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Jecision Makinc

-+ Examples
+ Sensor networks, Distributed
meeting scheduling, multi-robot
coordination

']
w Nuclear power plant
b

Factories * & & Thermal power plant

‘ig. hydraulic power
generation

+ Challenges
+ No central control/knowledge

+ Communication overhead

S ' E/ Renewable energy © Photovoltaic
es and offices <,
+ Shared resources N
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+ Meeting scheduling with budget constraint

+ Two branch each has a limited travel budget
+ Two meetings have to be scheduled, each having two options

+ Goal: Schedule meeting such that total utility is maximised
Loc-1 Loc-2

» - 2
/\ cost=$250 =
cost=$250

cost=$200
cost=$200
R
budget=$500 budget=$600 .
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Resource Constrained DCOPs

+ variables: X = (x4, ..., z,), finite domains

+ Constraints: Hij(:vz-,:cj) P Ly XX — R

+ Goal : Find joint assignment s.t. max Z 0i; (i, ;)
(2,7)

+ Aset R={r,....,mm} of shared resources

+ Utilisation: u;(r,z;) : R x x; — R )

014

+ Resource constraint: _________________
VTGR:ZW(T,%)SC(T) H
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Information Systems VERSITY




Related Work and Challenﬂes

+ Exact Algorithm:
+ [Bowring et al., AAMAS-06]- Extends ADOPT with multiply constraints
+ [Matsui et al., AAAI-08]- Introduces resources as a virtual variable.

+ Limited Scalability
+ Approximate Algorithm:
+ No dedicated approximate solver for RC-DCOP
+ For tight resource constraints, approximate DCOP solvers fall

to find even one feasible solution
+ Empirically true for max-sum

-+ Probabillistic Inference
+ [Kumar and Zilberstein, NIPS-10]- MAP estimation in graphical model

+ Extend the above to handle resource constraints
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Formulate QP for continuous relaxation of RC-DCOP

QP formulation = Likelihood Maximization in a Bayes Net
Mixture model

:

Maximise the likelihood in the mixture of BN using
Expectation Maximisation

 /
Develop Message-Passing based on EM

School of 1; SMU

SINGAPORE MANAGEMENT

Information Systems UNIVERSITY




Continuous Relaxation of RC-DCOP

max S xi)pi(x; Ti, X Maximize overall
p={p1,---,Pn} Y pili)p; (@5)0%3 (@0, 5) h tilit
)EE xz,ajj utiil y
expected contribution by edge (1,3)

. Normalisation

S.t. E (x;) = Vi €V < .
pi(zi) < Constraint
Lq
SJ - pi(xi)ui(r,z;) < C(r) Vr € R < Resource Constraint
iENb(r) x4

pi(x1)

U1 (r1.x1) 012(X1,X2). p1(x1). p2(X2)
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Our Contributi

Formulate QP for continuous relaxation of RC-DCOP

QP formulation = Likelihood Maximization in a Bayes Net

Mixture model

'

Maximise the likelihood in the mixture of BN using
Expectation Maximisation

 /
Develop Message-Passing based on EM
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Mixture of Bayes Nets

[Kumar and Zilberstein, 2010] Akshat Kumar and Shlomo Zilberstein. MAP estimation for graphical models by 1)({ SMU
likelihood maxi- mization. In NIPS, pages 1180-1188, 2010. SINGAPORE MANAGEMENT

UNIVERSITY
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Our Contributi

Formulate QP for continuous relaxation of RC-DCOP

QP formulation = Likelihood Maximization in a Bayes Net
Mixture model

Maximise the likelihood in the mixture of BN using

Expectation Maximisation

 /
Develop Message-Passing based on EM
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Use EM [Dempster et al.,1977] to maximize the likelihood of § = 1

Hidden Variables: x; .1

Observed Variables: § = 1

Unknown Parameters: p;(x;)

Parameters constraints includes the resource, normalisation constraints

+ + + + +

S~
I
N

[ =3 [ =4

Mixture of Bayes Nets
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Qvgrvigw gf EM fgr RQ-DQQP

+EM is an iterative approach consisting of E & M-step
+ E-step computes expectation over hidden variables
+ Implemented using message passing

+M step maximises expected log-likelihood
+ A convex optimization problem
+ No analytical solution
+ Solved by iteratively optimising the dual of this convex M-
step problem (block coordinate descent strategy)
+ Implementable using message-passing
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Our Contributi

