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Abstract—Identifying suspicious user behavior within an en-
terprise network is vital to maintaining strong cyber security
defenses. This paper presents a scalable approach to detecting
anomalous user behavior in event logs, which we frame as a
dynamic, bipartite interaction network of users and resources.
Graph embedding is used to obtain vector representations of
users, which are updated over time and used to model the profile
of the users who typically access each resource. A standard
nearest neighbor anomaly detection method is then employed
to score new interactions. The approach is applied to a dataset
of interaction events between users and SharePoint sites within
Microsoft’s internal corporate network.

Index Terms—anomaly detection, graph embedding, cyber
security

I. INTRODUCTION

User behavior anomaly detection refers to a collection of
network security techniques that aim to detect unusual patterns
of user activity. Detection and evaluation of such patterns are
essential to the identification of security breaches.

Traditional security systems provide a vital first layer of
defense, employing predefined signatures and rules to identify
known threats. While these systems are invaluable, they are
unable to identify unknown threats and so-called zero-day
attacks and are increasingly evaded by the most sophisticated
actors.

Anomaly detection systems form a second line of defense,
by monitoring users and notifying of any activities which
do not conform to normal behavior on the network. In this
way, malicious behavior that can bypass signatures, such as
network traversal using stolen credentials, or attacks exploiting
previously undiscovered vulnerabilities, can be detected.

There are many practical challenges when deploying
anomaly detection systems in cyber security. Users often
perform a wide range of actions and malicious activity is
often subtle. Any model must be flexible enough to capture
the full range of normal activity so that significant amounts
of benign behavior are not flagged as suspicious, and specific
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Fig. 1. Uniform manifold approximation and projection (UMAP) of the
12-dimensional space of user embeddings, colored according to the user’s
organization.

enough that malicious behaviors stand out and are discovered.
In addition, such systems typically must process large amounts
of data at very high rates, so must be simple enough to be
computationally tractable at these scales. Detected anomalous
behaviors may serve as indicators that can gain strength when
combined with other evidence to indicate a cyber-attack, or
suggest further investigation from an analysis team.

In this paper, we propose a framework for detecting anoma-
lies in event logs describing access patterns to a collection
of resources by a set of users. The approach fundamentally
targets peer-based anomalies, in which the behavior of a user
is surprising in the context of the behavior of their peers.
We frame this data as a dynamic bipartite graph, in which
timestamped edges represent interaction events between users
and resources. We represent the users in a feature space, which
we propose to learn entirely from the graph structure, using



a graph embedding technique. These representations encode
the peer structure of the users: a distance between two users
encodes their similarity.

Graph embedding is a general-purpose machine learning
tool that computes vector representations of the nodes of
a graph that reflect the connection patterns observed in it.
Spectral embedding refers to an embedding procedure that
employs the spectral decomposition of a matrix representation
of the graph. There are many variants involving different
matrix representations, regularization which induces a more
balanced embedding, and degree-correction which removes the
dependence of degree from the embedding. These methods are
well understood from a statistical perspective and benefit from
being fast to compute.

Based on these representations, we define an indepen-
dent non-parametric model for each resource, describing the
users who typically access it, and employ a nearest-neighbor
anomaly detection scheme to detect anomalous interactions.
The resulting score quantifies the level of surprise, from the
perspective of the resource, at receiving an interaction from
the user in question.

II. RELATED WORK

A. Graph-based anomaly detection

Graph-based anomaly detection has been approached in a
variety of ways. Akoglu et al. [1] and Ranshous et al. [2]
provide comprehensive surveys. In the context of bipartite
graphs, previous approaches include subgraph-based methods
[3]–[5], which identify substructures in the graph to detect
malicious connections, community-based methods [6]–[10],
which detect nodes that do not respect community boundaries,
and Bayesian approaches [11]–[13], which measure anomalies
against a learned statistical model.

Our approach allows us to make minimal assumptions about
the nature of the bipartite graph. We do not assume community
structure, but we can make use of such structure if it exists
in the graph data. In addition, the assumptions we make
on the nature of anomalies are simple, interpretable, and do
not require feature engineering. The minimal assumptions on
which our framework is based allow it to be used in a wide
array of applications.

B. Spectral graph embedding

Spectral graph embedding is very well studied from a sta-
tistical perspective, with consistency results and central limits
theorems available for adjacency and Laplacian embedding
[14]–[19]. Modifications to the standard algorithm have been
proposed to improve empirical performance. Degree correction
[20], [21] involves removing information about the number of
connections made by a node, so nodes whose connectivity
preferences are similar, but whose activity levels are different
are embedded into similar positions. Regularization [21]–
[26] involves artificially inflating the node degrees prior to
embedding and has been shown to improve performance in
the presence of severe degree heterogeneity.

While the majority of the literature is focused on unipartite
graphs, embedding of bipartite graphs via a truncated singular
value decomposition [27]–[29] has been studied and employed
extensively in practice [30], [31].

Alternative approaches to spectral graph embedding include
those based on random walks [32]–[34], deep learning [35],
[36] and alternative matrix factorizations [11], [37], [38].

