

Robust Repositioning to Counter Unpredictable Demand in Bike Sharing Systems

Supriyo Ghosh¹¹, Michael Trick¹³ and Pradeep Varakantham¹¹

School of Information Systems, Singapore Management University Tepper School of Business, Carnegie Mellon University

25th International Joint Conference on Artificial Intelligence (IJCAI-2016)

Motivation: Bike Sharing Systems

+Bike Sharing Systems
+1,070 active systems all over the world.
+Ex: Capital Bikeshare (Washington DC), Hubway (Boston), Vélib'(Paris)
+Problem: Low availability of bikes at base stations due to uncoordinated movements.

Starvation/congestion in Capitalbikeshare

+ Goal: Robust & dynamic repositioning to address availability issues

IJCAI-16, 07/2016

Information Systems Supriyo Ghosh

Background & Contributions

+ Static repositioning (at the end of day)
+ Raviv and Kolka (2013), Raidl et al. (2013)
+ Dynamic repositioning (myopic & offline)
+ Schuijbroek et al. (2013), Shu et al. (2013)
+ Existing solutions do not capture

uncertainty in future demand

+ Demand has higher variance for densely populated cities

Uncertainty (higher variance) in demand

IJCAI-16, 07/2016

+ Contributions:

- + We formally represent the Dynamic Repositioning and Routing Problem under demand Uncertainty [DRRPU]
- + Propose an iterative two player game between the decision maker and the environment acting as an adversary to solve the *DRRPU*.
- + Execute the policy online using a simulation built on real world data set.

School of Information Systems

Supriyo Ghosh

Solution Methodology

+ Input: DRRPU tuple $< S, V, C^{\#}, C^*, d^{\#,0}, d^{*,0}, P, \check{F}, \hat{F} >$

+ Outputs: Repositioning & routing strategy $< \mathbf{Y}^+, \mathbf{Y}^-, \mathbf{Z} >$

+ Policy execution: Simulate policy along with flow of bikes by customers

Adversary Model

MILP:

Supriyo Ghosh

School of

Supriyo Ghosh

Singapore Management University

IJCAI-16, 07/2016

Experimental Results

- + Dataset: Hubway BSS of Boston (95 stations, 3 carrier vehicles)
 - + Trip history data for 3 months
 - + Planning period: 6AM-12PM (each decision epoch is 30 minutes)
- + Evaluation Metrics: Average, standard deviation and maximum lost demand (computed over 100 demand scenarios)

+ Benchmark Approaches:

- + Static (Redeployment at the end of day)
- + Myopic (Fill a fixed percentage of the station inventory)

+ Online (Schuijbroek et. al., 2013)

+ Scenario Generation approach:

- + Gap reduces monotonically
- + At convergence, guarantees an upper bound on the lost demand

Convergence of scenario generation approach

IJCAI-16, 07/2016

School of Information Systems

Supriyo Ghosh

Lost Demand Statistics on Hubway Data set

 Real world demand scenarios (18% & 10% reduction in average and worse case lost demand)

	Static	Myopic	Online	Robust
Average	329	407	303	248
STDEV	98	109	99	83
Maximum	562	667	544	490

2. Demand follows Poisson at each station (27% & 19% reduction)

Average	198	281	183	133
STDEV	27	40	32	28
Maximum	276	367	260	211

3. Demand follows Poisson for each OD pair (18% & 16% reduction)

Average	231	314	205	167
STDEV	37	50	34	33
Maximum	309	428	290	244

IJCAI-16, 07/2016

School of Information Systems

Supriyo Ghosh

Conclusion

+ Online and robust repositioning in BSS:

- + A practically important and challenging problem.
- + A two-player iterative game approach to counter unavailability of bikes (with unpredictable demand).
- + Employed a simulation build on real-world data set for policy execution and performance validation.
- + Lost demand (average) is reduced by at least 18%.
- + Solution is robust to uncertainty in future demand.

IJCAI-16, 07/2016

School of Information Systems

Supriyo Ghosh

Q & A

IJCAI-16, 07/2016

School of Information Systems

Supriyo Ghosh

Redeployment planner

School of Information Systems

Supriyo Ghosh

Singapore Management University

NGAPORE MANAGEMEN

IJCAI-16, 07/2016

Simulation Model

+ Compute the flow of bikes by the customers

+ Compute distribution of bikes for next decision epoch

$$d_{s}^{\#,t+1} = d_{s}^{\#,t} + \left[\sum_{\tilde{s}} x_{\tilde{s},s}^{t} - \sum_{s'} x_{s,s'}^{t}\right] + \left[Y_{s}^{-,t+1} - Y_{s}^{+,t+1}\right]$$

Net inflow of bikes by customers Net drop-off bikes by carrier vehicles

IJCAI-16, 07/2016

School of Information Systems

Supriyo Ghosh