Formulate QP for continuous relaxation of RC-DCOP

l

QP formulation = Likelihood Maximization in a Bayes Net
Mixture model

v

Maximise the likelihood in the mixture of BN using
Expectation Maximisation

Develop Message-Passing based on EM
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Message:1(Agent>Agent): 7i—; (37]) — Zpi(xi)‘gazixj

Message:2 (Agent—Resource): J; .- (x;) < pi(x;) Z Vi—si(x)
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&

Message:1(Resource—»Agent): (tr—; < maz(0, ft,)

Message:2(Agent—+>Resource): vioi(zi) < Ai+ > piui(r, z;)
P ENT(i)\
Pi(%i) D ke no(i) Vo—i(@i)
Ai + ZreNr(z') fhr—si - Ui (7, 25)

Parameter Update: [P; (i) <
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+ Experiment on Two benchmarks
+ Random Graphs(30 and 40 node):
+ Edge density is varied from 0.5 to 0.9
+ Random utility 4;; between 1 to 10
+ Resource capacity is varied from 20%-60% of consumption

+ Graph Colouring:
+ # of Nodes is varied from 20 to 50
+ Use same settings provided In [Farinelli et al., AAMAS-08]

+ Comparison Algorithm:
+ Toulbar2 [Allouche et al., INRA-10]
+ Max-Sum in Frodo implementation [L'eaute et al., IJCAI-09]
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Exgerimental Resultsgzz

+ Failure - No resource feasible solution found
+ EM has deterministic outcome, single run
+ Max-Sum run multiple times due to variable outcome

Failure Frequency

80%
70%
o 60%
© 50%
o o
5 40%
I'_ICT_S 30%
20%
10%

30N 40N | 20N 30N 40N 50N
random graph graph coloring
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Exgerimental Results‘S}

+ EM outperforms toulbar2 as problem complexity increases.
+ EM solution quality is noticeably better than Max-Sum.

40 Node Problem Instance

— 1 [ [ [ [ [ ] [ [ [ [ [ [~ [ [ [ ] [ [ [ [ [ [ [ [ [ [
MS BN Toulbar2 I |\ S

0.2 0.6|0.2 0.6|0.2 0.6|0.2 0.6)0.2 0.6
density= 0.5 | density= 0.6 K density= 0.7 | density= 0.8  density= 0.9

==
School of ]f SMU
SINGAPORE MANAGEMENT
UNT I

Information Systems VERSITY



Exgerimental Results‘4}

+ EM provides near-optimal solution for graph colouring problems

+ Toulbar2 finds optimal solution
+ Solution quality of EM is always better than Max-Sum for 30 node

problems
Graph Coloring Problem 30 Node Problem Instance
T T T T T T T T T T T T T T T T T T T T T T 11
T T T T T T T T 1 T T T T T T T T ]
v B Toulbar? NN cy( NN 7 MS FEEE Toulbar2 I £, N
L0 T e ————— 1
2 ol | S50 || 111l a1 el 1l -
g | | 8 | | |
ces-rfatATIIINnn -
= ~ ISrddnd1TIdd11l N
YoIul B B E R EREREEERAH 7
. ‘ ‘ 85 ‘ ‘ ‘ ‘
0.2 0.6/0.2 04 0.6]0.2 0.6/.0.2 0.6 o.dz , 0'6|°O'|2 . 006'6'(’&2 - 007'6‘0(52 . 008.6|c;.2 e 0%6
node= 20 nodex= 30 nodex= 40 node= 50 ensity= 0.5: ensity= 0. | ensity= 0. | ensity= 0. | ensity= 0.
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Experimental Re

+ EM almost always achieves solution within 3 minutes.

+ Although Max-Sum takes much lower time, its solution
quality is worse

Runtime (40 Node Problem)

I |,__J.__.I_.__l._.J_.._|_.__J__._I_.__l._._|_.._L__.J..._I_.__l__._|_.._l._.J__._I.__.I_.__I_.__l__._l__,_
10000 MS === EM +Tou|bar2 —
g 1000 F
%) _
GE) _
= 100 F
>
o - | | | | .
10 -
1 ‘ | | 1 | | I I | [ I
0.2 04 06|02 0.4 06|02 0.4 O6|02 0.4 06|0204 0.6
density= 0.5 density=0.6 density=0.7 density=0.8 density=0.9
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%
+ Present a promising class of approximate algorithm for RC-
DCOP using probabilistic inference
+ Solving RC-DCOP is equivalent to Likelihood Maximization
+ Use machine learning technique for likelihood maximization
+ Develop EM as message-passing algorithm for RC-DCOP

+ EM has much lower failure rate than Max-Sum, provides

good quality solution
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Questions???

