
ON ADDRESSING PRACTICAL CHALLENGES FOR RNN-TRANSDUCER

Rui Zhao, Jian Xue, Jinyu Li, Wenning Wei, Lei He, Yifan Gong

Microsoft Speech and Language Group

ABSTRACT

In this paper, several works are proposed to address practi-
cal challenges for deploying RNN Transducer (RNN-T) based
speech recognition systems. These challenges are adapting
a well-trained RNN-T model to a new domain without col-
lecting the audio data, obtaining time stamps and confidence
scores at word level. We solve the first challenge with a splic-
ing data method which concatenates the speech segments ex-
tracted from the source domain data. To get time stamps, a
phone prediction branch is added to the RNN-T model by
sharing the encoder for the purpose of forced alignment. Fi-
nally, we obtain word level confidence scores by utilizing sev-
eral types of features calculated during decoding and from
a confusion network. Evaluated with Microsoft production
data, the splicing data adaptation method improves the base-
line and adaptation with the text to speech method by 58.03%
and 15.25% relative word error rate reduction, respectively.
The proposed time stamping method can get less than 50 mil-
lisecond word timing difference from the ground truth align-
ment on average while maintaining the recognition accuracy.
We also obtain high confidence annotation performance with
limited computation cost.

Index Terms— end-to-end, adaptation, word timing,
RNN-T, confidence annotation

1. INTRODUCTION

Recently, all-neural end-to-end (E2E) models [1, 2, 3, 4, 5]
have become the trend in automatic speech recognition (ASR)
due to its simple training and decoding processes, as well
as the similar or even better accuracy compared with tradi-
tional hybrid speech recognition systems [6, 7, 8]. Com-
monly used E2E ASR models include Connectionist Tem-
poral Classification (CTC) model [1, 9, 10], Attention-based
Encoder-Decoder (AED) model [3], and transducer models
such as recurrent neural network transducer (RNN-T) [2] and
transformer-transducer (T-T) [11]. The industry has more in-
terest in transducer models including RNN-T and T-T because
these models can be streaming in a natural way [5, 11, 12, 13,
14, 15, 16, 17]. However, there are lots of practical challenges
that need to be addressed in order to deploy all these models.
In this paper, we will address some of them by using RNN-T
as a backbone model. All solutions can be applied to other

transducer models such as T-T.
The first challenge is to adapt a RNN-T model to a new

domain without collecting the speech data of the new do-
main. Because there is no separate language model in RNN-
T, we couldn’t easily adapt it with text only data as what
we do for a hybrid ASR system. Instead, we need to col-
lect paired speech-text data of the new domain which contains
enough speaker and environment variation to adapt the RNN-
T model. Such collection usually costs a lot time and money,
which forbids fast model adaption [18]. Therefore, how to get
a large amount of paired speech-text data with a small cost is
a practical problem for the domain adaptation of RNN-T.

Some methods have been proposed to solve this problem.
The most popular method is to synthesize speech from the
new domain texts using the text to speech (TTS) technology
[8, 19, 20, 21, 22]. For example, [8] uses a multi-speaker neu-
ral TTS system to generate speech data using the text-only
data of the new domain to adapt the RNN-T model. [20] im-
proves a general ASR model’s performance on the numeric
data domain with TTS generated numeric speech data. [22]
improves OOV detection by adding missing syllable sounds
using a cross-lingual TTS system. Although no real speech
data needs to be collected, the TTS-based method has its lim-
itations: 1) the speaker variation in TTS generated data is
limited compared with the real production data used for ASR
model training, 2) The cost of training a multi-speaker neural
TTS model and the generation of synthesized speech is large.
There are also other methods proposed for the domain adap-
tation of E2E models [23, 24]. However, the speech data for
the new domain is still needed in these methods.

