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Abstract

Pre-trained language models are still far from
human performance in tasks that need under-
standing of properties (e.g. appearance, measur-
able quantity) and affordances of everyday ob-
jects in the real world since the text lacks such
information due to reporting bias. In this work,
we study whether integrating visual knowledge
into a language model can fill the gap. We in-
vestigate two types of knowledge transfer: (1)
text knowledge transfer using image captions
that may contain enriched visual knowledge
and (2) cross-modal knowledge transfer using
both images and captions with vision-language
training objectives. On 5 downstream tasks
that may need visual knowledge to solve the
problem, we perform extensive empirical com-
parisons over the presented objectives. Our ex-
periments show that visual knowledge transfer
can improve performance in both low-resource
and fully supervised settings. 1

1 Introduction

Pre-trained language models (PTLMs) such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and T5 (Raffel et al., 2020) have shown
impressive results in various conventional natural
language understanding (NLU) tasks by capturing
syntactic and semantic knowledge from the pre-
training tasks of masked language modeling and
masked span infilling tasks on massive text corpora.

Though yielding good performance on various
NLU downstream tasks, these pre-training objec-
tives suffer from a lack of out-of-domain knowl-
edge that is not explicitly present in the pre-training
corpus (Gururangan et al., 2020a; Petroni et al.,
2021; Schick and Schütze, 2020). Specifically, one
type of knowledge that models often struggle with
is the visual knowledge of common objects such as
attributes (e.g. appearance, measurable quantity)

∗Authors contributed equally.
1https://github.com/INK-USC/CMKT

Interesting facts about orange !

1. Orange elevates mood levels.
2. Orange are often grown in the Mediterranean.
3. Oranges facing the sunnier tend to be sweeter.Human

Typical facts about orange …

1. Orange is a shape of circle.
2. Orange is a color of orange.

Report

Already knows... 
May not report

Figure 1: Reporting Bias. People tend to report what
interests them rather than typical and general facts.

and affordances. This is because this kind of knowl-
edge is rarely explicitly described in the training
text due to reporting bias. For example, as shown
in Figure 1, people tend to report what interests
them rather than general facts such as a shape or
color of oranges they already know.

Towards better knowledge-enhanced PTLMs, re-
cent works incorporate external knowledge bases
(e.g., knowledge graph, dictionary) to inject entity
knowledge into PTLMs (Zhang et al., 2019; Peters
et al., 2019; Wang et al., 2021; Yu et al., 2021) or
retrieve knowledge from external knowledge bases
to solve the problem (Lin et al., 2019; Wang et al.,
2020). However, these approaches still suffer from
a lack of visual knowledge that is important to un-
derstand the real world.

In this paper, we conduct systematic experiments
to understand whether such visual knowledge can
be transferred into LMs, and if so, how to per-
form effective knowledge transfer. Specifically, we
look into a series of analysis question as follows:
(1) Can intermediate pre-training (Pruksachatkun
et al., 2020a) on image-caption pairs help trans-
fer the knowledge? (2) What types of knowl-
edge sources are more helpful? To answer ques-
tions, we explore various intermediate pre-training
tasks (Pruksachatkun et al., 2020a) on two different
sources: text-only (text knowledge transfer from
visual domains) and image-caption pairs (cross-
modal knowledge transfer).

For the text knowledge transfer, we utilize text

https://github.com/INK-USC/CMKT
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(b) Text Contrastive Learning (TCL)
(e) Cross-modal Knowledge Distillation (CMKD)
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Figure 2: Illustration of different methods for transferring visual knowledge into transformer-based language
model. In this example, we assume image-caption pair as an input. (a) masked language model (Devlin et al.,
2019) on image captions. (b) text contrastive learning obtains positive example by dropout representation to learn
better sentence representation while negative augmentation is optional. (c) voken classification employs token-level
text-to-image retrieval to transfer visual knowledge. (d) cross-modal contrastive learning aims to train correct
paring of images and captions. (e) cross-modal knowledge distillation transfers knowledge from the teacher model,
which is trained by cross-modal contrastive learning, into student model.

corpus from visual domain, e.g., image captions.
We leverage two training objectives for the lan-
guage model: (1) masked language modeling fol-
lows the domain adaptive pre-training scheme (Gu-
rurangan et al., 2020a), assuming the corpus con-
tains enriched visual knowledge or physical com-
monsense knowledge; (2) text contrastive learning
augments the sentence representation with dropout
to create positive samples while considering all
others in the batch as negative samples for the con-
trastive learning (Gao et al., 2021), assuming train-
ing better sentence representations leads to better
understanding of the corpus.

