

Improving Customer Satisfaction in Bike Sharing Systems through Dynamic Repositioning

Supriyo Ghosh1, Jing Koh Yu2, Patrick Jaillet3

1IBM Research, Singapore 2Singapore University of Technology and Design (SUTD) 3Massachusetts Institute of Technology (MIT)

Motivation: Bike Sharing Systems

§ **Bike Sharing Systems (BSS)**

- 1700 active systems all over the world
- § Attractive alternative to private vehicles
- Reduce traffic congestion, green house gas emission and air pollution
- **Problem:** Starvation or congestion of bikes at stations
	- Increase usage of private vehicle and carbon emission
- § **Goal:** Repositioning of bikes during the day to address availability issues

World view of bike sharing systems

Starvation/congestion in Capitalbikeshare

Background: Repositioning in Bike Sharing

- § Static repositioning (at the end of day)
	- § Raviv and Kolka (2013), Raidl et al. (2013)
- § Dynamic repositioning (myopic & offline)
	- § Schuijbroek et al. (2013), Shu et al. (2013)
- § Repositioning using incentives
	- § Singla et. al. (2015), Ghosh et al. (2017)
- Robust repositioning under demand uncertainty
	- § Ghosh et. al. (2016)
- § Our contribution:
	- Using satisficing approach to tackle the demand uncertainty

Uncertainty (higher variance) in demand

Satisficing Approach

- § Tractable satisficing approach [Jaillet et. al. 2016]
	- § Constraints are defined over uncertain variables.
	- § Maximize the probability of satisficing feasibility constraints.

- Taking satisficing approach to bike-sharing system
	- Support set for station s:

 $W_s = \{\zeta_s^1, ..., \zeta_s^n\} = \{1, 2, 3\}$

§ Realization probability:

 $\lambda_s^2 = P(\bar{z}_s \leq 2) = 3/4$

Objective:

$$
\max_{s} \sum_{s} \log(P(\bar{z}_s \in W_s))
$$

Optimization Model

- § Outputs: Repositioning & routing strategy
- Decision Variables:

 $\alpha_s^l \in \{0,1\}$: 1 if ζ_s^l is selected as demand bound

 y_s^+, y_s^- : Total number of biles picked up and dropped off from station s

 $z_{s,v}^r \in \{0,1\}$: Set to 1 if vehicle v is stationed at s at episode r

Problem Constraints

§ Feasibility constraints

$$
\sum_{l} \zeta_s^l \alpha_s^l \le d_s^{\#} + y_s^- - y_s^+ + \rho_s \quad \forall s
$$

$$
\sum_{l} \zeta_s^l = 1 \ ; \quad \sum_s \rho_s \le \rho
$$

- § Routing constraints:
	- § A vehicle can only be at one station at any episode.

Problem Constraints

§ Feasibility constraints

$$
\sum_{l} \zeta_s^l \alpha_s^l \le d_s^{\#} + y_s^- - y_s^+ + \rho_s \quad \forall s
$$

$$
\sum_{l} \zeta_s^l = 1 \ ; \quad \sum_s \rho_s \le \rho
$$

- Routing constraints:
	- § A vehicle can only be at one station at any episode.
	- Time spend in routing $&$ repositioning is bounded by duration of decision period.
- § Repositioning constraints
	- Flow preservation of bikes at vehicles.
	- § Reposition at a station is possible only if a vehicle is present there.

 $y_{s,v}^{+,r} + y_{s,v}^{-,r} \leq C_v^* \cdot z_{s,v}^r$

 $\forall s,v,r$

Experimental Setup

- § **Dataset:**
	- Hubway (95 stations, 3 carrier vehicles)
	- Trip history data for 3 months
	- Planning period: 6AM-12PM (each decision epoch is 30 minutes)
	- Training data: 20 days of demand scenarios
	- Testing data: 40 days of demand scenarios
- § **Evaluation Metrics:** Average and worst-case lost demand over all testing demand scenarios.
- § **Approaches:**
	- Static (Redeployment at the end of day)
	- Offline approach [Shu *et. al.,* (OR Journal, 2013)]
	- Online approach [Schuijbroek *et. al., (EJOR Journal,* 2017)]
	- Robust approach [Ghosh *et. al.,* (IJCAI, 2016)]
	- DrROBUST (our approach using satisficing)

Experimental Results

- A vehicle is allowed to visit a maximum of 3 stations $(R=3)$:
	- § Our Satisficing approach reduces the average lost demand by at least 15% over all the benchmarks.
	- The worst-case lost demand is reduced by at least 5%.

Experimental Results

- A vehicle is allowed to visit a maximum of 4 stations $(R=4)$:
	- § Our Satisficing approach reduces the average lost demand by at least 19% over all the benchmarks.
	- The worst-case lost demand is reduced by at least 9%.

Runtime performance

- DrROBUST is more computationally attractive than Robust approach for 3 episodes per decision epoch.
- § For 4 episodes per decision epoch, DrROBUST has highest runtime complexity, but runtime is always bounded by 15 minutes.

Concluding Remarks

§ **Robust repositioning in Bike Sharing Systems**

- A practically important and challenging problem.
- § A tractable satisficing approach is adopted to maximize the loglikelihood of meeting uncertain future demand.
- Solutions are validated on a simulator built on a real-world data set.
- Lost demand (average) is reduced by at least 15%.
- Solution is robust to uncertainty in future demand.

§ **Future Direction:**

- § How to adapt the solution approach to tackle the problem in the context of dockless bike sharing systems?
- § How to consider future demand for multiple time-steps to further reduce the lost demand?

Supplementary Slides

Simulation Model

§ Compute flows of customers between stations given the distribution of bikes

§ Compute distribution of bikes for next decision epoch

Routing Distance Comparison

- Robust approach reduces the average and worst-case lost demand by at least 18% and 17% over all the benchmarks.
- Satisficing approach further reduces the average and worst-case lost demand by 26% and 14% over the Robust approach.