Some applications also require that RNN-T can provide
functions such as time stamps and confidence measure at
word level. Getting word timings with RNN-T is challenging
because it’s not designed for this: no time alignment infor-
mation is used during training, therefore it cannot generate
reliable word start and end time for every recognized word.
To solve this problem, [25] applies time constraints during
training to improve the word timing accuracy. It uses an
extra token “word boundary” to mark the word start time
and the last word piece of the word to mark the word end
time. This method increases the training cost because adding
“word boundary” for each word increases the training target
label length. Applying time constraints to RNN-T models
also causes significant accuracy degradation [25]. Another



method “FastEmit” proposed in [26] reduces the latency of
RNN-T by encouraging predicting labels instead of blank
during training. This could help to get accurate word end-
ing time. However, this may bring accuracy loss because it
blindly promotes the prediction of labels at all the time-label
positions. Confidence annotation is also a challenging task
for RNN-T models. Most applications require word level or
utterance level confidence scores, while output units of RNN-
T models are usually subword units such as word pieces. In
[27, 28], word level confidence scores are obtained through
aggregating confidence scores of constituent word pieces
and directly modeling last word piece using an end-of-word
mask. Although these methods can effectively obtain word
level confidence scores, the rich information included in all
the word pieces instead of the last one for each word is lost to
some extent.

In this paper, we detail our solutions to these practical
challenges. To adapt RNN-T without collecting new speech
data, a novel splicing data generation method is proposed
by concatenating the sampled speech segments correspond-
ing to underlying words of target texts into new utterances.
The sampled speech segments are extracted from the existing
training data randomly. It has the following advantages com-
pared with TTS-based speech generation method : 1) the cost
is almost zero since it is only based on the existing speech
data, without the need of training any extra model and the
cost-consuming TTS speech generation, 2) the constructed
data could cover more speaker and acoustic environment vari-
ation, which makes the model more robust. The proposed
method is evaluated by adapting a general RNN-T model to
a new domain, achieving 15.25% relative word error rate re-
duction over the model adapted with TTS generated data.

To provide reliable word timings for RNN-T, we propose
adding a context independent (CI) phone prediction branch
on top of the encoder of the RNN-T model. The word tim-
ings are calculated by aligning the recognition results from
the RNN-T model using the phone probability of each frame
from the CI phone prediction model in the second pass. Since
the CI phone prediction model shares the encoder with RNN-
T model, the cost of phone level alignment is very cheap. The
experiments proved that the proposed method could get less
than 50 millisecond (ms) word timing difference on average
compared with the ground truth while maintaining the recog-
nition accuracy of the RNN-T model.

To provide high quality word level confidence scores for
RNN-T models, we first obtain confidence features at word
piece level directly from decoding, then aggregate them to
word level features. Compared to aggregating confidence
scores [27, 28], aggregating features could retain much richer
information, thus has the potential to make the final word
level confidence scores more reliable. We also generate extra
features from confusion network constructed with the N-best
list [29, 30], which provide complimentary information from
other hypotheses. With all the confidence features, we train a

Fig. 1. RNN-T model structure.

two-layer feed forward neural network to classify each recog-
nized word as “correct” or “incorrect”. Experimental results
showed that such a method could achieve high confidence
annotation performance with limited computation cost.

2. RNN-T

A RNN-T model [2] consists of encoder, prediction, and joint
networks as shown in Figure 1. The encoder network is anal-
ogous to the acoustic model in hybrid models, which converts
the acoustic feature xt into a high-level representation henct ,
where t is the time index. The prediction network works like a
RNN language model, which produces a high-level represen-
tation hpreu by conditioning on the previous non-blank target
yu−1 predicted by the RNN-T model, where u is output label
index. The joint network combines the encoder network out-
put henct and the prediction network output hpreu with a feed
forward network as

zt,u = f joint(henct , hpreu ). (1)

Then zt,u is connected to the output layer with a linear
transform

ht,u = Wyzt,u + by. (2)

The final posterior for each output token k is obtained after
applying the softmax operation

P (k|t, u) = softmax(ht,u)k. (3)

The loss function of RNN-T is the negative log posterior
of output label sequence y given the input acoustic feature x,

Lrnnt = −lnP (y|x). (4)

3. SPLICING DATA GENERATION FOR DOMAIN
ADAPTATION

Domain adaptation is to adapt the well-trained source domain
model to a target domain [18] which usually has mismatched



content from the source domain. Given the model was trained
with a large amount of data, every word in the target domain
usually has been observed while the word sequence is very
different between the source and target domain.