C. Anomaly detection

Chandola et al. [39] give a survey of anomaly detection
methods for point cloud data. Nearest-neighbor based meth-
ods, which we employ in our methodology, are a simple family
of methods which assume that an anomalous data point is one
which has few close neighbors, making no parametric assump-
tions on the data. They have been used widely in intrusion
detection systems [40]–[42] and their statistical properties have
been studied [43].

III. APPROACH

Consider a dynamic bipartite graph with m user nodes Vu,
n resource nodes Vr and timestamped edges E ⊂ Vu × Vr ×
R. Here, an edge (u, r, t) ∈ E represents an edge between
user u accessing resource r at time t. For a time t ∈ R,
let A(t) ∈ Rm×n denote a (potentially weighted) biadjacency
matrix which represents a snapshot of the graph at time t.

One such construction is to set A(t)
ur = 1 if for any s < t,

(u, r, s) ∈ E and A
(t)
ur = 0 otherwise. Alternatively, edges

may be weighted to increase the importance of frequently
occurring interactions, such as using log counts (see [44]
for guidance on choosing edge weights). Edges may also be
removed after a fixed period of time if another interaction has
not occurred, or the edge weights set to decay with time so
that more recent interactions are weighted more highly than
less recent ones.

The general framework for scoring a new edge (u, r, t) is
as follows:

1) Graph embedding. Using A(t), compute an embedding
of the user nodes, X(t)

1 , . . . , X
(t)
m ∈ Rd.

2) Anomaly detection. Let X (t)
r = {X(t)

v : (v, r, s), s < t}
denote the set of user embeddings for users who have
accessed resource r before time t. Return the anomaly
score s(u,r,t), a distance from Xu to its nearest neighbor
in Xr.

From hereon, we drop the dependence on t.

A. Graph embedding

Following [28], we perform spectral embedding using the
regularized bi-Laplacian matrix and subsequently project the
resulting embeddings onto the unit sphere. The regularized bi-
Laplacian matrix Lτ , with regularization parameter τ ∈ R+,
is defined as

Lτ = (D(1) + τIm)−1/2A(D(2) + τIn)
−1/2

where D(1) and D(2) are the diagonal user and resource degree
matrices with D

(1)
uu =

∑
rAur and D

(2)
rr =

∑
uAur, and Im

and In are the m×m and n× n identity matrices. Given the



Site: 3876, User: 25677, Date: 2021-06-05,
Score: 1.419

Site: 17640, User: 9654, Date: 2021-06-02,
Score: 0.941

Site: 355, User: 9433, Date: 2021-05-28,
Score: 0.843

Fig. 2. Three examples of user-resource pairs which received high anomaly scores. Each panel shows the UMAP projection of the user embedding, colored
by organization, as small points. Overlaid are large black points representing the users who had previously accessed the resource, and a red cross, representing
the user who raised the anomaly.

regularized bi-Laplacian matrix and an embedding dimension
d, the embedding algorithm is as follows:

1) Denote the rank-d singular value decomposition of Lτ
as USV> and let

X∗ = [X∗1 , . . . , X
∗
m]> = US1/2 ∈ Rm×d,

Y∗ = [Y ∗1 , . . . , Y
∗
n ]
> = VS1/2 ∈ Rn×d

2) Define Xu = X∗u/‖X∗u‖ and Yr = Y ∗u /‖Y ∗u ‖ as
the projection of X∗u and Y ∗r onto the unit sphere,
respectively.

The vectors X1, . . . , Xm ∈ Rd are embeddings of the users
and Y1, . . . , Yn ∈ Rd are embeddings of the resources. Our
approach only requires the user embeddings.

The embedding dimension d is a hyper-parameter that needs
to be chosen. It is recommended to choose d by examining
a plot of the singular values of the graph adjacency matrix,
known as a scree plot, and identifying an “elbow” where the
singular values level off. This can be done by eye or using
an automated method such as the profile likelihood method of
Zhu and Ghodsi [45].

It has been recommended that a good, general choice for
the regularization parameter is the average degree of the
graph [21], [28]. Regularization improves the performance of
spectral embedding which can ordinarily perform poorly in the
presence of severe degree heterogeneity [25], [26], a common
feature of these kinds of data [46]. The regularization param-
eter here plays a similar role to that in ridge regression [47].
The second stage of the algorithm, projecting the embedding
onto the unit sphere, performs degree correction, that is, it
removes the dependence of a node’s degree from its position
in the embedding space. In this way, the implicit notion of
similarity between users contains only information about the
profile of the resources accessed and not their level of activity.

This is a recommendation that has been made extensively in
the literature [20], [21].

B. Anomaly detection

To score a new edge (u, r, t), we employ a simple nearest-
neighbor anomaly detection algorithm. Let Xr = {Xv :
(v, r, s), s < t} denote the set of user embeddings for users
who have accessed resource r before time t. Given a choice
of metric, such as Euclidean or cosine distance, the anomaly
score for an edge is given by the distance from Xu to its
nearest neighbor in Xr.

