Carnegie
ARC Mellon

RESEARCE CENTRE University

SINGAPORE MANAGEMENT
UNIVERSITY

\3’ SMU

Robust Repositioning to Counter Unpredictable
Demand in Bike Sharing Systems

Supriyo Ghosh®, Michael Trick® and Pradeep Varakantham®

E@School of Information Systems, Singapore Management University
BTepper School of Business, Carnegie Mellon University

251 International Joint Conference on Atrtificial Intelligence (IJCAI-2016)



Motivation: Bike Sharing Systems
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+Problem: Low availability of bikes at base = =
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stations due to uncoordinated movements. Mot eat

Starvation/congestion in Capitalbikeshare

+ Goal: Robust & dynamic repositioning to address availability 1ssues
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Background & Contributions

+ Static repositioning (at the end of day) e

+ Raviv and Kolka (2013), Raidl et al. (2013)
+ Dynamic repositioning (myopic & offline) |
+ Schuijbroek et al. (2013), Shu et al. (2013) \ _
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+ Demand has higher variance for densely| o®s—t— . . .
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+ Existing  solutions do not capture

uncertainty in future demand =

populated cities

Uncertainty (higher variance) in demand

+ Contributions:
+We formally represent the Dynamic Repositioning and Routing
Problem under demand Uncertainty [DRRPU]
+ Propose an iterative two player game between the decision maker and
the environment acting as an adversary to solve the DRRPU.

+ Execute the policy online using a simulation built on real world data set.
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Solution Methodology

+ Input: DRRPU tuple < S, V, C# . C* d#*° d*°. P.F. F >
+ Qutputs: Repositioning & routing strategy < Y+, Y . 7Z >
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+ Policy execution: Simulate policy along with flow of bikes by customers
dl d2 d3

t=1 t=2 t=3 1= Z:
X SMU

Supriyo Ghosh Singapore Management University |JCAI-16, 07/2016




Adversary Model

/ Redeployment Strategy
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R Distribution of bikes
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Repositioning Model

o~ | kdemand scenarios
Inputs: g# ' p? . FF
.

Distribution of bikes
MILP:
I;HZII maX Z Lk Minimise worse case Lost demand
s.it. L% > Z Ff (d¥ + Z yok v —Ysy))s Vs, ki | Compute Lost
s’ . _ ) Demand
Demand Supply

y+a Yy~ € P(z, d#) | Follow additional routing constraints

Carrier vehicle flow (routing) preservation constraints.

1
2. Routing distance of carrier 1s bounded by a threshold value.
3. Carrier can pickup/drop-off bikes if it 1s present in the station.
4. Bike flow preservation in the carriers.
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Experimental Results

+ Dataset: Hubway BSS of Boston ( 95 stations, 3 carrier vehicles)
+ Trip history data for 3 months
+ Planning period: 6AM-12PM (each decision epoch is 30 minutes)

+ Evaluation Metrics: Average, standard deviation and maximum lost
demand (computed over 100 demand scenarios)

+ Benchmark Approaches:
+ Static (Redeployment at the end of day) \ —

+ Myopic (Fill a fixed percentage of the Zﬁ Redeplojer —¥—Nate  —6—

station inventory) 122
+ Online (Schuijbroek et. al.,2013)
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+ Scenario Generation approach: 100

+ Gap reduces monotonically %0
+ At convergence, guarantees an upper oo kA s s A
#lteration
bound on the lost demand

Lost-Demand (20 Station Problem)
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Lost Demand Statistics on Hubway Data set

Real world demand scenarios (18% & 10% reduction in average and
worse case lost demand)

Static Myopic Online Robust
Average 329 407 303 248
STDEV 98 109 99 83
Maximum 562 667 544 490

Demand follows Poisson at each station (27% & 19% reduction)

Average 198 281 183 133
STDEV 27 40 32 28
Maximum 276 367 260 211

Demand follows Poisson for each OD pair (18% & 16% reduction)

Average 231 314 205 167
STDEV 37 50 34 33
Maximum 309 428 290 244
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Conclusion

+ Online and robust repositioning in BSS:

+ A practically important and challenging problem.

+ A two-player Iiterative game approach to counter
unavailability of bikes (with unpredictable demand).

+ Employed a simulation build on real-world data set for
policy execution and performance validation.

+ Lost demand (average) is reduced by at least 18%.

+ Solution is robust to uncertainty in future demand.
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Redeployment planner

min ma‘XE : Lk 4—-“| Minimise worse case lost demand ]
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Simulation Model

+ Compute the flow of bikes by the customers

Demand| | Supply
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+ Compute distribution of bikes for next decision epoch

B = [~ Yt ] [ Y
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