When there is no budget for collecting and labeling speech
data in the new domain, we could use TTS to synthesize
speech for given text as in [8]. However, the speaker vari-
ation of the TTS generated audio is limited even with the
state-of-the-art multi-speaker neural TTS model [31] when
compared with that in the training data for ASR models of
real productions. Besides, the cost of training a multi-speaker
neural TTS model and generating TTS speech with it is high
due to two reasons: 1) It needs the real speech and the tran-
scription corresponding to it from multi speakers to train the
model. 2) TTS model training and speech data generation
require high performance computational resources, such as
GPU.

In this paper, we propose a new method to generate speech
data based on the existing ASR model training data. The pro-
posed splicing data method generates new utterances by con-
catenating the audio segments of specific speech units (e.g.,
words) extracted from the existing training data. If there are
multiple segments in the training data for the same word, we
just randomly pick one segment. Figure 2 shows the imple-
mentation of the proposed methods. The new audio for the
given text “Cortana open door” is generated by concatenating
the audio segments of words “Cortana”, “open” and “door”.
These audio segments are extracted randomly from the exist-
ing training utterances. In this way, we can generate audio for
almost any texts. If there is an out of vocabulary (OOV) word
in the new domain, speech units corresponding to phones are
used to construct speech for this OOV word. It should be
noted that there is no restriction when selecting audio seg-
ments, i.e., it is not required that the selected audio segments
for one utterance should be from the same speaker, acoustic
environment or corpus. They are all selected randomly.

The proposed method has clear advantages over the TTS-
based audio generation method. Firstly, the cost is almost
zero since it doesn’t need any extra model or data. Secondly,
the speech data generated with the proposed method is “real”
speech at each segment, hence it has the potential to cover all
the speakers and acoustic environments in the existing train-
ing data. Therefore the speaker and acoustic variation in such
data is much higher than that in the TTS-generated speech
data. The model trained with the data generated by the pro-
posed method should be more robust than that trained with
TTS data.

A possible argument is that the generated audio in this
way is not continuous at the transitions between words. As we
know, one important feature of E2E models is that they make
recognition decision after processing a segment of speech in-
stead of frame by frame. For example, a RNN-T model will
output “blank” if it isn’t confident about what content the
speech until now should be. Hence this dis-fluency at the

Fig. 2. Spliced data generation.

transitions between words won’t affect the RNN-T model too
much. Besides, as shown in [19], when adapting a RNN-T
model with TTS generated data, the lower layers of the en-
coder should be fixed and the natural speech data should be
mixed to combat the over-fitting to TTS data. The same trick
is also used in the proposed method to reduce the side effects
of the spliced data in the experiments in section 6.1 and it is
proved to be effective by the results.

4. WORD TIMING WITH PHONE PREDICTION

To get accurate word timings of the recognition results with
RNN-T model is challenging. Firstly, for a RNN-T model
with word piece as the output token, it’s difficult to get both
the word start and end time. For example, when a frequent
word is toknenized into only one word piece, only the word
start or end time could be estimated. Secondly, RNN-T model
training is not guided by the ground truth alignment. Instead,
all possible alignments are considered during the alignment,
and the streaming model tends to delay its output to get bet-
ter accuracy. To solve the above issues and get more accurate
word timings, the authors in [25] add a “word boundary” to-
ken to get the word start time and use last word piece for word
end time. Besides, the ground truth alignment is used to con-
straint the training. Although this method could help RNN-T
model output better word timings, it results in recognition ac-
curacy degradation due to the time constraint training.

We propose getting accurate word timings while main-
taining the RNN-T model recognition accuracy by adding a
CI phone prediction branch on top of the encoder. The CI
phone prediction branch is used to obtain word timings with
traditional forced alignment method, instead of forcing RNN-
T to do the work which is not designed for. Specifically, the
word sequence output from RNN-T model is aligned with
time based on the CI phone probability output in the second
pass. The CI phone prediction model is trained with ground
truth alignment using the frame wise cross entropy (CE) cri-
terion. Therefore, the time alignment based on such model is
much more accurate than that obtained by a RNN-T model.

