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Abstract
Training Deep Neural Networks (DNNs) is a popular work-
load in both enterprises and cloud data centers. Existing
schedulers for DNN training consider GPU as the dominant
resource and allocate other resources such as CPU and mem-
ory proportional to the number of GPUs requested by the
job. Unfortunately, these schedulers do not consider the im-
pact of a job’s sensitivity to allocation of CPU and mem-
ory resources. In this work, we propose Synergy, a resource-
sensitive scheduler for shared GPU clusters. Synergy infers
the sensitivity of DNNs to different resources using optimistic
profiling; some jobs might benefit from more than the GPU-
proportional allocation and some jobs might not be affected
by less than GPU-proportional allocation. Synergy performs
such multi-resource workload-aware assignments across a
set of jobs scheduled on shared multi-tenant clusters using
a new near-optimal online algorithm. Our experiments show
that workload-aware CPU and memory allocations can im-
prove average job completion time by upto 3.4×, by better
utilizing existing cluster resources, compared to traditional
GPU-proportional scheduling.

1 Introduction

The widespread popularity of Deep Neural Networks (DNNs)
makes training such models an important workload in both en-
terprises and cloud data centers. Training a DNN is resource-
intensive and time-consuming. Enterprises typically setup
large multi-tenant clusters, with expensive hardware accelera-
tors like GPUs, to be shared by several users and production
groups [31, 56]. In addition to the model-specific parame-
ters and scripts, jobs specify their GPU demand before being
scheduled to run on available servers. Jobs are scheduled and
managed either using traditional big-data schedulers, such as
Kubernetes [10] or YARN [51], or using modern schedulers
that exploit DNN job characteristics for better performance
and utilization [11, 26, 33, 35, 42, 46, 55]. These DNN sched-
ulers decide how to allocate GPU resources to many jobs
while implementing complex cluster-wide scheduling poli-
cies to optimize for objectives such as average job completion
times (JCT), makespan, or user-level fairness.
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Figure 1: Average JCT with Synergy. Synergy is able to
significantly reduce average JCT and support higher load for
different scheduling policies (shown here on a cluster of 128
GPUs for a Philly-derived trace as we vary load [5]).

Current DNN cluster schedulers assume GPUs to be the
dominant resource in the scheduling task [11, 26, 31, 33, 35,
42, 46, 55]; i.e., a user requests a fixed number of GPUs for
her DNN job, and when the requested number of GPUs are
all available, the job is scheduled to run. Other resources such
as CPU and memory are allocated proportional to the number
of GPUs assigned to the job (GPU-proportional allocation).

However, we identify an important property of DNN train-
ing jobs that GPU-proportional allocation is unable to exploit:
DNNs exhibit varied sensitivity to the amount of auxiliary
resources like CPU and memory allocated to the job. Prior
work has shown that ingesting data for ML training jobs, i.e.,
reading data from storage to memory, and pre-processing
them at the CPU is computationally expensive, thereby re-
sulting in data stalls in both research [39] and industry scale
training at large enterprises such as Google [40] and Face-
book [59]. For instance, some image and video recognition
models achieve up to 3× speedup by overcoming data stalls
(§2) when the CPUs allocated exceed their GPU-proportional
share, while other models like GNMT are unaffected when
the CPUs assigned are less than GPU-proportional share.

Our main insight here is that allocating these auxiliary
resources in a workload-aware fashion, rather than the tra-
ditional GPU-proportional allocation can significantly im-
prove performance by effectively utilizing cluster-wide re-
sources. Based on this insight, we propose Synergy, a resource-
sensitive scheduler for homogeneous, multi-tenant GPU clus-
ters. Figure 1 shows the average job completion time (JCT)



in the cluster as we vary load, for two scheduling policies;
Synergy’s resource-sensitive allocation is able to significantly
improve average JCT in the cluster and sustain a higher load
compared to GPU-proportional allocation.