For the cross-modal knowledge transfer, we ex-
plore multiple methods to transfer visual-related
knowledge to LMs: (1) masked language model-
ing with visual clues incorporates visual clues to
capture dependencies between visual and linguis-
tic contents (Su et al., 2020); (2) voken classifica-
tion contextually aligns language tokens to their
related images (called "vokens") to transfer visual
knowledge into LMs (Tan and Bansal, 2020); (3)
cross-modal contrastive learning aims to improve
text representations by maximizing the agreement
between correct image-text pairs versus random (in-
batch) and adversarial negative pairs by contrastive
learning between image and text modalities; and
(4) cross-modal knowledge distillation transfers
the knowledge from the teacher model, which is
trained by cross-modal contrastive learning on im-
age and text modalities, to the student language

model using knowledge distillation.
We perform comprehensive comparisons on

five downstream tasks that may require visual
or physical commonsense knowledge, including
PIQA (Bisk et al., 2020), Visual Paraphrasing
(VP) (Lin and Parikh, 2015), CSQA (Talmor et al.,
2019), OBQA (Mihaylov et al., 2018), and Rid-
dleSense (Lin et al., 2021). Results suggest that:
(1) Simple intermediate pre-training on captions
can help improving performance on commonsense
reasoning that needs physical or visual knowledge.
(2) Cross-modal knowledge transfer approaches
consistently improve the performance in a large
margin when only few train examples are available.
(3) Cross-modal contrastive learning shows that it
is best for packaging visual knowledge into LMs.

2 Analysis Setup

In this work, we study how to transfer the visual
knowledge into language models. For this study,
we introduce our analysis setup: problem formula-
tion, analysis questions, and knowledge corpora.

2.1 Problem Formulation

We focus on a pre-trained text encoder fL and
an image encoder fV if images are available. fL
and fV are initialized with pre-trained model and
we continue to pre-train the models on different
sources and tasks, which we call intermediate pre-
training (Gururangan et al., 2020b; Pruksachatkun
et al., 2020b). After the intermediate pre-training,



we fine-tune fL on downstream NLU tasks. Ex-
isting NLU benchmarks have been trained against
standard supervised learning paradigms that typi-
cally require a large number of question answering
examples which need a large annotation efforts.
However, in scenarios where the number of labeled
examples is small, the model tends to overfit the
training examples and shows poor generalization
performance on test set. Here, we evaluate the in-
termediate pre-training objective’s generalization
ability on test set in both fully supervised and low-
resource settings.

2.2 Analysis Questions

In this paper, we provide a comprehensive study
for transferring the visual knowledge into LMs.
Visual knowledge transfer can be done in two ap-
proaches, depending on the source to be trained:
(1) Text knowledge transfer using the text corpus
in the visual domain, e.g., image captions and (2)
cross-modal knowledge transfer which passes vi-
sual knowledge about common objects to LMs by
training over paired image and captions. By evalu-
ating the model on 5 downstream datasets that re-
quire physical and visual commonsense knowledge,
we explore following three research questions.

Q1: Can intermediate pre-training on external
knowledge sources help transfer visual knowl-
edge to augment text encoders? We investigate
diverse intermediate pre-training methods with ex-
ternal knowledge sources including caption data to
inject visual information from images and captions
into LMs. We first analyze the performance of text
and cross-modal knowledge transfer methods with
a image-caption dataset, and we additionally study
text knowledge transfer methods with other text cor-
pora such as GenericsKB (Bhakthavatsalam et al.,
2020), Wiki103 (Merity et al., 2017) and BookCor-
pus (Zhu et al., 2015a).

Q2: What types of knowledge sources are more
helpful for visual knowledge transfer? As men-
tioned above, we have two categories to exploit
visual information: (1) text knowledge transfer and
(2) cross-modal knowledge transfer. Here, we ex-
plore which type of knowledge transfer is more
useful to transfer the visual knowledge into LMs.

Q3: What intermediate pre-training objectives
are effective for cross-modal knowledge trans-
fer? We present three pre-training objectives for
cross-modal knowledge transfer: (1) voken clas-
sification, (2) contrastive learning, and (3) knowl-

Dataset # Train # Dev # Test # choices

PIQA 14,113 1,838 2,000 2
VP 21,988 2,000 6,057 2
CSQA 8,500 1,221 1,241 5
OBQA 4,957 500 500 4
RiddleSense 3,510 1,021 1,202 5

Table 1: Downstream task data statistics. We create
in-house test set for PIQA and CSQA, and in-house dev
set for VP by splitting the train set.

edge distillation. Here, we want to present which
strategy is best suited for cross-modal knowledge
transfer. Furthermore, we study how to enhance
cross-modal contrastive learning with adversarial
negative samplings.