The model structure of the proposed method is shown in
Figure 3. To save the computational cost, the CI phone pre-
diction model shares the encoder with the RNN-T model. In
order to maintain a good recognition accuracy, it is better to



Fig. 3. Word timing model structure

not apply any time constraint to the RNN-T model during
training. In contrast, the CI phone prediction model should
be trained with ground truth alignment. If the whole encoder
network is shared between these two models, they may have
negative impacts on each other. Therefore, the CI phone pre-
diction model shares only the lower layers of the encoder net-
work of RNN-T model.

The CI phone prediction and RNN-T models could be
trained jointly with the multitask learning (MTL) method
from scratch. In this case, the total loss is represented as
follows by combining both RNN-T loss in Eq. 4 and CE loss.

LMTL = αLce + (1− α)Lrnnt. (5)

Where α is the MTL weight.
If we already have a well trained RNN-T model, we could

also directly add the CI phone prediction branch and train it
by fixing the encoder part. This ensures the RNN-T model
won’t be affected and saves training time.

Because the CI phone prediction model shares the encoder
with RNN-T model and the phone level alignment is fast, the
total cost of the second pass alignment is quite small.

5. CONFIDENCE ANNOTATION

We calculate word confidence scores using a binary classifier
trained with features obtained from decoding and confusion
network. The features calculated directly from decoding are
at word piece level, and then we aggregate them to word level.

5.1. Feature generation during decoding

We generate three features on word pieces during decoding:

• wp-prob: Log posterior probability of the word piece.

• hyp-prob: Log posterior probability of the partial hy-
pothesis ended with the current word piece.

• neg-entropy: Negative entropy calculated over all the
nodes on the output layer when output the word piece,
which is

∑
i pi log(pi).

Then we aggregate word piece level features into five word
level features:

• avg-hyp-prob: Log posterior probability of the partial
hypothesis, averaged by the number of tokens, includ-
ing word pieces and “blank” token.

• min-wp-prob: Minimum of the log posterior probabili-
ties for all word pieces in the word.

• avg-wp-prob: Average of the log posterior probabilities
for all word pieces in the word.

• min-neg-entropy: Minimum of the negative entropy for
all word pieces in the word.

• avg-neg-entropy: Average of the negative entropy for
all word pieces in the word.

5.2. Feature generation from confusion network

We construct a word level confusion network with the N-best
list generated from decoding. We use two different scores for
each hypothesis in the N-best list, one is the posterior proba-
bility of the hypothesis, and another one is the length normal-
ized posterior probability. Hence we obtain two confusion
networks, and use the word posterior probabilities in each
confusion network as the extra confidence features, noted as
cn-prob and cn-norm-prob.

With the 7 word level features described above, we train a
2-layer feed forward neural network to classify each word into
two classes (correct and incorrect). The classifier is trained
to minimize the binary entropy between the estimated confi-
dence score p and target class c, where c is 1 if the word is
correct, or 0 if the word is an insertion or substitution error.

L(c, p) =
∑
i

(ci log(pi) + (1− ci) log(1− pi)). (6)

6. EXPERIMENTS

The baseline RNN-T model was trained with 65 thousand (K)
hours transcribed Microsoft data.All the data are anonymized
with personally identifiable information removed. The en-
coder network of the RNN-T model consists of 6 LSTM lay-
ers, with 768 nodes per layer. The prediction network con-
sists of 2 LSTM layers, with 768 nodes per layer. The joint
network is a single feed forward layer with 640 nodes. Sin-
gular value decomposition (SVD) [32] compression method
is applied to further reduce the model size. The feature is 80-
dimension log Mel filter bank for every 10 milliseconds (ms)
speech. Three of them are stacked together to form a frame of
240-dimension input acoustic feature to the encoder network.
The output targets are 4000 word piece units.



