

Sound capture and speech enhancement for speech-enabled devices

Dr. Ivan Tashev, Partner Software Architect **Dr. Sebastian Braun**, Researcher

Audio and Acoustics Research Group, Microsoft Research Labs, Redmond, WA, USA

Agenda

- Audio processing pipeline and statistical speech enhancement
- Application of deep learning methods in speech enhancement
- Conclusions

Microsoft Auto

Introduction and Brief History

- Sound capture? Speech enhancement?
- Speech enhancement pipeline in Windows XP
	- NetMeeting grandfather of Skype, Teams, etc.
- Microphone array support in Windows Vista
	- For Windows Live Messenger
- Microsoft Auto Platform
- Kinect for Xbox 360, for Windows, for Xbox One, for Azure
- HoloLens, HoloLens 2, Mixed Reality Platform
- Major update in Windows 10
- Teams

Windows Mixed Reality

Windows₁₀

12/01/2021 Sound capture and speech enhancement for speech-enabled
devices

Audio processing pipeline and statistical speech enhancement

Acoustic echo reduction systems

- Acoustic echo cancellation (AEC): (n) \mathbf{V} (n) $(n+1)$ $\hat{H}(n)$ $\hat{H}_k^{(n+1)} = \hat{H}_k^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{{|\mathbf{v}^{(n)} |}^2}$ $n+1$ *i i i n i n i n i n i k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k* $k = \mathbf{H} \mathbf{R}$ $\mu \mathbf{v}_{\text{r}}(n)$ $\vert \mathbf{v}^2 \vert$ *k* $\hat{H}_{k}^{(n+1)} = \hat{H}_{k}^{(n)} - \mu \frac{\Re_{k}^{(n)} X_{k}^{(n)}}{2}$ $X_i^{(n)}$ $\mu \frac{N}{r^2}$ $\hat{H}^{(n)} = \hat{H}^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{2}$
- Acoustic echo suppression (AES)
- Mono AEC part of every speakerphone

devices 6 and the contract of the contract of

Acoustic echo reduction systems

- Acoustic echo cancellation (AEC): (n) \mathbf{V} (n) $(n+1)$ $\hat{H}(n)$ $\hat{H}_k^{(n+1)} = \hat{H}_k^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{{|\mathbf{v}^{(n)} |}^2}$ $n+1$ *i i i n i n i n i n i k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k* $k = \mathbf{H} \mathbf{R}$ $\mu \mathbf{v}_{\text{r}}(n)$ $\vert \mathbf{v}^2 \vert$ $\hat{H}_{k}^{(n+1)} = \hat{H}_{k}^{(n)} - \mu \frac{\Re_{k}^{(n)} X_{k}^{(n)}}{2}$ $X_i^{(n)}$ $\mu \frac{N}{r^2}$ $\hat{H}^{(n)} = \hat{H}^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{2}$
- Acoustic echo suppression (AES)
- Mono AEC part of every speakerphone
- Stereo AEC: non-uniqueness problem

k

Acoustic echo reduction systems

- Acoustic echo cancellation (AEC): (n) \mathbf{V} (n) $(n+1)$ $\hat{H}(n)$ $\hat{H}_k^{(n+1)} = \hat{H}_k^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{{|\mathbf{v}^{(n)} |}^2}$ $n+1$ *i i i n i n i n i n i k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k i k k* $k = \mathbf{H} \mathbf{R}$ $\mu \mathbf{v}_{\text{r}}(n)$ $\vert \mathbf{v}^2 \vert$ *k* $\hat{H}_{k}^{(n+1)} = \hat{H}_{k}^{(n)} - \mu \frac{\Re_{k}^{(n)} X_{k}^{(n)}}{2}$ $X_i^{(n)}$ $\mu \frac{N}{r^2}$ $\hat{H}^{(n)} = \hat{H}^{(n)} - \mu \frac{\Re_k^{(n)} X_k^{(n)}}{2}$
- Acoustic echo suppression (AES)
- Mono AEC part of every speakerphone
- Stereo AEC: non-uniqueness problem Loudspeakers
- Stereo and surround sound AEC
	- Estimate impulse responses
	- Reduces the dimensionality
	- Always one solution, close to optimal