2.3 Pre-training Data

To transfer the visual knowledge, we collect 250K
image-caption pairs from MS COCO (Lin et al.,
2014; Chen et al., 2015). MS COCO contains im-
ages reflecting the composition of actual everyday
scenes and corresponding captions which describe
contextual reasoning between objects in the scene.
We only use captions for text knowledge transfer
while we use both images and captions for cross-
modal knowledge transfer. As an ablation study,
we explore other text corpora such as Generic-
sKB (Bhakthavatsalam et al., 2020), Wiki103 (Mer-
ity et al., 2017) and BookCorpus (Zhu et al.,
2015a).

2.4 Downstream Tasks and Datasets

For downstream benchmarks, we find tasks that can
benefit from visual knowledge: multiple choice
question answering tasks including PIQA (Bisk
et al., 2020) which requires physical common-
sense reasoning, CSQA (Talmor et al., 2019) for
general understanding of commonsense reason-
ing, OBQA (Mihaylov et al., 2018) that needs
elemenatry-level science knowledge, and Riddle-
Sense (RS) (Lin et al., 2021) for complex un-
derstanding of figurative language, and binary
classification task including Visual Paraphrasing
(VP) (Lin and Parikh, 2015) that needs scene un-
derstanding. We use in-house test sets made from
training sets for PIQA and CSQA since test set
is not provided to public. We list the data stat-
ics in Table 1. Moreover, We additionally test on
GLUE (Wang et al., 2019) to evaluate the general
text understanding.



2.5 Evaluation Protocol

We evaluate the models in both fully supervised
and low-resource settings. For both settings, we
consider accuracy for 5 different classification tasks
and get average performance over tasks to check
the final performance. In the fully supervised set-
ting, we evaluate models with 3 different random
seeds and report the average accuracy. In the low-
resource setting, we set the size of the train data to
64 or 128. For each experiment, we run over 5 dif-
ferent sub-samples and show the average accuracy.

3 Method

In this section, we introduce the following two
approaches to integrate visual knowledge into LMs:
(1) text knowledge transfer; and (2) cross-modal
knowledge transfer. Throughout this section, we
assume the data is a collection of image xv and
caption xl pairs

{
(xvi , x

l
i)
}m

i=1
(m is the size of the

pairs) and image encoder fV and text encoder fL
are given. Note that we use the same text encoder.

3.1 Text Knowledge Transfer

For text knowledge transfer, we investigate follow-
ing pre-training objectives: (1) masked language
modeling; and (2) text contrastive learning.

Masked Language Modeling (MLM) Follow-
ing BERT (Devlin et al., 2019), we select 15% of
input tokens and replace them with [MASK]. Of
the selected tokens, 80% are replaced, 10% are not
changed and 10% are replaced by random vocab-
ulary token. Here, we employ dynamic masking,
which performs random masking and replacement
during training to prevent the same masking for
the same examples (Liu et al., 2019). MLM ob-
jective is the cross-entropy loss for masked token
predictions :

ℓMLM(xli) = − log p(xli|xmasked), (1)

where xi is the i-th token and xmasked is a mask.

Text Contrastive Learning (TCL) Contrastive
learning aims to learn representations by pulling
positive pairs closer and pushing negative pairs
apart. Here, we employ the contrastive framework
with cross-entropy objective and in-batch negatives
(Chen et al., 2020a; Gao et al., 2021). Given a
text encoder fL, and a caption xli, we first get text
representations using the encoders hli = fL(x

l
i).

Following Gao et al. (2021), we create identical

A girl puts an apple in her bag.

A girl puts an [MASK] in her bag.

Mask a token

A girl puts an envelope in her bag.

Top-k predictions 
from LM

Figure 3: LM perturbation. We create adversarial
negatives using language models.

positive sample hl
+

i by different dropout represen-
tations. The contrastive loss is defined as follows:

ℓli = − log
esim(hl

i,h
l+

i )/τ∑N
j=1 e

sim(hl
i,h

l
j)/τ

, (2)

where N is a batch size and sim(·) represents co-
sine similarity, i.e., sim(u, v) = u · v/∥u∥∥v∥. τ
represents a temperature parameter.

3.2 Cross-modal Knowledge Transfer

Language models might learn additional informa-
tion from visual sources such as images and cap-
tions. So we include a variety of vision-based ap-
proaches and investigate the approaches whether
they can benefit from visual sources. We introduce
vision-based approaches as follows.