Table 1. WER for RNN-T models on a new domain
RNN-T models WER(%)
baseline 9.27
adapted with TTS data 4.59
adapted with spliced data 3.89

6.1. Domain adaptation

In this experiment, the baseline RNN-T model is adapted to a
new command and control domain.The testing data contains
about 800 utterances collected in the real application environ-
ment with personally identifiable information removed. To
adapt the RNN-T model into the new domain, first, the texts of
the new domain are obtained by randomly parsing the gram-
mar in the new domain and also using the crowd sourcing
method, with about 200 thousand(K) sentences in total. Then,
the speech of these texts are generated with either TTS or the
proposed splicing data method.

The multi speaker neural TTS model used to generate
adaptation speech data is the best TTS model we have. It
was trained by following the approach in [31]. Firstly, a multi
speaker neural TTS model is built with in-house TTS cor-
pus, then it is fine-tuned by adding LibriSpeech [34] data with
thousands of speakers onboard. To evaluate the speech qual-
ity generated with this model, 10 speakers in LibriSpeech cor-
pus are randomly selected, and 60 TTS samples are generated
for each speaker. The subjective listening test (Mean Opinion
Score, MOS) is carried out with crowd-sourcing judges. The
results show the neural TTS quality is close to human record-
ing of corresponding speakers. For the adaptation speech data
generation, about 1000 speakers are selected, and for each
speaker, 2.5K utterances are generated based on the texts ran-
domly chosen from those 200K sentences. Then, the TTS
speech data is doubled by adding simulated data, which is ob-
tained by adding different noises and room impulse responses
(RIR) to the original data to improve the robustness. In total,
we got 5 million(M) utterances of TTS speech data for the
new domain.

In the splicing data method, for each text sentence, the
audio segment for each word (or phone) in the text sentence is
randomly extracted from the 65k hours general data. Similar
to TTS data, a total of about 5M utterances are generated.

When updating the baseline RNN-T model with the TTS
or spliced data, we use two methods to prevent model from
over fitting to the TTS or spliced data: 1) The lower 4 lay-
ers of the encoder network are frozen. 2) Similar amount of
(about 5M utterances) normal speech data are randomly se-
lected from the 65k hours data and mixed with the TTS or
spliced data.

Table 1 shows the word error rate (WER) of the baseline
RNN-T model, as well as the RNN-T models adapted with
the TTS and spliced data. Adapting with spliced data gets
58.03% and 15.25% relative word error rate reduction over

the baseline and the one adapted with TTS data, respectively.

6.2. Word timing

In this experiment, the recognition accuracy evaluation set is
a general test set which covers 13 application scenarios such
as Cortana and far-field speech, containing a total of 1.8M
words. The personally identifiable information is also re-
moved for the testing data. 3500 utterances are randomly
selected from the above 1.8M word set to evaluate the word
timing accuracy. The reference word boundary is obtained by
the forced alignment with a traditional hybrid model.

As in [25], we measure the accuracy of word timings with
below 4 metrics:

• Average start time delta (Ave. ST ∆): the average start
time difference between the ground truth word start
time and the estimated word start time.

• Average end time delta (Ave. ET ∆): the average end
time difference between the ground truth word end time
and the estimated word end time.

• Percentage of word start time less than 200ms (% WS
< 200ms): the percentage of word start time difference
that is less than 200ms.

• Percentage of word end time less than 200ms (% WE
< 200ms): the percentage of word end time difference
that is less than 200ms.

Table 2 gives the WER and word timing accuracy for dif-
ferent methods. For the baseline model, the word end time is
the emitting time of last word piece in this word. No word
start time is estimated as explained in Section 4. For the pro-
posed methods, we examined the performance of two differ-
ent training recipes: one is adding CI phone prediction model
to a well trained RNN-T model and only updating the CI
phone model by fixing the shared encoder part. Another is
training RNN-T and CI phone models with the MTL method
from scratch. In this recipe, α is set to 0.1. We also build a
RNN-T model based on the time constraint method in [25].