 h_{L}

 h_{R}

h

Beamforming

- Beamforming: $Y^{(n)}(k) = W(k)X^{(n)}(k)$
- Time invariant beamformer
- Adaptive beamformer
	- On the fly computation of the weights
	- Higher CPU requirements
	- Does null-steering
- MVDR beamformer $1(f)$ $H(f)$ **T**₁ (f)
	- $\bullet \qquad \mathbf{W}_{MVDR}(f) = \frac{\mathbf{D}_c(f) \mathbf{\Psi}_{NN}(f)}{\mathbf{D}_c^H(f) \mathbf{\Phi}_{NN}^{-1}(f) \mathbf{D}_c(f)}$ $(f) \mathbf{\Phi}_{NN}^{-1}(f)$ $(f) \mathbf{\Phi}_{\scriptscriptstyle NN}^{\scriptscriptstyle -1} (f) \mathbf{D}_{\scriptscriptstyle c} (f)$ $1(f) \cap (f)$ $MVDR$ $(f) = \frac{E_c (f) + NN (f)}{D^H (f) \Phi^{-1} (f) D(f)}$ $\mathbf{D}_{c}^{H}\left(f\right) \mathbf{\Phi}_{\scriptscriptstyle NN}^{\scriptscriptstyle -1}\left(f\right)$ $\mathbf{W}_{MVDR}(f) = \frac{\mathbf{E}_c(f) + \mathbf{W}(f)}{\mathbf{E}_c(f) + \mathbf{W}(f)}$
- Affine projection beamformer **ming**

ant beamform

ant beamform

camformer

computation of

U requirements

steering

offormer

computation

ction beamform

tive beamform r ming: $Y^{(n)}(k)$ = W

iant beamforn

beamformer

ly computation

CPU requiremen

II-steering

amformer

<u>p^u(f)@_m(f)</u>

jection beamf

ptive beamfor $f: Y^{(n)}(k) = W$
 f beamform
 mformer
 equiremen
 former
 former $f^{(n)}(k) = W(k)$
 ant beamform
 eamformer
 computation of
 U requirements
 -steering
 nformer

<u>#(f) $\Phi_{\infty}^{k}(f)$ </u>
 ction beamform
 tive beamform
 sound cap
- Other adaptive beamformers exist

Spatial probability estimation

- Estimates the probability of sound source $\mathsf{presence}\ \mathsf{for}\ \mathsf{each}\ \mathsf{direction}\ p_{n}(\theta)$ es the probability

e for each directic

neous Direction O
 $\delta_1(f), \delta_2(f), ..., \delta_{M-1}(f)]$
 $\geq \delta_{j-1}(f) = \arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f), f) - \arg(X_1(f), f)) - \arg(X_1(f), f) - \arg(Y_1(f), f), f)$
 $\delta_{m,1}(k, n) = \frac{\mathbb{E}\{Y_m(k, n)Y$ **Contraining to the direction** p
 $\lim_{n \to \delta_{M-1}(f)} \text{arjection of A}$
 $\lim_{n \to \delta_{M-1}(f)} \arg(X_j(f)) - \arg(X_j(f))$
 $\lim_{n \to \delta_{M-1}(f)} \frac{P(\theta)}{P(\theta)}$
 $\lim_{n \to \delta_{M-1}(f)} \text{Tr}(f(x, n))^2$
 $\lim_{n \to \delta_{M-1}(f)} \text{Tr}(f(x, n))^2$
- Instantaneous Direction Of Arrival (IDOA)^[1]
	- $\Delta(f) \triangleq [\delta_1(f), \delta_2(f), ..., \delta_{M-1}(f)]$
	- where $\delta_{j-1}(f) = \arg(X_1(f)) \arg(X_j(f))$
	- Compute the variation $\sigma_n(\theta)$ and the probability distribution $p_{\scriptscriptstyle n} \! \left(\theta \right)$ $\begin{array}{l} f)) - \arg(X_{j}(f)) \ \hbox{\small\bf ion}\ \sigma_{n}(\theta) \hbox{\small\bf and the proba} \ \hbox{\small\bf notion}\left(\mathsf{RTF}\right)^{[2]} \ \frac{\sum_{k,n)|^2\}}{k,n|^2\}} \ \Delta = \cos\big\langle \mathbf{b}_{\theta}(k), \hat{\mathbf{b}}(k) \big\rangle \ \hbox{\small\bf SF} \end{array}$
- Relative Transfer Function (RTF)^[2]
- RTF: $\hat{B}_{m,1}(k,n) = \frac{E{Y_m(k,n)Y_1^*(k,n)}}{N}$ $\left\{ \left\vert Y_{1}\left(k,n\right) \right\vert ^{-}\right\}$ $*$ (ι + $1 \sqrt{N}$ $(1)^{(\kappa, \mu)}$ = $\int |x(\mu)|^2 dx$ $1\binom{n}{1}$ or each direction
 $\delta_2(f),...,\delta_{M-1}(f)$
 $\delta_2(f),...,\delta_{M-1}(f)$
 $\lambda_1(f) = \arg(X_1(f)) -$