Voken Classification Vokenization (Tan and
Bansal, 2020) employs token-level text-to-image
retrieval to transfer visual knowledge. It aligns
language tokens to their related images (called “vo-
kens”) to transfer visual knowledge into LMs, and
call it “voken classification”. Given text x and a
voken vi for the i-th token, the loss is defined as

ℓvoken
i = − log(p(vi|x)). (3)

Similar to masked language modeling, it classifies
each token to a corresponding voken. Vokenization
trains language models with the voken classifica-
tion task and MLM.

Masked Language Modeling with Visual Clues
VL-BERT (Su et al., 2020) adopts masked language
modeling with visual clues in which models are
given a caption with masked tokens and an im-
age and predict the masked tokens using visual
clues. VL-BERT is pre-trained on Conceptual Cap-
tions (Sharma et al., 2018) as an image-caption
corpus, and BooksCorpus (Zhu et al., 2015b) and
English Wikipedia as text-only corpora. It shows



its effectiveness in many vision-language tasks. We
investigate whether this model also succeed in NLP
tasks and compare it with others.

Cross-modal Contrastive Learning (CMCL)
To harness the visual knowledge from image-
caption datasets, we adopt contrastive loss on im-
age and text vectors. Given an image encoder fV , a
text encoder fL, and an image-caption pair (xvi , x

l
i),

we first get image and text representations using
the encoders hvi = fV (x

v
i ), h

l
i = fL(x

l
i). Then

the contrastive learning objective contains two loss
functions: an image-to-text contrastive loss ℓ(v,l)

and a text-to-image contrastive loss ℓ(l,v). The
image-to-text contrastive loss is defined as follows:

ℓ
(v,l)
i = − log

esim(hv
i ,h

l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ

, (4)

where N is a batch size and sim(·) represents co-
sine similarity. This loss encourages a closer dis-
tance between representations of aligned image-
caption pairs than unaligned pairs given an image
and multiple captions. Similarly, the text-to-image
contrastive loss ℓ(l,v) is defined as follows:

ℓ
(l,v)
i = − log

esim(hl
i,h

v
i )/τ∑N

j=1 e
sim(hl

i,h
v
j )/τ

. (5)

The final loss is defined as

L =
1

N

N∑
i=1

(ℓ
(v,l)
i + ℓ

(l,v)
i ). (6)

CLIP (Radford et al., 2021) and ConVIRT (Zhang
et al., 2020) also adopt contrastive learning, but we
freeze the image encoder in training and use the
trained text encoder for downstream tasks.

CMCL with Adversarial Negative Samples
(ANS) As in-batch negatives in CMCL are not
challenging enough for models to distinguish, we
present adversarial negative sampling strategy to
improve CMCL. Given an image-caption pair
(xvi , x

l
i), we define a LM-perturbed sentence xl

−
i ,

which is a hard negative where n is replaced with a
different word n′ from a probability distribution of
PTLMs. We expect the l− is syntactically correct
and plausible sentence even the word n is replaced
to n′, while it does not semantically match to the
corresponding image xvi . With such hard nega-
tive, we try to make more challenging task so that
models can effectively learn from the task. For ex-
ample, we choose a word ‘girl’ in the sentence ‘A

girl puts an apple in her bag.’ in Figure 3. Then we
mask the word with [MASK] token to do masked
token predictions by PTLMs. Then we get top-
k predictions from language models and replace
the masked tokens with one of the predicted ones.
To avoid false negative sentences which may have
the same semantics as the original sentence, we
introduce an additional filtering step: if the masked
predictions are synonyms or hypernyms of the orig-
inal tokens, we discard the predictions. We use
WordNet (Miller, 1992) to find synonyms and hy-
pernyms. The contrastive loss with hard negative
is defined as follows:

− log
esim(hv

i ,h
l
i)/τ∑N

j=1 e
sim(hv

i ,h
l
j)/τ +

∑M
k=1 e

sim(hv
i ,h

l−
j )/τ

,

(7)
where M is the number of hard negative samples
per positive pair. This formula is only for image-to-
text contrastive loss ℓ(v,l) and final loss is defined
to same as equation (6).

CMCL with Positive Sample Augmentation
(PSA) In ANS, we filter perturbed sentences
where the masked predictions are synonyms or hy-
pernyms of the original tokens. Instead of exclud-
ing these perturbed sentences, another option is to
include them as additional positive samples l+ to
the paired images. We name this as positive sample
augmentation (PSA). It also adopts LM-perturbed
negative samples as in ANS.