Synergy profiles the sensitivity of DNNs to auxiliary re-
sources and allocates them disproportionately among jobs
rather than using traditional GPU-proportional allocation.
While doing so, Synergy ensures that a job gets less than
GPU-proportional auxiliary resources only if such an alloca-
tion does not degrade the job throughput compared to a GPU-
proportional allocation. Such allocation enables Synergy to
mitigate data stalls in several models, thereby significantly
increasing the overall cluster throughput.

Efficiently exploiting the heterogeneity in resource sensi-
tivity among DNN jobs raises two important problems which
have not been tackled by prior work:
• What is the ideal resource requirement for each job (with

fixed GPU demand) and how can this be determined with
low overhead?
• How should we pack these jobs onto servers along multi-

ple resource dimensions efficiently, especially when we
can tune the job’s demand for these resources?

Optimistic profiling. Synergy exploits the predictability of
DNN computation to measure the job throughput as we vary
the amount of CPU and memory allocated to the job. This
is performed offline by the Synergy scheduler, prior to job
execution on the cluster. However, profiling all possible com-
binations of CPU, and memory values is computationally
expensive. Therefore, Synergy introduces optimistic profil-
ing; it empirically profiles the job throughput for varying CPU
allocations, assuming maximum memory allocation. It then
analytically estimates the job throughput for all combinations
of CPU and memory.A key insight that makes such analytical
modelling feasible is the predictable nature of job perfor-
mance to memory allocation when using DNN-aware caching
like MinIO [39] that guarantees a certain cache hit rate. We
show in §3.1 that our optimistically profiled model perfor-
mance closely resembles the true empirical values, while sig-
nificantly reducing profiling time (by up to 30×). Using these
profiles, Synergy identifies the best resource allocation be-
yond which the job throughput has diminishing returns.

Scheduling mechanism. Synergy makes a round-based
scheduling decision similar to prior DNN schedulers [42].
In each round (say 5 minutes), we identify the set of jobs that
are runnable in the cluster using a scheduling policy such as
FIFO [51, 57], SRTF [12], LAS [26, 43], FTF [35], etc. Syn-
ergy’s scheduling mechanism then packs these jobs among
available servers in the cluster along all resource dimensions
identified in the profiling phase. This is analogous to multi-
dimensional bin-packing problem, which is NP-Hard [53],
and hence requires approximate solutions. But unlike prior
work in big-data scheduling which tackles the problem of
multi-dimensional bin-packing with fixed resource demands

(for e.g., Tetris [23], DRF [21]), Synergy has to contend with
fungible resource demands. This introduces two challenges
that need to be solved in tandem: First to find an optimal parti-
tion of CPU and memory among jobs to maximize throughput
while ensuring fair allocations (every job’s throughput is at
least that of GPU-proportional allocation), and second, a fea-
sible packing of these resources among jobs.

In this paper, we propose two effective algorithms to enable
such fungible multi-dimensional bin-packing. Our first algo-
rithm, Synergy-OPT, is formulated as a linear program and
enables determining an upper-bound on achievable through-
put by an optimal solution for a given workload trace. How-
ever, we find that Synergy-OPT is impractical for two reasons:
(1) it is computationally expensive as we scale cluster size,
and (2) it produces fractional GPU allocations that cannot
be achieved in real deployments. Nevertheless, its solution
provides an aspirational optimal goal that we can use to mea-
sure the efficacy of any practical solution. The second algo-
rithm, Synergy-TUNE, is fast and near-optimal (within 10%
of Synergy-OPT in evaluation). If a job to be scheduled does
not fit in the cluster along all the resource dimensions, we
revert the job demands to GPU-proportional if its current
demands are above it. If the job’s demands are already GPU-
proportional or below, then we find a suitable job in the cluster
with higher than GPU-proportional allocation, which is then
reverted to GPU-proportional. Synergy-TUNE also outper-
forms simpler greedy approaches (Synergy-GREEDY) that
recursively pack jobs along multiple resource dimensions
using a first-fit allocation strategy [20].

We implement a prototype of Synergy and an accompany-
ing event-driven simulator in Python. Synergy transparently
communicates with the DNN job using a thin iterator API,
that is a wrapper around the existing data iterator, thereby re-
quiring minimal code changes to the DNN job script. Across
various scheduling policies, and workload traces, we show
that Synergy improves cluster objectives such as average
JCT by up to 1.5× on a physical cluster of 32 GPUs. On
a large simulated cluster of up to 512 GPUs, Synergy im-
proves average JCT by up to 3.4×. Synergy is open sourced
at https://github.com/msr-fiddle/synergy.