From the results, we can see all models trained with the
proposed methods get smaller average word start/end time
delta than the model trained with the time constraint method
in [25]. The WER of RNN-T models trained with our pro-
posed methods is not increased compared to the baseline
RNN-T model, while the RNN-T model trained with time
constraint method [25] has a higher WER. MTL Training
from scratch gives a little lower WER than training only the
CI phone prediction branch with CE. These two different
training recipes could get similar word boundary accuracy.

We also compared the performance of sharing different
number of encoder network layers: lower 4 layers or full en-
coder (6 layers). Sharing lower 4 layers yields much better
word boundary accuracy than sharing the full encoder: the



Table 2. WER and word timing accuracy for different methods with RNN-T model
RNN-T Baseline RNN-T + CE RNN-T + CE RNN-T+CE RNN-T + CE RNN-T with

update CE only update CE only MTL MTL time constraint
Shared encoder layers - lower 4 full lower 4 full -
WER(%) 12.02 12.02 12.02 11.89 11.93 12.84
Ave. ST ∆ - 45ms 89ms 46ms 86ms 120ms
Ave. ET ∆ 202ms 42ms 85ms 44ms 82ms 97ms
% WS < 200ms - 97.86 94.42 97.69 94.19 98.63
% WE < 200ms 49.88 97.80 94.28 97.75 94.39 98.62

Table 3. Confidence annotation results using each single fea-
ture and classifier

AUPR-incorrect AUPR-correct
avg-hyp-prob 14.56 94.60
min-wp-prob 25.70 96.68
avg-wp-prob 21.71 96.45
min-neg-entropy 38.58 97.35
avg-neg-entropy 33.68 96.91
cn-prob 35.99 96.40
cn-norm-prob 31.27 96.36
classifier 45.86 98.69
hybrid model [33] 23.86 97.28

average word timing difference is decreased from more than
80ms to less than 50ms.

The average decoding time is increased by about 1% with
the second pass alignment for word timings.

6.3. Confidence annotation

We conducted confidence experiments on the general test set
described in section 6.2. We use the area under precision-
recall curve (AUPR) as the evaluation metric. We calculate
AUPR for both correctly and incorrectly recognized words.
The larger AUPR is, the better the confidence classifier per-
forms. Table 3 summarizes the performance. From the results
we can see the min-neg-entropy feature gives the best perfor-
mance among all features. We further improve the perfor-
mance by using the classifier to combine all features together.
In the last row, we also listed the confidence performance ob-
tained with the method in [35] of the hybrid model [33] as a
reference.

We evaluated the computation cost caused by the confi-
dence annotation function during online decoding. For each
utterance in the test set, we calculated the percentage of in-
creased computation time after adding confidence annotation,
compared to decoding the utterance without generating con-
fidence features and score. The average percentage of in-
creased computation time is 2.9% for the whole test.

7. CONCLUSIONS

In this paper, three challenges for deploying RNN-T models
to real applications have been addressed. To adapt a well-
trained RNN-T model to a new domain without collecting
new speech data, for all the words in the text sentences of the
new domain, we randomly extracted the corresponding audio
segments from the source training data, and then concatenated
them to form new speech utterances. Experimental result
showed the model adapted with such data obtained 58.03%
and 15.25% relative WER reduction over the baseline model
and the model adapted with TTS generated data, respectively.
To get accurate word timings of the recognition results, we
added a context independent phone prediction branch by shar-
ing the lower layers of the RNN-T encoder network to per-
form forced alignment based on the phone probability of the
phone prediction model. Experimental results showed that we
could get less than 50ms average word boundary differences
compared with the ground truth alignment without degrading
the recognition accuracy of the RNN-T model. With the en-
coder sharing, the additional cost of the alignment is about
1%. To obtain reliable word level confidence scores for the
RNN-T model with word piece units, we designed 7 word
level confidence features and a binary classifier. Experimental
results showed the effectiveness of all the features and the bi-
nary classifier can further boost performance. The additional
computational cost increase of confidence measure function
is about 2.9%.