Cross-modal Knowledge Distillation (CMKD)
Cross-modal knowledge distillation is to transfer
knowledge between different modalities, e.g., im-
age modality and text modality. In this category,
CMKD is to transfer knowledge from a teacher
model which is knowledgeable about visual infor-
mation. VidLanKD (Tang et al., 2021) also uti-
lizes a cross-modal knowledge distillation method
to help with general language understanding. A
teacher model is first trained using contrastive
learning on a video-text dataset, and then it trans-
fers its knowledge to a student language model
using KD on a text corpus. Their contrastive learn-
ing loss (hinge loss) is defined as

L =

N∑
i

[max(0, α−sim(hvi , h
l
i)+sim(hv

′
i , h

l
i))

+ max(0, α− sim(hvi , h
l
i) + sim(hvi , h

l′
i ))], (8)

where v′ and l′ are a random image and caption text,
respectively. α is the margin between the similari-



Model PIQA VP CSQA OBQA RiddleSense Average

64 128 64 128 64 128 64 128 64 128 64 128

- BERT-base 52.6±0.9 53.8±0.1 85.9±1.1 86.6±0.7 35.8±0.7 37.8±0.3 31.3±1.2 32.0±0.7 24.7±0.1 25.2±0.2 46.1 47.1

C
ap

tio
n MLM 53.1±0.2 54.3±0.3 86.5±0.3 87.3±0.4 35.7±0.3 36.7±0.1 33.4±0.6 34.2±0.3 26.3±0.1 26.5±0.2 47.0 47.8

TCL 52.6±0.5 52.9±0.6 86.4±0.1 88.0±0.1 35.7±0.2 36.1±0.3 34.2±1.4 35.2±0.7 30.3±0.5 30.7±0.4 47.8 48.5
TCL + MLM 53.6±0.7 54.6±0.2 84.2±0.2 87.6±0.3 33.6±2.2 35.1±0.6 31.8±2.3 34.3±0.5 20.6±0.0 20.6±0.0 44.7 46.4
TCL + ANS 50.0±0.7 50.5±0.6 67.3±0.4 68.2±0.7 26.8±1.2 27.5±0.5 33.4±1.1 35.0±1.0 26.1±1.7 26.5±1.8 40.7 41.5
TCL + PSA + ANS 51.1±0.1 51.2±0.4 66.0±0.0 66.0±0.0 22.7±0.9 22.9±0.1 30.2±3.1 31.8±0.4 23.5±1.2 25.2±1.5 38.7 39.4

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 53.1±0.6 53.9±0.4 88.5±0.3 88.4±0.5 36.2±0.7 36.8±0.8 33.4±1.2 34.6±1.2 26.1±0.8 26.1±0.9 47.7 48.5

Vokenization 50.5±0.5 51.1±0.4 68.8±1.6 78.1±1.9 19.2±1.4 21.5±0.8 31.2±2.7 33.2±2.2 17.1±0.5 16.7±0.7 37.3 40.1
VidLanKD 55.0±0.4 55.6±0.5 86.7±0.5 88.5±0.5 37.1±1.0 38.6±0.5 31.8±1.3 32.6±1.0 24.4±0 24.4±0 47.0 47.9
VidLanKD variant 55.3±0.3 55.2±0.4 87.4±0.1 88.2±0.6 37.3±1.2 38.9±0.5 32.4±2.1 32.2±1.1 24.4±0.0 24.4±0.0 47.3 47.7
CMKD (VL-BERT-large) 54.7±0.5 54.5±0.2 86.5±0.8 88.4±0.4 36.7±0.4 38.5±0.4 29.8±0.8 31.7±0.2 25.2±0.1 25.2±0.0 46.5 47.6
CMCL 54.7±0.4 55.1±0.1 87.9±0.3 88.9±0.2 36.3±0.3 38.4±0.4 31.1±1.1 32.8±0.9 25.0±0.2 25.4±0.4 47.0 48.1
CMCL + ANS 55.4±0.1 55.7±0.2 88.1±0.9 88.9±0.7 37.5±0.8 39.0±0.2 32.2±0.7 32.0±0.6 27.4±0.0 27.5±0.1 48.1 48.6
CMCL + PSA + ANS 55.4±0.2 55.1±0.2 88.8±1.0 88.2±0.2 37.0±0.3 38.1±0.3 34.1±0.4 34.8±0.9 26.7±0.4 28.8±0.7 48.4 49.0

Table 2: Performance (accuracy) in low-resource setting. We test models on diverse datasets with low-resource
learning (64 and 128 training samples). We use captions in the MS COCO dataset for text knowledge transfer
methods and images and captions for cross-modal knowledge transfer methods. We get average performance on 64
and 128 training samples. Bold and underlined numbers refer to the best and second-best performance, respectively.

ties of a positive pair and a negative pair. Instead of
video datasets, we use a MS COCO dataset to train
a teacher model and use two versions of contrastive
learning, equations (6) and (8).