In summary, our paper makes the following contributions.
• We identify the importance and need for resource-sensitive

scheduling of DNN jobs in multi-tenant GPU clusters (§2).
• We present Synergy, a resource-sensitivity aware sched-

uler that optimistically profiles the job’s resource demands
and performs disproportionate allocations such that no job
achieves lower than GPU-proportional throughput (§3).

• We present a heuristic scheduling mechanism Synergy-
TUNE, that maps the allocations calculated by the profiler
onto the cluster, while better utilizing the resources com-
pared to a GPU-proportional allocation (§4).

• In extensive experimentation on physical and simulated
clusters, Synergy’s techniques improve average JCT by up
to 3.4×, thus supporting a higher input load (§5).

https://github.com/msr-fiddle/synergy
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Figure 2: CPU sensitivity. This graph plots the epoch time for DNNs as we vary the CPU:GPU ratio for single-GPU training.
Some jobs such as Transformers need as few as 1 CPU core per GPU to achieve maximum training speed; others like ShuffleNet
need more than 12 CPU cores per GPU to eliminate data stalls. State-of-the-art GPU VMs have a CPU:GPU ratio as few as 3.

2 Background and Motivation

In this section, we briefly describe DNN scheduling, introduce
the terminology used in the rest of the paper, and motivate
resource-sensitive DNN cluster scheduling.

Scheduling ML training jobs in a cluster. Training a ML
model is a resource intensive and long-running task (order
of hours to days). Collocating ML training workloads in a
shared, multi-tenant cluster is a very common setup in several
large organizations, for both research and production [26,
35, 42, 46, 55]. Our work targets state-of-the-art multi-tenant
clusters similar to the ones published by prior large-scale
studies by organizations like Microsoft [31] and Alibaba [56].
These clusters use on-premise servers or cloud VMs with
pre-defined GPU, CPU, and memory resources. The cluster
itself is shared by multiple users and jobs, and each server
can host more than one job each with varying resource usage
(some heavy on CPU side pre-processing, while others heavy
on GPU computation). For example, a server with 8 GPUs
can host 8 single-GPU jobs from different users.

Scheduling policy and mechanism. When jobs are sub-
mitted to a scheduler, a scheduling policy such as First In,
First Out (FIFO) [51, 57], Shortest Remaining Time First
(SRTF) [12], Least Attained Service (LAS) [26,43], or Finish
Time Fairness (FTF) [35] decides the set of jobs (J) to be run
on the cluster. A scheduling mechanism then identifies where
job J should be run, and how much resources to allocate to
the job. The GPU demand for a job is fixed (requested by the
user), while the CPU and memory allocation is fungible.

GPU-proportional allocation. During DNN training, a mini-
batch of data is first fetched from storage to memory, where
it is cached for subsequent accesses. It is then pre-processed
at the CPU, and then copied over to the GPU for processing.
Existing DNN schedulers [26, 35, 42, 55], and those used in
real-world GPU clusters [5, 31], including recent schedulers
that offer GPU elasticity [30, 48], all allocate CPU and mem-

ory resources to a job using a GPU-proportional allocation.
For instance, consider a server with 4 GPUs, 16 CPUs and
200 GB memory. If a job requests 1 GPU, then it is allocated
4 CPUs and 50GB memory.

2.1 Motivation : Resource sensitivity

Insight. The main insight that motivates our work is that
DNNs co-scheduled on a cluster exhibit different levels of
sensitivity to CPU and memory allocations during training.
Therefore, it is possible to improve the overall cluster uti-
lization and efficiency by performing resource-sensitive al-
locations instead of the ubiquitously used GPU-proportional
allocation. Prior work on characterization study of jobs in
Microsoft’s Philly cluster [31] shows that CPU cycles are
under-utilized in multi-tenant clusters; we use this as moti-
vation to show that we can exploit the disparity in resource
requirements across jobs to improve overall cluster utilization
without any hardware upgrades (storage, CPU, or memory).