8. ACKNOWLEDGEMENT

We thank Kshitiz Kumar at Microsoft for providing the confi-
dence measure evaluation of the hybrid model. We also thank
Yuhui Wang and Min Hu at Microsoft for the runtime support
of the time alignment and confidence measure of the RNN-T
model.



9. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and
Jurgen Schmidhuber, “Connectionist temporal classifi-
cation: Labelling unsegmented sequence data with re-
current neural networks,” in ICML, 2006, pp. 369–376.

[2] Alex Graves, “Sequence transduction with recurrent
neural networks,” in International Conference on Ma-
chine Learning: Representation Learning Workshop,
2012.

[3] William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals, “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition,” in
Proc. ICASSP, 2016, pp. 4960–4964.

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in neural information processing systems, 2017.

[5] Yanzhang He, Tara N Sainath, Rohit Prabhavalkar, Ian
McGraw, Raziel Alvarez, Ding Zhao, David Rybach,
Anjuli Kannan, Yonghui Wu, Ruoming Pang, et al.,
“Streaming end-to-end speech recognition for mobile
devices,” in Proc. ICASSP, 2019, pp. 6381–6385.

[6] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R
Hershey, and Tomoki Hayashi, “Hybrid CTC/attention
architecture for end-to-end speech recognition,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1240–1253, 2017.

[7] Tara N Sainath, Yanzhang He, Bo Li, et al., “A stream-
ing on-device end-to-end model surpassing server-side
conventional model quality and latency,” in Proc.
ICASSP, 2020, pp. 6059–6063.

[8] Jinyu Li, , Rui Zhao, Zhong Meng, et al., “Develop-
ing RNN-T models surpassing high-performance hybrid
models with customization capability,” in Proc. Inter-
speech, 2020.

[9] Yajie Miao, Mohammad Gowayyed, and Florian Metze,
“EESEN: end-to-end speech recognition using deep
RNN models and WFST-based decoding,” in Proc.
ASRU, 2015, pp. 167–174.

[10] Jinyu Li, Guoli Ye, Amit Das, Rui Zhao, and Yifan
Gong, “Advancing acoustic-to-word CTC model,” in
Proc. ICASSP, 2018, pp. 5794–5798.

[11] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi,
Stephen Koo Erik McDermott, and Shankar Kumar,
“Transformer transducer: A streamable speech recogni-
tion model with transformer encoders and RNN-T loss,”
ICASSP, 2020.

[12] Jinyu Li, Rui Zhao, Hu Hu, and Yifan Gong, “Improv-
ing RNN transducer modeling for end-to-end speech
recognition,” in Proc. ASRU, 2019.

[13] Eric Battenberg, Jitong Chen, Rewon Child, Adam
Coates, Yashesh Gaur, Yi Li, Hairong Liu, San-
jeev Satheesh, David Seetapun, Anuroop Sriram, and
Zhenyao Zhu, “Exploring neural transducers for end-
to-end speech recognition,” in Proc. ASRU, 2017.

[14] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen, An-
juli Kannan, Ron J Weiss, Kanishka Rao, Katya Go-
nina, et al., “State-of-the-art speech recognition with
sequence-to-sequence models,” in Proc. ICASSP, 2018.

[15] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, Rui
Zhao, and Shujie Liu, “On the comparison of popular
end-to-end models for large scale speech recognition,”
in Proc. Interspeech, 2020.

[16] Ching-Feng Yeh, Jay Mahadeokar, Kaustubh Kal-
gaonkar, Yongqiang Wang, Duc Le, Mahaveer Jain,
Kjell Schubert, Christian Fuegen, and Michael L
Seltzer, “Transformer-transducer: End-to-end speech
recognition with self-attention,” arXiv preprint
arXiv:1910.12977, 2019.

[17] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and
Jinyu Li, “Developing real-time streaming trans-
former transducer for speech recognition on large-scale
dataset,” in ICASSP, 2021.

[18] Peter Bell, Joachim Fainberg, Ondrej Klejch, Jinyu Li,
Steve Renals, and Pawel Swietojanski, “Adaptation al-
gorithms for neural network-based speech recognition:
An overview,” IEEE Open Journal of signal Process-
ing, vol. 2, 2021.