If a user u has previously accessed a resource r before time
t, an edge (u, r, t) will receive an anomaly score s(u,r,t) =
0, since Xu ∈ Xr. Otherwise s(u,r,t) > 0. In an anomaly
detection setting, it is typical to set a threshold α ∈ R, and to
flag an edge as anomalous if its anomaly score is greater than
α. Practically, such a threshold is chosen so that the number of
detections is reasonable, relative to the capacity for them to be
investigated. Setting α = 0 is equivalent to flagging an edge
whenever a user accesses a resource they have not accessed
before.

C. Practical considerations

There are some practical considerations to consider when
implementing this approach. Firstly, in practice, it is not
necessary to update the embedding every time a new edge
is observed. The positions remain relatively stable over time,
so they may instead be recomputed at regular intervals such
as daily or weekly.

For very large or dense graphs, it may be desirable to avoid
recomputing the singular value decomposition each time an
update is required. In this case, the embedding may be updated
approximately using an out-of-sample method [48].

With this in mind, due to the simplicity of the anomaly
detection step, it is possible to score edges quickly and in



real-time, a property that is critical in many cyber security
applications.

Finally, it is advisable to train the algorithm for a period of
time prior to scoring edges, so that the embedding contains
enough information to reflect the characteristics of the nodes.
This amounts to computing an initial embedding based on data
from this period. Without this, the initial scores are likely to
be unreliable.

IV. SHAREPOINT ACCESS DATA FROM MICROSOFT
CORPORATE NETWORK

We have applied our approach to a dataset of event logs of
users and Microsoft SharePoint sites within Microsoft’s inter-
nal corporate network. Microsoft SharePoint is a collaborative
document management tool for sharing information within an
organization. A SharePoint site is a location where a team can
share content related to a specific project.

We consider a subset of users corresponding to a sub-
organization of Microsoft, and a subset of SharePoint sites
with at least 5 and at most 5,000 users in the time period we
consider. These are the sites that we deem to be of interest
from a security perspective. For example, sites with a large
number of users are likely to be commonly referenced and
are unlikely to contain sensitive information. In total, this
comprises 42,643 users and 29,279 SharePoint sites. An edge
represents any interaction between a user and a SharePoint
site.
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Fig. 3. Plot of the singular values of the biadjacency matrix for the induced
graph of the first 28 days of activity.

We initially train the system on 28 days of logs. Figure 3
shows the scree plot of the top 100 ordered singular values
of the biadjacency matrix of the induced graph of this period.
We choose d = 12 as our embedding dimension based on the
elbow identified in the plot.

Figure 1 shows the user embedding of the graph, which for
visualization has been reduced to two dimensions using the
uniform manifold approximation and projection (UMAP) [49]
non-linear dimensionality algorithm. The colors correspond
to the manager of each user at a particular level of the
organizational hierarchy.

For the subsequent 28 days, we score the user-site inter-
actions using our methodology, updating the embedding each
day. We score a total of 5,936,732 edges, 81.9% of which
receive a score of zero, indicating that the edge has occurred
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Fig. 4. Distribution of the non-zero anomaly scores.

previously. Figure 4 shows the distribution of the non-zero
anomaly scores, using Euclidean distance.

A. Evaluation of the method

In general, quantitative evaluation of anomaly detection
methods in cyber-security is complicated by the fact that
ground truth labels of malicious behavior are typically not
available in real data. To overcome this, we construct a set
of surrogate labels based on meta-data which represent a
notion of peer-based anomalous behavior that we might want
to detect.

Employees at Microsoft are organized hierarchically into
organizations. We define an organizational anomaly to be an
interaction between and a user and a site for which no other
member of the user’s organization, at a specified level, has
interacted with previously.

The are 20,018 organizational anomalies in our data, a
similar amount to thresholding our method at 0.75 (19,368).
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Fig. 5. Distribution of the anomaly scores associated with interactions labeled
as organizational anomalies.

Figure 5 shows the distribution of the anomaly scores
computed using our method for edges labeled as organizational
anomalies, and Figure 6 shows the proportion of these edges
which are flagged as anomalies using our approach for varying
thresholds. It can be seen that organizational anomalies are
typically assigned a high anomaly score using our approach.
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Fig. 6. Proportion of anomalies flagged using our method which are
organizational anomalies at each threshold.

V. CONCLUSION

We have presented a simple approach to detecting anomalies
in a dataset of interaction events between users and resources.
The framework we develop is very general and our choices
of graph embedding and anomaly detection algorithms may
be modified to suit the problem at hand. For example, the
graph embedding may be performed using any other suitable
algorithm and the nearest-neighbor anomaly detection scheme
may be replaced by the kth nearest neighbor, for example, in
order to increase its robustness to outliers and contaminated
data.

We applied our approach to an internal dataset of Microsoft
SharePoint event logs within the Microsoft organization and
evaluated our approach against anomalies inferred from meta-
data.

In the future, the framework could be extended to incorpo-
rate additional information into the graph, such as the type of
interaction. In addition, the sensitivity of the method to the
choice of dimension could be investigated and frameworks
for evaluation could be explored which would allow for
quantitative comparison with other methods.
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