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Motivation: Bike Sharing Systems
+Bike Sharing Systems
+1,070 active systems all over the world.
+Ex: Capital Bikeshare (Washington DC), 

Hubway (Boston), Vélib'(Paris) 
+Problem: Low availability of bikes at base 

stations due to uncoordinated movements.

DYNAMIC REPOSITIONING IN BIKE SHARING SYSTEM

to minimise the lost demand and our approach is to dynamically reposition bikes with the help of vehicles
while considering future expected demand extracted from past data. Since vehicles incur a significant cost
in executing a repositioning solution, we consider the trade-off between our original problem of minimising
lost demand (alternatively maximising profit) and the problem of minimising cost incurred by vehicles. We
refer to this joint problem as the Dynamic Repositioning and Routing Problem (DRRP).

Minor variations of DRRP can be used to represent repositioning empty cars in car sharing systems
[ex: Car2go, Zipcar] (Kek, Cheu, Meng, & Fung, 2009; Barth, Todd, & Xue, 2004), empty vehicles in
Personal Rapid Transit [PRT] (Lees-Miller, Hammersley, & Wilson, 2010) and idle ambulances in emergency
response (Yue, Marla, & Krishnan, 2012; Saisubramanian, Varakantham, & Chuin, 2015). For instance, in
the case of car sharing, there may be a need to continuously reposition cars to different parking spaces during
the day in tune with the pattern of demands.

Given the benefits of bike sharing systems and the challenges of setting up such systems to operate
efficiently, there have been a wide spectrum of research papers addressing the problem of lost demand and
other issues pertinent to it. We have referred to these papers in the related work section. Some of the key
differences from existing research are as follows: (1) We generate routing and repositioning decisions for
multiple time steps for an entire day using expected demand for bikes at each base station and at each time
step; and (2) We provide novel approaches that employ aggregation of base stations and decomposability in
DRRP optimisation model to minimise lost demand for large-scale BSSs.
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Figure 2: Number of empty and full instances of stations in Capital Bikeshare Company

Due to a trivial reduction from existing Static Bicycle Repositioning Problem (SBRP) which is NP-
Hard (Schuijbroek et al., 2013), DRRP is at least NP-Hard. Therefore, we focus on developing principled
approximation methods. Our key contributions are as follows:
(1) A mixed integer linear program (MILP) formulation to maximise profit for the bike sharing company that
considers the trade off between:

• maximising served demand and

• minimising cost incurred by vehicles

(2) A dual decomposition mechanism to decompose the MILP into two components – one which computes
repositioning solution for bikes and one that computes routing solutions for vehicles.
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Starvation/congestion in Capitalbikeshare

+Goal: Robust & dynamic repositioning to address availability issues
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Background & Contributions
+Static repositioning (at the end of day)
+Raviv and Kolka (2013), Raidl et al. (2013)

+Dynamic repositioning (myopic & offline)
+ Schuijbroek et al. (2013), Shu et al. (2013)

+Existing solutions do not capture
uncertainty in future demand

+Demand has higher variance for densely
populated cities Uncertainty (higher variance) in demand

+Contributions:
+We formally represent the Dynamic Repositioning and Routing
Problem under demand Uncertainty [DRRPU]

+Propose an iterative two player game between the decision maker and
the environment acting as an adversary to solve the DRRPU.

+Execute the policy online using a simulation built on real world data set.
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Solution Methodology
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+Policy execution: Simulate policy along with flow of bikes by customers

+ Input:  DRRPU tuple

+Outputs: Repositioning & routing strategy 
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Adversary Model
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Repositioning Model
Inputs: d#,
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Follow additional routing constraints

MILP:
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1. Carrier vehicle flow (routing) preservation constraints.
2. Routing distance of carrier is bounded by a threshold value.
3. Carrier can pickup/drop-off bikes if it is present in the station.
4. Bike flow preservation in the carriers.
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Experimental Results
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 Lost-Demand (20 Station Problem)

Redeployer Nature

+Dataset: Hubway BSS of Boston ( 95 stations, 3 carrier vehicles)
+ Trip history data for 3 months
+ Planning period: 6AM-12PM (each decision epoch is 30 minutes)

+Evaluation Metrics: Average, standard deviation and maximum lost
demand (computed over 100 demand scenarios)

+Benchmark Approaches:
+Static (Redeployment at the end of day)
+Myopic (Fill a fixed percentage of the
station inventory)

+Online (Schuijbroek et. al.,2013)

+ Scenario Generation approach:
+Gap reduces monotonically
+At convergence, guarantees an upper
bound on the lost demand Convergence of scenario generation approach 
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1. Real world demand scenarios (18% & 10% reduction in average and 
worse case lost demand)

2. Demand follows Poisson at each station (27% & 19% reduction)

3. Demand follows Poisson for each OD pair (18% & 16% reduction)

Lost Demand Statistics on Hubway Data set

Average 329 407 303 248
STDEV 98 109 99 83

Maximum 562 667 544 490

Average 198 281 183 133
STDEV 27 40 32 28

Maximum 276 367 260 211

Average 231 314 205 167
STDEV 37 50 34 33

Maximum 309 428 290 244

Static Myopic Online Robust
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Conclusion

+Online and robust repositioning in BSS:
+ A practically important and challenging problem.
+ A two-player iterative game approach to counter
unavailability of bikes (with unpredictable demand).

+ Employed a simulation build on real-world data set for
policy execution and performance validation.

+ Lost demand (average) is reduced by at least 18%.
+ Solution is robust to uncertainty in future demand.
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Redeployment planner
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Simulation Model

+Compute distribution of bikes for next decision epoch
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+Compute the flow of bikes by the customers