As another version of CMKD, we consider dis-
tilling visual knowledge from a pre-trained vision-
language model, VL-BERT, which is knowledge-
able about grounded language. We adopt masked
language modeling on Wikitext103 (Merity et al.,
2017), a subset of English Wikipedia, in the
knowledge distillation step. For knowledge dis-
tillation, we adopt Neuron Selectivity Transfer
(NST) (Huang and Wang, 2017), which proves the
effectiveness in VidLanKD (Tang et al., 2021).

4 Experimental Settings

For all the approaches, we use
bert-base-uncased (Devlin et al., 2019)
as text encoder fL and ResNeXt101 (Xie et al.,
2017) as an image encoder fV . We continue to
pre-train the encoders in our experiments. For text
knowledge transfer, (1) MLM follows the exact
setting of codebase in huggingface2 which uses
dynamic masking strategy to conduct language
modeling task. (2) TCL conducts contrastive
learning with fL. We choose the best checkpoint
by the best spearman correlation on STSb (Cer
et al., 2017). For cross-modal knowledge transfer,
(1) CMKD explores VL-BERT, Vokenization, and
VidLanKD approaches. Here, we use VL-BERT-
large model to do CMKD. We use the VL-BERT
and Vokenization checkpoints from their official

2
https://github.com/huggingface/transformers/

tree/master/examples/pytorch/language-modeling

codebases3. VidLanKD trains a teacher model by
two versions of contrastive learning (equations (6)
and (8)) on MS COCO dataset. We set α = 1 in
VidLanKD (equation (8)). (2) CMCL conducts
contrastive learning with fL and fV . Here, we
set τ = 0.05 (equations (2) and (4)). (3) CMCL
with ANS chooses three noun words or verb
words to do masked prediction and use top-5
predictions from fL as replacement. We filter out
synonyms and hypernyms of original words using
WordNet (Miller, 1992). (4) CMCL with PSA
includes the perturbed sentences with synonyms
and hypernyms as additional positive samples.
In CMCL, we adopt ResNeXt101 (Xie et al.,
2017) as an image encoder fV and BERT as a text
encoder fL. TCL and CMCL train with batch size
64, maximum sequence length 20, learning rate
1e-4 for 3 epochs. For fine-tuning on downstream
tasks, we do grid search on learning rates {5e-5,
1e-4, 3e-4, 4e-4, 5e-4, 6e-4} and choose the best
learning rate. We set maximum epochs to 30 in
low-resource and 15 in fully supervised settings.

5 Results and Analysis

We analyze the main results of intermediate pre-
training. Tables 2 and 3 show the main results of
low-resource learning and fully supervised learning
with the MS COCO captioning dataset, respectively.
We train the models with a few training examples,
64 and 128, to understand the better initialization.
We argue that if a model obtains better performance
in the low-resource setup, then it is a faster learner
and has better generalization on downstream tasks.

3
https://github.com/jackroos/VL-BERT, https:

//github.com/airsplay/vokenization

https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
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Model PIQA VP CSQA OBQA RiddleSense Average

- BERT-base 62.5±1.3 93.1±0.4 53.2±1.2 52.2±0.5 38.9±0.9 59.9

C
ap

tio
n

MLM 63.8±0.9 93.5±0.1 52.6±0.3 53.9±1.1 39.3±1.4 60.6
TCL 62.1±0.5 93.5±0.4 49.0±0.5 54.1±1.0 41.2±0.3 60.1
TCL + MLM 62.3±0.7 93.2±0.3 49.0±0.4 49.0±0.8 40.5±0.5 58.8
TCL + ANS 60.1±1.2 93.3±0.1 47.0±0.1 50.2±0.9 36.7±0.8 57.4
TCL + PSA + ANS 59.5±1.0 92.4±0.3 34.0±1.3 44.6±1.4 28.4±2.3 51.7

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 63.8±1.5 93.6±0.1 50.3±1.1 49.6±2.3 39.1±1.0 59.2

Vokenization 58.4±5.1 92.7±0.3 45.0±0.2 48.1±0.8 33.5±0.7 55.5
VidLanKD 63.1±1.1 93.7±0.4 52.4±0.8 50.6±3.9 39.5±1.7 59.8
VidLanKD variant 64.1±0.2 93.8±0.3 53.6±0.5 47.9±4.3 38.8±2.0 59.6
CMKD (VL-BERT-large) 63.8±0.0 93.7±0.7 53.3±1.4 48.7±3.0 38.7±0.4 59.6
CMCL 62.7±0.1 93.3±0.3 50.8±0.9 52.3±0.7 37.6±1.0 59.2
CMCL + ANS 63.5±0.1 93.3±0.3 50.3±0.1 52.9±0.3 38.4±0.9 59.7
CMCL + PSA + ANS 63.9±0.5 94.3±0.1 50.9±0.3 52.4±1.2 39.0±0.3 60.1

Table 3: Performance (accuracy) in fully supervised
setting. Bold and underlined numbers refer to the best
and second-best performance, respectively.

