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Motivation: Bike Sharing Systems

= Bike Sharing Systems (BSS)
= 1700 active systems all over the world
= Attractive alternative to private vehicles

= Reduce traffic congestion, green house
gas emission and air pollution

= Problem: Starvation or congestion of
bikes at stations

= Increase usage of private vehicle and
carbon emission

= Goal: Repositioning of bikes during the
day to address availability issues

World view of bike sharing systems
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Background: Repositioning in Bike Sharing

= Static repositioning (at the end of day)
= Raviv and Kolka (2013), Raidl et al. (2013)
* Dynamic repositioning (myopic & offline)
= Schuijbroek et al. (2013), Shu et al. (2013)
= Repositioning using incentives
= Singla et. al. (2015), Ghosh et al. (2017)

= Robust repositioning under demand uncertainty
" Ghosh et. al. (2016)

=  Qur contribution:

Cummulative Demand

600

500

400 |-

300

200

100

Demand Structure in Weekdays

5 10 15 20 25 30 35 40 45
Time-Step(30 min)

Uncertainty (higher variance) in demand

» Using satisficing approach to tackle the demand uncertainty
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Satisficing Approach

= Tractable satisficing approach [Jaillet et. al.

2016]

= (Constraints are defined over uncertain variables.

= Maximize the probability of satisficing feasibility constraints.

max p(a)

Family of uncertainty set

/

s.t. A(z)x > b(z) Vz. € U (o

Uncertain parameter

AN

Uncertain variable

= Taking satisficing approach to bike-sharing system

= Support set for station s:

W ={Cs, - ¢} =1{1,2,3}
= Realization probability:

N =Pz, <2)=3/4
= Objective:

maleOg(P(Zs cWs))
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Optimization Model

Supriyo GHOSH

Input tuples:

PieZat)

C# C* d#o {0-0} P F'+ — |demand Scenarios

Stations

Vehicles

Station Vehicle | |[#bikes in| |#vehicles in| |Routing
Capacities| |Capacities| | stations stations Costs

Outputs: Repositioning & routing strategy

Decision Variables:

ol €{0,1} : 1if ¢! is selected as demand bound

vyl Yy

: Total number of biles picked up and dropped off from station s

2zt €40,1}: Set to 1 if vehicle v is stationed at s at episode r

Objective:

max ZZ@Q log(A%)
Yy s ‘\

Realization probability of /-th demand
/ entry 1n support set

Maximize log-likelithood of meeting
realized (uncertain) demand
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Problem Constraints

= Feasibility constraints

Y Clal <d¥ +y; —yf +ps Vs
[

Noee=l] ; Y ps<p

[

= Routing constraints:

= A vehicle can only be at one station at
any episode.




Problem Constraints

= Feasibility constraints

» ol <df +y; -yt +ps Vs
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" Routing constraints:
= A vehicle can only be at one station at
any episode.
* Time spend 1n routing & repositioning 1s
bounded by duration of decision period.
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= Repositioning constraints Total tiMe Spend (27 minutes) <=

Duration of decision period (30 minutes)

= Flow preservation of bikes at vehicles.
= Reposition at a station 1s possible only if a vehicle 1s present there.

y:;f g ol =zl Vs, v, r
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Experimental Setup

Dataset: HUbway ‘

= Hubway ( 95 stations, 3 carrier vehicles)

= Trip history data for 3 months

= Planning period: 6AM-12PM (each decision epoch is 30 minutes)

= Training data: 20 days of demand scenarios

= Testing data: 40 days of demand scenarios

Evaluation Metrics: Average and worst-case lost demand over all
testing demand scenarios.

Approaches:

= Static (Redeployment at the end of day)

= Offline approach [Shu et. al., (OR Journal, 2013)]

= Online approach [Schuijbroek et. al., (EJOR Journal, 2017)]

= Robust approach [Ghosh et. al., (IJCAI, 2016)]
= DrROBUST (our approach using satisficing)
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Experimental Results

= A vehicle is allowed to visit a maximum of 3 stations (R=3):
= QOur Satisficing approach reduces the average lost demand by at
least 15% over all the benchmarks.
= The worst-case lost demand is reduced by at least 5%.
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Experimental Results

= A vehicle is allowed to visit a maximum of 4 stations (R=4):
= QOur Satisficing approach reduces the average lost demand by at
least 19% over all the benchmarks.
= The worst-case lost demand is reduced by at least 9%.
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Runtime performance

DrROBUST is more computationally attractive than Robust approach
for 3 episodes per decision epoch.
For 4 episodes per decision epoch, DrROBUST has highest runtime
complexity, but runtime is always bounded by 15 minutes.
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Concluding Remarks

( Robust repositioning in Bike Sharing Systems \
= A practically important and challenging problem.

"= A tractable satisficing approach is adopted to maximize the log-
likelihood of meeting uncertain future demand.

= Solutions are validated on a simulator built on a real-world data set.

= Lost demand (average) is reduced by at least 15%.
K- Solution is robust to uncertainty in future demand. /

K Future Direction: N
* How to adapt the solution approach to tackle the problem in the

context of dockless bike sharing systems?

* How to consider future demand for multiple time-steps to further

\ reduce the lost demand? /
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Simulation Model

Compute flows of customers between stations given the distribution of bikes

= Compute ¢
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Routing Distance Comparison

= Robust approach reduces the average and worst-case lost demand by
at least 18% and 17% over all the benchmarks.

= Satisficing approach further reduces the average and worst-case lost
demand by 26% and 14% over the Robust approach.
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