[19] Eva Sharma, Guoli Ye, Wenning Wei, Rui Zhao, Yao
Tian, Jian Wu, Lei He, Edward Lin, and Yifan Gong,
“Adaptation of RNN transducer with text-to-speech
technology for keyword spotting,” in Proc. ICASSP,
2020.

[20] Cal Peyser, Hao Zhang, Tara N. Sainath, and Zelin Wu,
“Improving performance of end-to-end ASR on numeric
sequences,” in Proc. Interspeech, 2019.

[21] Murali Karthick Baskar, Shinji Watanabe, Ramon As-
tudillo, Takaaki Hori, Lukáš Burget, and Jan Černocký,
“Self-supervised sequence-to-sequence ASR using un-
paired speech and text,” in Conference of the Interna-
tional Speech Communication Association, 2019.

[22] Savitha Murthy, Dinkar Sitaram, and Sunayana Sitaram,
“Effect of TTS generated audio on OOV detection and
word error rate in ASR for low-resource languages.,” in
Proc. Interspeech, 2018, pp. 1026–1030.



[23] Zhong Meng, Jinyu Li, Yashesh Gaur, and Yifan Gong,
“Domain adaptation via teacher-student learning for
end-to-end speech recognition,” in ASRU, 2019.

[24] Lahiru Samarakoon, Brian Mak, and Albert Y.S. Lam,
“Domain adaptation of end-to-end speech recognition in
low-resource settings,” in Proc. SLT, 2018.

[25] Tara N Sainath, Ruoming Pang, David Rybach, Basi
Garcı́a, and Trevor Strohman, “Emitting word timings
with end-to-end models,” in Proc. Interspeech, 2020.

[26] Jiahui Yu, ChungCheng Chiu, Bo Li, Shuoyiin Chang,
Tara N Sainath, Yanzhang He, Arun Narayanan, Wei
Han, Anmol Gulati, Yonghui Wu, and Ruoming
Pang, “FastEmit: Low-latency Streaming ASR with
Sequence-level Emission Regularization,” in ICASSP,
2021.

[27] Dan Oneata, Alexandru Caranica, Adriana Stan, and
Horia Cucu, “An evaluation of word-level confidence
estimation for end-to-end automatic speech recogni-
tion,” in Proc. SLT, 2021, pp. 258–265.

[28] David Qiu, Qiujia Li, Yanzhang He, Yu Zhang, Bo Li,
Liangliang Cao, Roohit Prabhavalkar, Deepti Bhatia,
Wei Li, Ke Hu, T N. Sainath, and Ian McGraw,
“Learning word-level confidence for subword end-to-
end ASR,” ICASSP, 2021.

[29] Lidia Mangu, Eric Brill, and Stolcke Andreas, “Find-
ing consensus in speech recognition: Word error mini-
mization and other applications of confusion network,”
Computer Speech and Language, 2000.

[30] Jian Xue and Yunxin Zhao, “Random forests-based con-
fidence annotation using novel features from confusion
network,” in Proc. ICASSP, 2006, pp. I–1149–I–1152.

[31] Yan Deng, Lei He, and Frank Soong, “Modeling multi-
speaker latent space to improve neural TTS: Quick en-
rolling new speaker and enhancing premium voice,” in
https://arxiv.org/abs/1812.05253, 2018.

[32] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of
deep neural network acoustic models with singular value
decomposition.,” in Interspeech, 2013, pp. 2365–2369.

[33] Jinyu Li, Rui Zhao, Eric Sun, Jeremy HM Wong, Amit
Das, Zhong Meng, and Yifan Gong, “High-accuracy
and low-latency speech recognition with two-head con-
textual layer trajectory LSTM model,” in Proc. ICASSP,
2020, pp. 7699–7703.

[34] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an ASR corpus based on
public domain audio books,” in Proc. ICASSP, 2015, pp.
5206–5210.

[35] Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan
Gong, and Li Deng, “Predicting speech recognition con-
fidence using deep learning with word identity and score
features,” in Proc. ICASSP, 2013, pp. 7413–7417.


