

Improving Customer Satisfaction in Bike Sharing Systems through Dynamic Repositioning

Supriyo Ghosh¹, Jing Koh Yu², Patrick Jaillet³

¹IBM Research, Singapore ²Singapore University of Technology and Design (SUTD) ³Massachusetts Institute of Technology (MIT)

Motivation: Bike Sharing Systems

Bike Sharing Systems (BSS)

- 1700 active systems all over the world
- Attractive alternative to private vehicles
- Reduce traffic congestion, green house gas emission and air pollution
- Problem: Starvation or congestion of bikes at stations
 - Increase usage of private vehicle and carbon emission
- Goal: Repositioning of bikes during the day to address availability issues

Starvation/congestion in Capitalbikeshare

Supriyo GHOSH

Background: Repositioning in Bike Sharing

- Static repositioning (at the end of day)
 - Raviv and Kolka (2013), Raidl et al. (2013)
- Dynamic repositioning (myopic & offline)
 - Schuijbroek et al. (2013), Shu et al. (2013)
- Repositioning using incentives
 - Singla et. al. (2015), Ghosh et al. (2017)
- Robust repositioning under demand uncertainty
 - Ghosh et. al. (2016)
- Our contribution:
 - Using satisficing approach to tackle the demand uncertainty

Uncertainty (higher variance) in demand

3

Satisficing Approach

- Tractable satisficing approach [Jaillet et. al. 2016]
 - Constraints are defined over uncertain variables.
 - Maximize the probability of satisficing feasibility constraints.

$$\begin{array}{ll} \max \ \rho(\boldsymbol{\alpha}) & \text{Family of uncertainty set} \\ \text{s.t. } \boldsymbol{A}(\boldsymbol{z})\boldsymbol{x} \geq \boldsymbol{b}(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{U}(\boldsymbol{\alpha}) & \text{Uncertain parameter} \\ & \text{Uncertain variable} \end{array}$$

- Taking satisficing approach to bike-sharing system
 - Support set for station s:

 $W_s = \{\zeta_s^1, \dots, \zeta_s^n\} = \{1, 2, 3\}$

Realization probability:

 $\lambda_s^2 = P(\bar{z}_s \le 2) = 3/4$

• Objective:

$$\max\sum_{s} \log(P(\bar{z}_s \in W_s))$$

Optimization Model

- Outputs: Repositioning & routing strategy
- Decision Variables:

 $\alpha_s^l \in \{0,1\}: 1$ if ζ_s^l is selected as demand bound

 $y_s^+, y_s^-: \mathrm{Total}$ number of biles picked up and dropped off from station s

 $z_{s,v}^r \in \{0,1\}$: Set to 1 if vehicle v is stationed at s at episode r

Problem Constraints

Feasibility constraints

$$\sum_{l} \zeta_{s}^{l} \alpha_{s}^{l} \leq d_{s}^{\#} + y_{s}^{-} - y_{s}^{+} + \rho_{s} \quad \forall s$$
$$\sum_{l} \zeta_{s}^{l} = 1 \quad ; \quad \sum_{s} \rho_{s} \leq \rho$$

- Routing constraints:
 - A vehicle can only be at one station at any episode.

Problem Constraints

Feasibility constraints

$$\sum_{l} \zeta_{s}^{l} \alpha_{s}^{l} \leq d_{s}^{\#} + y_{s}^{-} - y_{s}^{+} + \rho_{s} \quad \forall s$$
$$\sum_{l} \zeta_{s}^{l} = 1 \quad ; \quad \sum_{s} \rho_{s} \leq \rho$$

- Routing constraints:
 - A vehicle can only be at one station at any episode.
 - Time spend in routing & repositioning is bounded by duration of decision period.
- Repositioning constraints
 - Flow preservation of bikes at vehicles.
 - Reposition at a station is possible only if a vehicle is present there.

 $y_{s,v}^{+,r} + y_{s,v}^{-,r} \le C_v^* \cdot z_{s,v}^r$

 $\forall s, v, r$

Experimental Setup

- Dataset:
 - Hubway (95 stations, 3 carrier vehicles)
 - Trip history data for 3 months
 - Planning period: 6AM-12PM (each decision epoch is 30 minutes)
 - Training data: 20 days of demand scenarios
 - Testing data: 40 days of demand scenarios
- Evaluation Metrics: Average and worst-case lost demand over all testing demand scenarios.
- Approaches:
 - Static (Redeployment at the end of day)
 - Offline approach [Shu et. al., (OR Journal, 2013)]
 - Online approach [Schuijbroek et. al., (EJOR Journal, 2017)]
 - Robust approach [Ghosh et. al., (IJCAI, 2016)]
 - DrROBUST (our approach using satisficing)

Experimental Results

- A vehicle is allowed to visit a maximum of 3 stations (R=3):
 - Our Satisficing approach reduces the average lost demand by at least 15% over all the benchmarks.
 - The worst-case lost demand is reduced by at least 5%.

Experimental Results

- A vehicle is allowed to visit a maximum of 4 stations (R=4):
 - Our Satisficing approach reduces the average lost demand by at least 19% over all the benchmarks.
 - The worst-case lost demand is reduced by at least 9%.

Runtime performance

- DrROBUST is more computationally attractive than Robust approach for 3 episodes per decision epoch.
- For 4 episodes per decision epoch, DrROBUST has highest runtime complexity, but runtime is always bounded by 15 minutes.

IJCAI 2019

11

Concluding Remarks

Robust repositioning in Bike Sharing Systems

- A practically important and challenging problem.
- A tractable satisficing approach is adopted to maximize the loglikelihood of meeting uncertain future demand.
- Solutions are validated on a simulator built on a real-world data set.
- Lost demand (average) is reduced by at least 15%.
- Solution is robust to uncertainty in future demand.

Future Direction:

- How to adapt the solution approach to tackle the problem in the context of dockless bike sharing systems?
- How to consider future demand for multiple time-steps to further reduce the lost demand?

Supplementary Slides

Simulation Model

• Compute flows of customers between stations given the distribution of bikes

Compute distribution of bikes for next decision epoch

Routing Distance Comparison

- Robust approach reduces the average and worst-case lost demand by at least 18% and 17% over all the benchmarks.
- Satisficing approach further reduces the average and worst-case lost demand by 26% and 14% over the Robust approach.

