_s^{\#,t+1}$	$^{1}, \ \forall t, s$
$x_{s,s'}^{t,k} \le d_s^{\#,t} \cdot \frac{F_{s,s'}^{t,k}}{\sum_{k,\hat{s}} F_{s,\hat{s}}^{t,k}},$	orall t,k,s,s'
$d_v^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^t - \check{y}_{s,v}^t)] = d_v^{*,t+1},$	$\forall t, v$
$\sum_{k \in \mathcal{S}} z_{s,k,v}^t - \sum_{k \in \mathcal{S}} z_{k,s,v}^{t-1} = \sigma_v^t(s),$	$\forall t, s, v$
$\sum_{j \in \mathcal{S}, v \in \mathcal{V}} z_{s, j, v}^t \leq 1, \text{Routing}$	$\forall t, s$
edeployment ^{i,} + R	outing
	SINGAPORE MANAGEMENT UNIVERSITY

R

- Observation:
 - Minimal dependency between y (redeployment) and z (routing variables)
- Lagrangian Dual decomposition on joint constraints
 - Update price variable in the master function.
 - Primal extraction based on routing feasibility
 - Strong upper and lower bounds

$\min_{\mathbf{y}, \mathbf{z}} - \sum_{t, k, s, s'} R_{s, s'}^{t, k} \cdot x_{s, s'}^{t, k} + \sum_{t, v, s, s'} P_{s, s'}$	$\cdot z^t_{s,s',v}$
s.t. $d_s^{\#,t} + \sum_{k,\hat{s}} x_{\hat{s},s}^{t-k,k} - \sum_{k,s'} x_{s,s'}^{t,k} +$	
$\sum (\check{y}_{s,v}^t - \hat{y}_{s,v}^t) = d_s^{\#,t+1}$	$, \forall t, s$
$\begin{aligned} & \textbf{Redeploymen}\\ x^{t,k}_{s,s'} \leq d^{\#,t}_s \cdot \frac{F^{t,k}_{s,s'}}{\sum_{k,\hat{s}} F^{t,k}_{s,\hat{s}}}, \end{aligned}$	f t $orall t,k,s,s'$
$d_v^{*,t} + \sum_{s \in S} [(\hat{y}_{s,v}^t - \check{y}_{s,v}^t)] = d_v^{*,t+1},$	$\forall t, v$
$\sum_{k \in S} z_{s,k,v}^t - \sum_{k \in S} z_{k,s,v}^{t-1} = \sigma_v^t(s),$	orall t, s, v
$\sum_{j \in \mathcal{S}, v \in \mathcal{V}} z_{s, j, v}^{t} \stackrel{\kappa}{\underset{j \in \mathcal{S}, v \in \mathcal{V}}{\overset{k \in \mathcal{S}}{\underset{j, v \in \mathcal{S}}{\underset{j, v \in \mathcal{S}}{\underset{j, v \in \mathcal{S}}{\underset{j, v \in \mathcal{S}}{\overset{k \in \mathcal{S}}{\underset{j, v \in \mathcal{S}}{\underset$	$\forall t, s$
edeplőymenti, + Re	outing
	SMU

School of Information Systems

UNIVERSITY

SINGAPORE MANAGEMENT

Key Idea 2: Abstraction

- Grouping of stations
 - Group base stations into abstract stations
 - Solve abstract problem using LDD

School of

Key Idea 2: Abstraction

- Grouping of stations
 - Group base stations into abstract stations
 - Solve abstract problem using LDD
- Retrieve redeployment and routing strategy from solution to the abstract problem
 - Involves solving an optimization problem

School of

24

LDD+Abstraction

Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

Supriyo Ghosh

Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

Supriyo Ghosh

Experimental Results

- One synthetic data set and two real data sets:
 - Capital Bikeshare (305 stations, 6 carriers)
 - Hubway (95 stations, 4 carriers)
- Strategy of redeployment and routing for the entire day (30 minute decisions)
- Obtain strategy from part of the datasets and execute on another part

Information Systems

Supriyo Ghosh

NGAPORE MANAGEMENT

Experimental Results on Real Datasets

- Comparison with current practice (abstraction + LDD)
 - Demand follows poisson with mean observed flow
 - CapitalBikeshare Data:
 - Revenue increased by 3%
 - Lost demand reduced by up to 33.76%