the variation

on $p_n(\theta)$

Insfer Function
 $\max_i f_i(k,n)$
 $\sum_{i=1}^{n} [Y_i(k,n)]^2$

measure: $\Delta = \text{cos}$

ved per PDFs $_m(\kappa,\mu)$ $_{m,1}$ (κ , μ) es the prove for each

ineous Di

ineous Di

ionistic Dipute the va

bution $p_n(\ell)$

ionistic Transfer

ionistic Billing

ince measu each direction
 S Direction O
 f),..., $\delta_{M-1}(f)$]
 f) = $\arg(X_1(f)) - \arg(X_1(f)) - \arg(X_1(f))$
 *P_n***(***f***)**
 *Sfer Function***
** $\arg\{Y_m(k,n)Y_1^*(k,n)\}\}$ **
** $\arg\{Y_m(k,n)\}^2$ **
** $\arg\{Y_m(k,n)\}^2$ **
** $\arg\{Y_m(k,n)\}^2$ **
** $\arg\{Y_m(k,n)\}^2$
	- Distance measure: $\Delta = \cos \langle \mathbf{b}_{\theta}(k), \hat{\mathbf{b}}(k) \rangle$
	- *pⁿ* (*θ*) derived per PDFs

[1] I. Tashev, A. Acero, "Microphone Array Post-Processor Using Instantaneous Direction of Arrival", IWAENC 2006 [2] S. Braun, I. Tashev, "Directional interference suppression using a spatial relative transfer function feature", ICASSP 2019

-2

 $-\pi \leq \delta_2 \leq +\pi$

 $\frac{1}{2}$

-2

0

-π ≤ δ₁ ≤ +π

Sound source at 45° noise

12/01/2021 Sound capture and speech enhancement for speech-
enabled devices enabled devices 10

Phase differences at 750 Hz

Phase differences at 750 Hz

Spatial probability estimation

- Estimates the presence for e
- Instantaneous 15
	- $\Delta(f) \triangleq [\delta_1(f), \delta_2(f)]$
	- where $\delta_{i-1}(f)$
	- Compute the *compute* the distribution p_{\perp}
- Relative Transi
	-

- Distance measure: $\Delta = \cos \langle \mathbf{b}_{\theta}(k), \hat{\mathbf{b}}(k) \rangle$
- *pⁿ* (*θ*) derived per PDFs

[1] I. Tashev, A. Acero, "Microphone Array Post-Processor Using Instantaneous Direction of Arrival", IWAENC 2006 [2] S. Braun, I. Tashev, "Directional interference suppression using a spatial relative transfer function feature", ICASSP 2019

Sound source at 45° noise

12/01/2021 Sound capture and speech enhancement for speech-
enabled devices enabled devices 11 and the contract of the con

Sound source localization and spatial filtering

- Given $p_n(\theta)$ for the current frame: estimate where the sound source is
	- Find maxima
	- Cluster and average
- Given $p_n(\theta, k)$ for the current frame: estimate suppression gain $\theta_0 + \Delta \theta$
	- $\Delta\theta = 3.0 \sigma(\theta_0)$
	- Smooth and apply

$$
G_k^{(n)} = \frac{\int_{\theta_0 - \Delta\theta} p(\theta) d\theta}{\int_{-\pi}^{\pi} p(\theta) d\theta} \qquad \qquad \frac{\theta_0}{\theta} \approx 10
$$

