School of Information Systems

Strategic Planning for Setting up Base Stations in Emergency Medical Systems

Supriyo Ghosh and Pradeep Varakantham

School of Information Systems Singapore Management University

26th International Conference on Automated Planning and Scheduling (ICAPS-16)

Motivation: Emergency Medical Systems

+ Emergency Medical Systems:

- + Integral part of public health-care
- + Response time is the key factor
- + Placement of resources have major impact

Motivating Example

- + Response times with base 1 & 2 are 10 and 30 minutes.
- + Response times with base 1 & 3 are 5 and 5 minutes
 - + Total response time reduces by 30 minutes
 - + Both requests are served within 5 minutes

ICAPS, 06/2016

School of Information Systems

Challenges & Objectives

+ Strategic planning in EMS is computationally challenging

- + Demand is dynamic & stochastic
- + Exponentially large action space
- + Direct impact on ambulance allocation problem
- +Budget for resources (#bases & #ambulances) is dynamic
- +Extension of k-center facility location problem (NP-Hard Problem)
- + Goal: Strategic planning to optimize EMS performance metrics.
 - + Bounded time response: Maximise the number of requests that are served within a given threshold time (e.g., 15 minutes)
 - + Bounded risk response: Minimise the response time for a fixed percentage (e.g., 80%) of requests

School of Information Systems

Supriyo Ghosh

Singapore Management University

Background & Contribution

- + Operational Planning:
 - + Ambulance allocation and dynamic redeployment
 - + [Yue et. al., 2012; Siasubramanian et. al., 2015; Maxwell et. al., 2010]
 - + Presume a fixed set of bases are given
- + Strategic planning for rare large-scale disaster response
 - + [Sylvester et. al., 1857; Huang et. al., 2010]
 - + Not efficient for day-to-day decision making in EMS
- + Our contributions:
 - + A data-driven greedy algorithm add bases incrementally
 - + Use faster lazy greedy to optimize widely used metrics in EMS
 - + Evaluate our approach on a simulation build on real-world data sets

ICAPS, 06/2016

School of Information Systems

Solution Overview

ICAPS, 06/2016

School of Information Systems

Supriyo Ghosh

Ambulance Allocation Problem

+ Input: Ambulance allocation problem are defined using tuple: $< \mathcal{R}, \mathcal{B}, \mathcal{A}, \mathbf{T}, L >$

Each request $r \in \mathcal{R}$ is tagged with tuple < t, s, h >

	$L_{rl} = \langle$	∫1	if $T_{l,r.s} \leq 15$ minutes	Bounded time response objective
		$\int 0$	Otherwise	

+ Output: Number of ambulances, a_l allocated to each bases $l \in \mathcal{B}$

+ Objective: Maximize number of requests served within 15 minutes.

+ Decision variables:

$$x_{rl} = \begin{cases} 1 & \text{if request } r \text{ is served from base } l \\ 0 & \text{Otherwise} \end{cases}$$

ICAPS, 06/2016

School of Information Systems

Supriyo Ghosh

MILP for Optimizing Bounded Response Time

+ Similarly an MILP is used to optimize bounded risk response objective

SINGAPORE MANAGEMENT

ICAPS, 06/2016

School of Information Systems

Supriyo Ghosh

Submodularity

Objective function $F: 2^{\mathcal{B}} \to \mathbb{R}$ is submodular if

 $\Delta(A|b) - \Delta(B|b) \ge 0 \quad \forall b \in \mathcal{B} \setminus B$

where, $A \subset B \subseteq \mathcal{B}$ and $\Delta(A|b) = F(A \cup \{b\}) - F(A)$

Proposition 1: *F* function is monotone submodular for bounded time response objective. Therefore, greedy approach provides $(1 - \frac{1}{c})$ approximation guarantee

Supriyo Ghosh

Singapore Management University

Lazy Greedy Algorithm

Proposition 2: For a placement of bases $E \in \mathcal{B}$ and for each available base $s \in \mathcal{B} \setminus E$, let $\Delta_s = F(E \cup s) - F(E)$ then:

$$\max_{\mathcal{B},\mathcal{A},\mathcal{R}} F(\mathcal{B}) \le F(E) + \sum_{s \in \{\mathcal{B} \setminus E\}} \Delta_s$$

+ Lazy Greedy Approach

Experimental Setup

+Data set: Real EMS data set from a large Asian city

- + 58 bases, 58 ambulances
- + 1500 weeks of request samples divided into training, validation and test set

+Benchmark Approaches

- Baseline one ambulance in each base
- + Bounded Time Response Optimization [BTRO] (Yue el. al., 2012)
- + Risk Based Optimization [RBO] (Saisubramanian et. al., 2015)

+ Event-driven Simulation (Yue et. al., 2012):

Runtime Gain for Lazy-Greedy

- + Lazy greedy
 - + Scales gracefully with #requests for bounded time response.
 - + Solves real problems within 10 minutes.
 - + Efficient for bounded risk response also.

ICAPS, 06/2016

School of Information Systems

Supriyo Ghosh

Effect of Ambulance Fleet Size

+ Increasing ambulance fleet size:

- + Bounded time response increases monotonically
- + Bounded risk response decreases monotonically
- + Number of required bases increases to accommodate extra ambulances

Experimental Validation on Test Data Sets

+ Our approach serves at least 3% extra requests within 15 minutes.
+ Highly competitive with other approaches for bounded risk response by utilising less than 70% of the bases.

Information Systems

Supriyo Ghosh

Singapore Management University

Conclusion

+ Strategic planning for EMS

- + Important large-scale problem for public health-care
- + Computationally challenging
- + We employ lazy greedy approach to add bases incrementally until marginal gain is significant
- + Our approach significantly improves the service level of EMS over existing benchmarks, on real-world data sets

Q & A

ICAPS, 06/2016

School of Information Systems

Supriyo Ghosh

MILP for Optimizing Bounded Risk Response

 δ^r : Response time for request r

 z^r : Set to 1 if request r is served within δ

School of Information Systems

Variables:

Singapore Management University

Lazy Greedy Algorithm

Supriyo Ghosh

Singapore Management University