	Whole	day	Peak period		
	(5am-12am)		(5am-12pm)		
	Revenue gain	Lost demand reduction	Revenue gain	Lost demand reduction	
Mean	3.47 %	22.72 %	7.74 %	30.58 %	
Mon	2.33 %	22.46 %	4.48 %	25.55 %	
Tue	3.07 %	28.56 %	7.86 %	37.10 %	
Wed	3.30 %	31.16 %	8.95 %	44.88 %	
Thu	2.86 %	33.76 %	6.04 %	35.97 %	
Fri	2.51 %	27.37 %	4.50 %	28.15 %	
Sat	3.87 %	23.61 %	4.33 %	24.30 %	
Sun	3.01 %	26.00 %	4.04 %	36.51 %	

ICAPS 06/2015

School of Information Systems

Experimental Results on Real Datasets

- Comparison with current practice (abstraction + LDD)
 - Demand follows poisson with mean observed flow
 - CapitalBikeshare Data:
 - Revenue increased by 3%
 - Lost demand reduced by up to 33.76%
 - Robust to small changes in mean demand

	Whole	day	Peak period		
	(5am-12am)		(5am-12pm)		
	Revenue gain	Lost demand reduction	Revenue gain	Lost demand reduction	
Mean	3.47 %	22.72 %	7.74 %	30.58 %	
Mon	2.33 %	22.46 %	4.48 %	25.55 %	
Tue	3.07 %	28.56 %	7.86 %	37.10 %	
Wed	3.30 %	31.16 %	8.95 %	44.88 %	
Thu	2.86 %	33.76 %	6.04 %	35.97 %	
Fri	2.51 %	27.37 %	4.50 %	28.15 %	
Sat	3.87 %	23.61 %	4.33 %	24.30 %	
Sun	3.01 %	26.00 %	4.04 %	36.51 %	

School of Information Systems

Supriyo Ghosh

SINGAPORE MANAGEMENT

Experimental Results on Real Datasets (2)

- Hubway Data:
 - Revenue increased by 5%
 - Lost demand reduced by 60% on average

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Revenue Gain (%)	3.94	5.93	4.45	5.90	6.27	2.20	3.15
Lost Demand Reduction(%)	42.6	60.7	58.5	54.7	77.2	69.8	74.0

31

Experimental Results on Real Datasets (2)

- Hubway Data:
 - Revenue increased by 5%
 - Lost demand reduced by 60% on average
- Better matching of demand and supply
 - Ideally all the points should lie on the identity line

Matching without redeployment

Matching using our redeployment

Summary

- Oynamic redeployment of bikes
 - Important large-scale problem with relevance to many cities
 - Two techniques (Decomposition, Abstraction) to improve scalability and provide near-optimal solutions
 - Reduces lost demand by over 20% on both datasets
 - Robust to small changes in demand

Questions???

🔀 supriyog.2013@phdis.smu.edu.sg

School of

34

References

- Shu, J.; Chou, M. C.; Liu, Q.; Teo, C.-P.; and Wang, I.-L. 2013. Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems. Operations Research 61(6):1346–1359.
- Schuijbroek, J.; Hampshire, R.; and van Hoeve, W.-J. 2013. Inventory rebalancing and vehicle routing in bike sharing systems. Working Paper, Carnegie Mellon University, Pittsburgh.
- Raviv, T.; Tzur, M.; and Forma, I. A. 2013. Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transportation and Logistics 2(3):187– 229.
- Raviv, T., and Kolka, O. 2013. Optimal inventory management of a bike-sharing station. IIE Transactions 45(10):1077–1093.
- Pfrommer, J.; Warrington, J.; Schildbach, G.; and Morari, M. 2014. *Dynamic vehicle redistribution and online price incentives in shared mobility systems. Intelligent Transportation Systems, IEEE Transactions on* 15(4):1567–1578.
- Nair, R., and Miller-Hooks, E. 2011. Fleet management for vehicle sharing operations. Transportation Science 45(4):524–540.

ICAPS 06/2015

Information Systems

School of