Sound source localization and spatial filtering

Noise suppression: Gain-based processing

- Given signal $x_n(t)$ and noise $d_n(t)$ mixed in $y_n(t)$
- Observed in frequency domain, *n*-th frame, *k*-th frequency bin: $Y_k = X_k + D_k$
- Noise suppression:

•
$$
\tilde{X}_k = (G_k |Y_k|) \frac{Y_k}{|Y_k|} = G_k Y_k
$$

- *G^k* time varying, non-negative, real value gain (or suppression rule)
- The estimator keeps the same phase as Y_k : under Gaussian assumptions the best phase estimator is observed phase
- The goal of noise suppression is for each frame to estimate *G^k* vector optimal in certain way

Noise suppression: Suppression rules

• Prior and posterior SNRs:

Use suppression: Suppose that the function
$$
\xi_k \triangleq \frac{\lambda_s(k)}{\lambda_d(k)}, \gamma_k \triangleq \frac{|X_k|^2}{\lambda_d(k)}
$$
.

\nThus, $\xi_k \triangleq \frac{\lambda_s(k)}{\lambda_d(k)}, \gamma_k \triangleq \frac{|X_k|^2}{\lambda_d(k)}$.

\nThus, $\lambda_d(k) \triangleq E\left\{ |D_k|^2 \right\}$ and $\lambda_s(k) \triangleq E\left\{ |S_k|^2 \right\}$.

\n1947.

\n195.

\n1975.

\n1975.

- MMSE, Wiener (1947) $\begin{cases} \n2 \rightarrow \lambda_s(k) \triangleq I \n\end{cases}$
 s ner (1947)
 $\frac{\xi_k}{1 + \lambda_d(k)} = \frac{\xi_k}{1 + \xi_k}$ *k* $D_k | \int \frac{\lambda_s(k) - E_k}{\lambda_s(k)}$

Wiener (1947)
 $\frac{\lambda_s(k)}{\lambda_s(k) + \lambda_d(k)} = \frac{\xi_k}{1 + \xi_k}$

subtraction Bo $G_k = \frac{\lambda_s(k)}{k_s(k)}$
- *k* $G_k = \Box$ $=$ $\frac{1}{2}$
- Maximum Likelihood, McAulay&Malpass (1981):

$$
G_k = \frac{1}{2} + \frac{1}{2} \sqrt{\frac{\xi_k}{1 + \xi_k}}
$$

k

 $+\xi_{k}$

 $\mathcal{\breve{S}}_k$

k

 $\mathcal{\breve{S}}_k$

Noise suppression: Suppression rules (2)

• ST-MMSE, Ephraim&Malah (1984):

$$
G_k = \frac{\sqrt{\pi v_k}}{2\gamma_k} \left[\left(1 + v_k \right) I_0 \left(\frac{v_k}{2} \right) + v_k I_1 \left(\frac{v_k}{2} \right) \right] \exp\left(\frac{v_k}{2} \right) \qquad v(k) \triangleq \frac{\xi_k}{1 + \xi_k} \gamma_k
$$

• ST-logMMSE, Ephraim&Malah (1985):

$$
G_k = \frac{\xi_k}{1+\xi_k} \left\{ \frac{1}{2} \int_{v_k}^{\infty} \frac{\exp(-t)}{t} dt \right\}
$$

- Efficient alternatives, Wolfe&Godsill(2001):
	- Joint Maximum A Posteriori Spectral Amplitude and Phase (JMAP SAP) Estimator
	- Maximum A Posteriori Spectral Amplitude (MAP SA) Estimator
	- MMSE Spectral Power (MMSE SP) Estimator
- Also see Tashev, Slaney, ITA 2014

End-to-end optimization

- Mean Opinion Score (MOS), Perceptual Evaluation of Sound Quality (PESQ), Word Error Rate (WER)
- 75 parameters for optimization: time constants, limitations, etc.
- Optimization criterion:
	- *Q* = *PESQ*+0.05**ERLE+0.5*WER*+0.001**SNR*-0.001**LSD*-0.01**MSE*
- Optimization algorithm
	- Gaussian minimization
- Data corpus with various distance, levels, reverberation
- Parallelized processing on computing cluster