Model RTE MRPC STS-B CoLA SST-2 QNLI QQP Avg.

- BERT-base 70.0 87.9 89.1 57.4 91.3 90.4 89.3 82.3

C
ap

tio
n

MLM 62.8 87.0 89.1 53.9 92.6 91.1 90.9 81.0
TCL 58.4 83.1 88.2 55.5 91.9 91.4 90.9 79.9
TCL + MLM 54.8 81.6 87.2 53.6 91.9 90.9 89.2 78.5
TCL + ANS 56.3 83.9 87.0 51.5 91.3 91.2 89.4 78.6
TCL + PSA + ANS 52.3 75.6 81.5 17.4 90.0 85.8 88.2 70.1

C
ap

tio
n-

Im
ag

e
Pa

ir
s VL-BERT-base 57.4 85.7 89.5 58.1 90.6 89.7 88.7 80.0

Vokenization 53.0 87.0 83.3 51.3 91.4 89.2 88.5 77.7
VidLanKD 67.5 87.8 89.4 57.7 90.7 90.3 88.6 81.7
VidLanKD variant 68.5 87.9 89.7 54.9 91.1 90.5 88.6 81.6
CMKD (VL-BERT-large) 68.5 88.5 89.3 55.4 90.9 89.7 88.6 81.6
CMCL 63.5 82.5 89.5 51.1 90.4 90.0 88.4 79.3
CMCL + ANS 69.6 86.8 89.4 56.1 90.7 90.5 88.6 81.7
CMCL + PSA + ANS 69.8 86.2 89.0 55.3 90.4 90.5 88.6 81.6

Table 4: Performance (accuracy) on GLUE bench-
mark. Bold and underlined numbers refer to the best
and second-best performance, respectively.

Can text intermediate pre-training help improve
text encoders? Text intermediate pre-training us-
ing MLM and TCL on a caption corpus improves
the performance on downstream tasks in both low-
resource and fully supervised settings. In particular,
TCL shows significant improvement on OBQA and
RiddleSense over BERT (p-value < 0.01). These
results suggest that text intermediate pre-training
on visual-related datasets helps performance on
commonsense reasoning tasks.

Can cross-modal intermediate pre-training help
transfer visual knowledge to augment text en-
coders? We observe that cross-modal intermedi-
ate pre-training is helpful in both fully supervised
and low-resource settings (See Table 2 and 3).
Specifically, CMKD with VidLanKD variant out-
performs the baseline by 1.6% point on the PIQA
dataset in fully supervised setting. CMCL also
shows its effectiveness. However, we could find
that it becomes more powerful when equipped with
PSA and ANS. It suggests that data augmentation
for positive and negative sampling is an important
factor for CMCL. In low-resource setting, we find
that cross-modal knowledge transfer helps better
initialization and lets models learn new tasks faster.

What intermediate pre-training objectives are
effective for cross-modal knowledge transfer?
Among various cross-modal knowledge transfer
methods, we study which method is the most effec-
tive for cross-modal knowledge transfer. Overall,
CMCL with PSA and ANS shows the best perfor-
mance among all cross-modal methods. Interest-
ingly, VL-BERT also shows better performance
than BERT-base on all datasets in the low-resource
setting. This suggests that exploiting images in
masked language modeling task help transfer the
knowledge to language models.

What types of knowledge sources are most help-
ful? Here, we investigate whether using an im-
age source in addition to a text source can further
improve the model. To answer this question, we
analyze methods from different types of sources:
text-only and text-image pair sources. We focus on
the methods that use the contrastive learning objec-
tive: TCL and CMCL. Note that these two methods
share the same objective but CMCL trains on cross
modalities which are images and captions while
TCL only trains on captions. Overall, TCL per-
forms slightly better than CMCL in low-resource
and fully supervised settings. Interestingly, addi-
tional negative samples (ANS) and positive sam-
ples in TCL decreases the performance while they
help CMCL to improve the performance. We con-
jecture that perturbed sentences in ANS might not
be semantically negative to the original sentence so
models learn from wrong labels.

5.1 Ablation Study
How do models perform on general NLU tasks?
Table 4 presents results on GLUE benchmark.
In GLUE, text intermediate pre-training methods
slightly underperform the original BERT-base. We
conjecture that the intermediate pre-training on cap-
tion data might sacrifice knowledge of general lan-
guage understanding.

