School of **Information Systems**

Strategic Planning for Setting up Base Stations in Emergency Medical Systems

Supriyo Ghosh and Pradeep Varakantham

School of Information Systems Singapore Management University

26th International Conference on Automated Planning and Scheduling (ICAPS-16)

Motivation: Emergency Medical Systems

+ Emergency Medical Systems:

- + Integral part of public health-care
- + Response time is the key factor
- + Placement of resources have major impact

Motivating Example

- + Response times with base 1 & 2 are 10 and 30 minutes.
- + Response times with base 1 & 3 are 5 and 5 minutes
	- + Total response time reduces by 30 minutes
	- + Both requests are served within 5 minutes

School of Information Systems

26th Supriyo Ghosh Singapore Management University ICAPS, 06/2016 International Conference on Automated Planning and TCAPS, 06/2016

Challenges & Objectives

+Strategic planning in EMS is computationally challenging

- +Demand is dynamic & stochastic
- +Exponentially large action space
- +Direct impact on ambulance allocation problem
- +Budget for resources (#bases & #ambulances) is dynamic
- +Extension of k-center facility location problem (NP-Hard Problem)
- +Goal: Strategic planning to optimize EMS performance metrics.
	- + **Bounded time response:** Maximise the number of requests that are served within a given threshold time (e.g., 15 minutes)
	- + **Bounded risk response:** Minimise the response time for a fixed percentage (e.g., 80%) of requests

School of **Information Systems**

Background & Contribution

- +Operational Planning:
	- + Ambulance allocation and dynamic redeployment
		- + [Yue *et. al.,* 2012; Siasubramanian *et. al.,* 2015; Maxwell *et. al.,* 2010]
		- + Presume a fixed set of bases are given
- +Strategic planning for rare large-scale disaster response
	- *Barry O'Sullivan* + [Sylvester *et. al.*, 1857; Huang *et. al.*, 2010]
	- + Not efficient for day-to-day decision making in EMS
- + Our contributions:
	- + A data-driven greedy algorithm add bases incrementally
	- Use faster lazy greedy to optimize widely used metrics in EMS
	- + Evaluate our approach on a simulation build on real-world data sets

School of **Information Systems**

Solution Overview

School of Information Systems

Ambulance Allocation Problem **be seen in family a feature set of a factor of Ambulance Allocation Problem** where α as a denotes the null assignment or lost request. α straints (7) ensure that binary variable *z^r* is set to 1 if

+ Input: Ambulance allocation problem are defined using tuple: is a binary decision variable and is set to 1 if request *r* is served from base *l* 2 *{B^r* [?*}*. *a^l* denotes the number $\langle R \rangle$ $\sim \nu, \omega, \pi, \pm$ response time for request *r* exceeds . Constraints (8) defined using tuple. time exceeding \sim other key differentiating constraints that has not been differentiating constraints that has not been differentiation of \mathcal{L}_c

Each request $r \in \mathcal{R}$ is tagged with tuple \Box Facility and is the reward and in the second as follows. $\ln \angle t$ each \angle $\overline{\mathbf{c}}$ that the response time for $\overline{\mathbf{c}}$ is equal to $\overline{\mathbf{c}}$ is

 $+$ \circ itput: + Output: Number of ambulances, a_l allocated to each bases

 $\frac{1}{2}$ **Sect** *xrl* = 1*,* 8*r* 2 *R* (2) *a,x M* (6) *^r* + Objective: Maximize number of requests served within 15 minutes.

*l*2*{Br*[?*} x* + Decision variables:

SIOI Variables.
\n
$$
x_{rl} = \begin{cases} 1 & \text{if request } r \text{ is served from base } l \\ 0 & \text{Otherwise} \end{cases}
$$

l CAPS, 06/2016

x
X

School of **Information Systems**

MILP for Optimizing Bounded Response Time

+ Similarly an MILP is used to optimize bounded risk response objective

School of Information Systems

Submodularity

Objective function $F: 2^{\mathcal{B}} \rightarrow \mathbb{R}$ is submodular if

 $\Delta(A|b) - \Delta(B|b) \geq 0 \quad \forall b \in \mathcal{B} \setminus B$

where, $A \subset B \subseteq \mathcal{B}$ and $\Delta(A|b) = F(A \cup \{b\}) - F(A)$

Proposition 1: F function is monotone submodular for bounded time response objective. Therefore, greedy approach provides $(1-\frac{1}{2})$ approximation guarantee

Lazy Greedy Algorithm

Proposition 2: For a placement of bases $E \in \mathcal{B}$ and for each $\textbf{available base}\, s\in \mathcal{B}\setminus E$, let $\Delta_s=F(E\cup s)-F(E)$ then:

$$
\max_{\mathcal{B},\mathcal{A},\mathcal{R}} F(\mathcal{B}) \leq F(E) + \sum_{s \in \{\mathcal{B} \setminus E\}} \Delta_s
$$

+ Lazy Greedy Approach

Experimental Setup

+Data set: Real EMS data set from a large Asian city

- + 58 bases, 58 ambulances
- + 1500 weeks of request samples divided into training, validation and test set

+Benchmark Approaches

- + Baseline one ambulance in each base
- + Bounded Time Response Optimization [BTRO] (Yue *el. al.,* 2012)
- + Risk Based Optimization [RBO] (Saisubramanian *et. al.,* 2015*)*

+ Event-driven Simulation (Yue *et. al.*, 2012):

Runtime Gain for Lazy-Greedy

- - +Scales gracefully with #requests for bounded time response.
	- +Solves real problems within 10 minutes.
	- +Efficient for bounded risk response also.

NGAPORE MANAGEMEN

School of Information Systems

Effect of Ambulance Fleet Size

+Increasing ambulance fleet size:

- Bounded time response increases monotonically
- + Bounded risk response decreases monotonically
- Number of required bases increases to accommodate extra ambulances

Experimental Validation on Test Data Sets

+Our approach serves at least 3% extra requests within 15 minutes. + Highly competitive with other approaches for bounded risk response by utilising less than 70% of the bases.

Conclusion

+Strategic planning for EMS

- + Important large-scale problem for public health-care
- + Computationally challenging
- + We employ lazy greedy approach to add bases incrementally until marginal gain is significant
- + Our approach significantly improves the service level of EMS over existing benchmarks, on real-world data sets

School of **Information Systems**

Q & A

School of Information Systems

MILP for Optimizing Bounded Risk Response used earlier is constrains (12). These constraints en-**Sure that is sure that the response time for Cylimizing Bounde** the travel time from base (dispatched ambulance loca-

 δ^r : Response time for request r

 z^r : Set to 1 if request r is served within δ

School of

Variables:

26th Supriyo Ghosh Singapore Management University ICAPS, 06/2016 ICAPS, 06/2016 Table 2: RISKALLOCATION(*R, B, A,* ↵)

no available bases whose marginal gain is higher than a \blacksquare azy Greedy Algorithm (c) A set of feasible nearby bases from where the re-Lazy Greedy Algorithm

26th Supriyo Ghosh Singapore Management University ICAPS, 06/2016 ICAPS, 06/2016 *f fleet A fleet A fleet a fleet a fleet s* 2 *a fleet s* 2 *a fleet s* 2 *a fleet fle* list is sorted based on arrival order of requests. *I* de-

ICAPS, 06/2016