I. Tashev, A. Lovitt, A. Acero, "Unified Framework for Single Channel Speech Enhancement", PacRim 2009

End-to-end optimization: results

Assumptions in classic speech enhancement

- Noise has Gaussian distribution
- Speech signal has Gaussian distribution
- Noise changes slower than the speech signal
- We need minimum mean squared error amplitude estimator,
	- or, minimum mean squared log-amplitude estimator,
	- or, maximum likelihood estimator, etc.
- The signals in different frequency bins are statistically independent
- The consecutive audio frames are statistically independent

Assumptions in classic speech enhancement

- Noise has Gaussian distribution
- Speech signal has Gaussian distribution
- Noise changes slower than the speech sign
- We need minimum mean squared error ar
	- or, minimum mean squared log-amplitude est
	- or, maximum likelihood estimator, etc.
- The signals in different frequency bins are

Still, worked well in RoundTable, Lync/Skype, Microsoft Auto, Kinect \odot

• The consecutive audio frames are statistically independent Not correct!

Application of deep learning methods in speech enhancement

Modular blocks for Speech Enhancement

• Combinations …

Training data generation and augmentation

Spectral distance-based loss functions

[S. Braun and I. Tashev, "A consolidated view of loss functions for supervised deep learning](https://arxiv.org/pdf/2009.12286.pdf)-based speech enhancement", arXiv:2009.12286, 2020. [Y. Xia, S. Braun, C. Reddy, R. Cutler, I. Tashev, "Weighted Speech Distortion Losses for Neural](http://approjects.co.za/?big=en-us/research/uploads/prod/2020/05/0000871.pdf)-Network-Based Real-Time Speech Enhancement", ICASSP 2020.

Efficient network architectures

[1] S. Braun and I. Tashev, *[Data augmentation and loss normalization for deep noise suppression](http://approjects.co.za/?big=en-us/research/uploads/prod/2020/10/Braun-Tashev2020_Chapter_DataAugmentationAndLossNormali.pdf)*, International Conference on Speech and Computer, 2020.

[2] S. Braun, H. Gamper, C. Reddy, I. Tashev, *[Towards efficient models for real-time deep noise suppression](https://arxiv.org/abs/2101.09249)*, to appear in ICASSP 2021.

Results model efficiency

K. Tan, D. Wang, *A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement*, in Proc. Interspeech, 2018.

S. R. Park, J. W. Lee, *A Fully Convolutional Neural Network for Speech Enhancement*, Proc. Interspeech, 2017. M. Strake, et. al., Fully Convolutional Recurrent Networks for *Speech Enhancement*, in Proc. ICASSP, 2020.

12/01/2021

2 nd Deep Noise Suppression Challenge

Demo recording

Conclusions

Conclusions

- Most of the modern devices include speech input for communication and speech recognition
- They operate in challenging environments: reverberation, echo, noise
- Using multiple microphones provides opportunities for better improvements for both near and far field capture
- Statistical signal processing:
	- Computationally and memory inexpensive
	- Pretty much saturated in terms of improvements

Conclusions (2)

- DNN-based speech enhancement without look-ahead in real-time is possible with smaller computational effort
- Critical for the success:
	- Dataset: defines the "signal model". Data augmentation!
	- Loss function allows model improvement at zero inference cost. Our current best supervised loss is **signal-based**, including magnitude and phase, **compression** (human perception related), and **level-normalized** for smoother training.
	- Neural network architecture
		- Model size scales the quality: we found direct influence of model width and memory capacity on enhancement performance.
		- Recurrent networks seem more efficient for very small models, adding convolutional encoders achieve better quality at increased cost.

Finally

Thank you for your attention!

Questions?

Ivan Tashev [\(ivantash@microsoft.com\)](mailto:ivantash@microsoft.com) Sebastian Braun [\(sebraun@microsoft.com\)](mailto:sebraun@microsoft.com)

Audio and Acoustics Research Group

[https://www.microsoft.com/en-us/research/group/audio-and-acoustics-research-group/](http://approjects.co.za/?big=en-us/research/group/audio-and-acoustics-research-group/)