Analysis on diverse text corpora Table 5 rep-
resents text approaches with different pre-training
corpora: MS COCO captions (Lin et al., 2014;
Chen et al., 2015), GenericsKB (Bhakthavatsalam
et al., 2020), BooksCorpus (Zhu et al., 2015a), and
WikiText103 (Merity et al., 2017). We sample 250k
sentences from each corpus for a fair comparison.
We notice that caption datasets are useful on OBQA
and RiddleSense datasets while GenericsKB are
the most helpful on PIQA datasets. Results are ex-
pected since GenericsKB contains a lot of everyday
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Figure 4: Results on varying training sizes. We test
methods with different training sizes.

statements that contain various types of common-
sense.

Different training sizes. We test different train-
ing sizes on PIQA in Fig. 4. In the experiment,
we observe that CMCL consistently outperforms
BERT on all training sizes. Additional negative
sample (ANS) improves the CMCL on different
training sizes, and positive sample augmentation
boosts the performance of CMCL further. This sug-
gests including perturbed sentences as positive and
negative samples are useful to cross-modal knowl-
edge transfer.

6 Related Work
Text Knowledge enhanced methods. Recently,
huge efforts on integrating knowledge into PTLMs
have been made. One typical form of knowledge
is a knowledge graph. There have been efforts of
using knowledge graph to inject entity and relation
representations, which are pre-computed from ex-
ternal source, into PTLMs (Zhang et al., 2019; Xu
et al., 2021a; Peters et al., 2019; He et al., 2020;
Xu et al., 2021b). Some other works try to retrieve
or generate the sub-graph from the graph to solve
the problem (Lin et al., 2019; Wang et al., 2020).
Another existing form of knowledge is extra large-
scale corpus. Works that use such corpus present
knowledge-related pre-training objectives such as
concept order recovering (Zhou et al., 2021), entity
category prediction (Yu et al., 2020) and source of
knowledge prediction (Wang et al., 2021; Calixto
et al., 2021). They are mostly focused on inject-
ing world knowledge presented in text, rather than
physical and visual commonsense knowledge that
can be found in images.

Cross-modal knowledge enhanced methods.
There is a extensive line of works for a variety
of vision-language tasks, such as VL-BERT (Su
et al., 2020), VisualBert (Li et al., 2019), and
Uniter (Chen et al., 2020b). These models aim to

improve vision-language tasks, e.g., VQA (Goyal
et al., 2017) and event understanding (Li et al.,
2022), and they are found to be not effective in
improving language tasks (Tan and Bansal, 2020).
Another line of works is to transfer visual knowl-
edge to language models: Vokenization (Tan and
Bansal, 2020) and VidLanKD (Tang et al., 2021).
Vokenization employs token-level text-to-image re-
trieval to transfer visual knowledge to language
models. For this, Vokenization introduces 30k vo-
kens and matches each token into the limited voken
space. VidLanKD adopts contrastive learning to
train a teacher model on video datasets and uses
distillation approaches to distill visual knowledge
from the teacher to a student model.

7 Conclusion

We study whether intermediate pre-training on vi-
sual knowledge can help transfer visual knowledge
into LMs. We investigate text knowledge transfer
and cross-modal knowledge transfer using images
and captions. In our empirical analysis, we observe
that intermediate pre-training on captions can help
improving performance and cross-modal knowl-
edge transfer approaches consistently improve per-
formance. When the transfer methods are equipped
with additional positive and negative samples, they
show better performance. Future works include im-
proving both commonsense reasoning and general
language understanding.
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Model PIQA VP CSQA OBQA RiddleSense

64 128 Full 64 128 Full 64 128 Full 64 128 Full 64 128 Full
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G
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Table 5: Results of text knowledge transfer methods with different corpora. We pre-train text knowledge
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BooksCorpus, and WT is WikiText. Bold and underlined numbers refer to the best and second-best performance,
respectively.
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A Dataset Properties

PIQA is a multiple-choice question answering task,
which chooses the most appropriate solution for
physical commonsense questions, which may need
illustration or description of physical interaction in
the real world. VP is to tell if two descriptions are
describing the same scene or two different scenes.
While they seem like purely textual tasks, they re-
quire visual common sense to answer. CSQA is
a multiple-choice question answering task that re-
quires commonsense reasoning to answer. It is built
from ConceptNet (Speer et al., 2017). OBQA is
a multiple-choice question answering task, which
is modeled after open book exams on elementary-
level core science questions. The task generally
requires open book fact but also additional com-
monsense which can be learnt from scientific illus-
tration. RiddleSense is a multiple-choice riddle-
style question answering which requires complex
commonsense reasoning ability and understanding
of figurative language which may benefit from vi-
sual knowledge.