@ supriyogd.2013@phdis.smu.edu.sg
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Primal Extracti

+ Extract integral solution from - using rounding technique from
[Ravikumar & Laffety, 2006]
+ If pr(z:) =6, set p™(z;) =1 and pi"' (&) = 0,Vi; \ z

+ For each unlabelled node i e v find argmax > >  0i(wi, ;)

JENb(i) Tj

+ Label node with z; that satisfy the resource constraints
+ lterate the process until convergence

*Pradeep Ravikumar and John Laf- ferty. Quadratic programming relaxations for metric labeling and Markov random field MAP
estimation. In ICML, pages 737744, 2006.
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Our Contributi

+ Provide a new class o

Mapping of RC-DCO

" approximate a

° to that of pro

mixture of Bayes Nets

gorrithm for RC-DCOP

habilistic inference In

+ Maximises the likelihood (LM) in Bayes Nets that is equivalent to

solve the RC-DCOP

+ Interpret LM as message-passing

School of
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ithood Maximi

f(é, T1,, T, |l;pz = P(|xy,, 21, Qpll(ﬂill;p)plz (21,5 )

\

Joint for anes net 1 9?;
Likelihood for Bayes net [ : L} = P(8 = 1|i; p) Z PO = 1,1, 21,[l;p) = Y Ou,pry (1,3 9)pu, (21,5 D)

Zy

Likelihood for complete mixture: L? = Z P()LP = % DN bupr (1,5 9)p1s (212 )
l

Z Z 0 (x))p1, (x1,50)01, (21,3 0) = |E(Omin + (Omaz — Omin) LP) ¥ QP formulation =LM in BN mixture Model

[ x
G _J/
TV

Objective of QP
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10N nroblem in M- AN

maxzzpz €L logpz (xz) Z Z(ga: z;Pj 333

i€V x; Jer( ) T
Expected COI’ItI‘ll:I:thIl for value x;
s.t. pr(xz) =1 VieV
T
Z ZP: (zi)ui(r, x;) < C(r) Vr e R
tEND(r) =;
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Theorem 1: Maximising the following log-likelihood Q(p, p*) w.r.t. p* iteratively
finds the optimal solution for DCOP. [kumar et al. 2011]

2 2 bniapila)) |\ fi(xi)

Qp,p*) < > ¥ pi(z:)log pj (w;

eV ox;

JENOL(i) T

+ Need to satisty resource & normalisation constraints for RC-DCOP
4+ Optimising the dual: .
- + Find the Lagrangia ) by usingpricewvariable A, p = -

P 1
B +F1 C e I];CtIO

- + Parapeteripdat

ﬁlllll

1 q(A ) = mieL(p", A, ) i
pi(i) fi¥%;) -

B >\’6 _I_ Zr :u"“ ) ﬁ-{’:’ﬁ . Q(p-P°{ :

.

NI IR
~.
N—"

ﬂllllllfp.lllll
*

'
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[Kumar et al., 2011] Akshat Kumar, William Yeoh, and Shlomo Zilberstein. On message-passing, MAP estimation in graphical models and DCOPs. In
DCR Workshop, pages 57-70,2011.
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+ Block coordinate descent (BCD):
+ Choose arbitrary variable A;, fix all other variables and optimise q(.) w.r.t. A;

pz L fz($z) o
Z)‘ ‘I‘Z fr - ui (7, ;) —1=9

+ The largest root is the only feasible solution

1
—u o

1/(x+1)+1/(x+2)+1/(x+3)+1/(x+4) -1=0

+ Minimise q(.) w.r.t. - to find the value of price variable 1
+ As Solution is uniquely determined, BCD is guaranteed to converge.
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+ Maximizes the likelihood in mixture of bayes net

. 1 R
ZP(Z) ZP(H — 1,33[1,3312”;]?) — E Zzemlpll (xll;p)pb (xlz;p)
l X l X

7

likelihood for net 1 Objective of the QP for RC-DCOP

+ Utility function for graph colouring problem

I\ g 1_|_%(:Ci)_|_fyj(wj) Otherwise
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