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Motivation: Bike Sharing Systems

§ Bike Sharing Systems (BSS)
§ 1700 active systems all over the world

§ Attractive alternative to private vehicles 

§ Reduce traffic congestion, green house 
gas emission and air pollution

§ Problem: Starvation or congestion of 
bikes at stations 
§ Increase usage of private vehicle and 

carbon emission

§ Goal: Repositioning of bikes during the 
day to address availability issues

World view of bike sharing systems

DYNAMIC REPOSITIONING IN BIKE SHARING SYSTEM

to minimise the lost demand and our approach is to dynamically reposition bikes with the help of vehicles
while considering future expected demand extracted from past data. Since vehicles incur a significant cost
in executing a repositioning solution, we consider the trade-off between our original problem of minimising
lost demand (alternatively maximising profit) and the problem of minimising cost incurred by vehicles. We
refer to this joint problem as the Dynamic Repositioning and Routing Problem (DRRP).

Minor variations of DRRP can be used to represent repositioning empty cars in car sharing systems
[ex: Car2go, Zipcar] (Kek, Cheu, Meng, & Fung, 2009; Barth, Todd, & Xue, 2004), empty vehicles in
Personal Rapid Transit [PRT] (Lees-Miller, Hammersley, & Wilson, 2010) and idle ambulances in emergency
response (Yue, Marla, & Krishnan, 2012; Saisubramanian, Varakantham, & Chuin, 2015). For instance, in
the case of car sharing, there may be a need to continuously reposition cars to different parking spaces during
the day in tune with the pattern of demands.

Given the benefits of bike sharing systems and the challenges of setting up such systems to operate
efficiently, there have been a wide spectrum of research papers addressing the problem of lost demand and
other issues pertinent to it. We have referred to these papers in the related work section. Some of the key
differences from existing research are as follows: (1) We generate routing and repositioning decisions for
multiple time steps for an entire day using expected demand for bikes at each base station and at each time
step; and (2) We provide novel approaches that employ aggregation of base stations and decomposability in
DRRP optimisation model to minimise lost demand for large-scale BSSs.
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Figure 2: Number of empty and full instances of stations in Capital Bikeshare Company

Due to a trivial reduction from existing Static Bicycle Repositioning Problem (SBRP) which is NP-
Hard (Schuijbroek et al., 2013), DRRP is at least NP-Hard. Therefore, we focus on developing principled
approximation methods. Our key contributions are as follows:
(1) A mixed integer linear program (MILP) formulation to maximise profit for the bike sharing company that
considers the trade off between:

• maximising served demand and

• minimising cost incurred by vehicles

(2) A dual decomposition mechanism to decompose the MILP into two components – one which computes
repositioning solution for bikes and one that computes routing solutions for vehicles.
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Starvation/congestion in Capitalbikeshare
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Background: Repositioning in Bike Sharing
§ Static repositioning (at the end of day)

§ Raviv and Kolka (2013), Raidl et al. (2013)
§ Dynamic repositioning (myopic & offline)

§ Schuijbroek et al. (2013), Shu et al. (2013)

§ Repositioning using incentives
§ Singla et. al. (2015), Ghosh et al. (2017)

§ Robust repositioning under demand uncertainty
§ Ghosh et. al. (2016)

§ Our contribution: 
§ Using satisficing approach to tackle the demand uncertainty

Uncertainty (higher variance) in demand
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Satisficing Approach
§ Tractable satisficing approach [Jaillet et. al. 2016]

§ Constraints are defined over uncertain variables.
§ Maximize the probability of satisficing feasibility constraints.

§ Taking satisficing approach to bike-sharing system
§ Support set for station s:

§ Realization probability: 

§ Objective: 

Uncertain parameter

Family of uncertainty set

Uncertain variable

Day 1 Day 2 Day 3 Day 4
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Optimization Model
§ Input tuples:

§ Outputs: Repositioning & routing strategy 

§ Decision Variables:

§ Objective:

Stations Vehicles Station
Capacities

Vehicle
Capacities

#bikes in
stations

#vehicles in
stations

demand Scenarios

Routing
Costs

Realization probability of l-th demand 
entry in support set 

Maximize log-likelihood of meeting 
realized (uncertain) demand 
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Problem Constraints

§ Routing constraints:
§ A vehicle can only be at one station at 

any episode.

§ Feasibility constraints

t=1

t=2

t=1
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§ Repositioning constraints
§ Flow preservation of bikes at vehicles.
§ Reposition at a station is possible only if a vehicle is present there.

Problem Constraints

§ Routing constraints:
§ A vehicle can only be at one station at 

any episode.
§ Time spend in routing & repositioning is 

bounded by duration of decision period.

§ Feasibility constraints

S1

S2

S3

r=0

r=1

r=2

10 min

12 min

2 min

2 min

1 min

Total time spend (27 minutes) <=
Duration of decision period (30 minutes)

t=2

t=1
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Experimental Setup
§ Dataset:

§ Hubway ( 95 stations, 3 carrier vehicles)
§ Trip history data for 3 months
§ Planning period: 6AM-12PM (each decision epoch is 30 minutes)
§ Training data: 20 days of demand scenarios
§ Testing data: 40 days of demand scenarios

§ Evaluation Metrics: Average and worst-case lost demand over all
testing demand scenarios.

§ Approaches:
§ Static (Redeployment at the end of day) 
§ Offline approach [Shu et. al., (OR Journal, 2013)]
§ Online approach [Schuijbroek et. al., (EJOR Journal, 2017)]
§ Robust approach [Ghosh et. al., (IJCAI, 2016)]
§ DrROBUST (our approach using satisficing)
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Experimental Results
§ A vehicle is allowed to visit a maximum of 3 stations (R=3):

§ Our Satisficing approach reduces the average lost demand by at
least 15% over all the benchmarks.

§ The worst-case lost demand is reduced by at least 5%.
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Experimental Results
§ A vehicle is allowed to visit a maximum of 4 stations (R=4):

§ Our Satisficing approach reduces the average lost demand by at
least 19% over all the benchmarks.

§ The worst-case lost demand is reduced by at least 9%.
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Runtime performance
§ DrROBUST is more computationally attractive than Robust approach

for 3 episodes per decision epoch.
§ For 4 episodes per decision epoch, DrROBUST has highest runtime

complexity, but runtime is always bounded by 15 minutes.
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Concluding Remarks
§ Robust repositioning in Bike Sharing Systems

§ A practically important and challenging problem.
§ A tractable satisficing approach is adopted to maximize the log-

likelihood of meeting uncertain future demand.
§ Solutions are validated on a simulator built on a real-world data set.
§ Lost demand (average) is reduced by at least 15%.
§ Solution is robust to uncertainty in future demand.

§ Future Direction:
§ How to adapt the solution approach to tackle the problem in the

context of dockless bike sharing systems?
§ How to consider future demand for multiple time-steps to further

reduce the lost demand?
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Supplementary Slides
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Simulation Model
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Net drop-off bikes by carrier vehicles
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§ Compute distribution of bikes for next decision epoch

§ Compute flows of customers between stations given the distribution of bikes
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Routing Distance Comparison
§ Robust approach reduces the average and worst-case lost demand by

at least 18% and 17% over all the benchmarks.
§ Satisficing approach further reduces the average and worst-case lost

demand by 26% and 14% over the Robust approach.