Figure 2a plots the per-epoch time for various DNNs when
trained on a single GPU by varying the number of CPUs al-
located to the job (ensuring that the dataset is fully cached
for each job). Figure 2a(i) shows that most image and speech
models are sensitive to CPU allocations; smaller models like
ShuffleNet and ResNet18 require 9–24 CPU cores per GPU
to pre-process data items. However, state-of-the-art ML opti-
mized servers and cloud GPU VMs have a CPU:GPU ratio as
few as 3 as shown in Table 2b [1–3, 6, 18, 34]. Increasing the
CPU:GPU ratio from 3 to 12 results in 3.1× faster training
for AlexNet, and increasing it to 9 results in 2.3× faster train-
ing for ResNet18. On the other hand, most language models
are insensitive to CPU allocations as shown in Figure 2a(ii).
This is because they have modest input data pre-processing
requirements. Transformer models for example, unlike image
classification models, do not perform several unique data aug-
mentation operations for each data item in every epoch [39].

Next, to understand the importance of memory alloca-



Job Model
J1 ResNet18
J2 Audio-M5
J3 Transformer
J4 GNMT

Table 1: Example jobs

Server Job GPU CPU Mem

S1
J1 4 12 250
J2 4 12 250

S2
J3 4 12 250
J4 4 12 250

Table 2: GPU-proportional allocation

Server Job GPU CPU Mem

S1
J1 4 23 400
J3 4 1 100

S2
J2 4 12 450
J4 4 12 50

Table 3: Resource-sensitive allocation

Figure 3: Resource sensitive scheduling. We compare the
runtime of the jobs with two different schedules; GPU-
proportional and resource-sensitive. By allocating resources
disproportionately, CPU and memory sensitive jobs see in-
creased throughputs which reduces the average JCT by 1.5×.

tions, we train two models; an image classification model -
ResNet18 on OpenImages [22] and a language model GNMT
on WMT, with varying memory allocations on a server whose
GPU-proportional share of memory per GPU is 62GB. We
observe that GNMT is insensitive to memory allocation; even
if only 20GB memory is allocated (which is the required
process memory for training), the training throughput is unaf-
fected. However, increasing the memory from 62GB (GPU-
proportional allocation) to 500GB (max) for ResNet18 speeds
up training by almost 2×. This is because, language mod-
els like GNMT, and transformers are GPU compute bound.
Therefore, fetching data items from storage if they are not
available in memory does not affect training throughput. On
the other hand, image and speech models benefit from larger
DRAM caches. If a data item is not cached, the cost of fetch-
ing it from the storage device can introduce fetch stalls in
training [39, 40, 59].

Takeaway. When two jobs have to be scheduled on the same
server, it is possible to co-locate a CPU-sensitive job with
a CPU-insensitive one. This allows CPU allocation to be
performed in a resource-sensitive manner rather than GPU-
proportional allocation. Similarly, it is always beneficial to
pack a memory-sensitive job with an insensitive one, allowing
disproportionate resource-sensitive sharing of memory to
improve the aggregate cluster throughput.

Example. We now show how resource-sensitivity-aware
scheduling can improve cluster efficiency using a simple
example. We run the experiment on two physical servers
each with 8 GPUs, 24 CPUs and 500GB DRAM (internal
servers at a large cloud provider X). Let’s say we have 4 jobs
in the scheduling queue, each requesting 4 GPUs as shown
in Table 1. We consider two different schedules; (1) GPU-
proportional allocation and (2) resource-sensitive allocation.
The results of these schedules are shown in Table 2 and Ta-

ble 3. Figure 3 compares the epoch time of each of these jobs
in the two scenarios. The increased resource allocation to
CPU and memory sensitive jobs in Schedule 2 speeds up J1
and J2 significantly, while leaving the runtime of J3 and J4
unaffected. The average JCT in the cluster thus drops by 1.5×
due to resource-sensitive allocations.

2.2 Synergy Scheduling Policies
Synergy is not constrained to one particular scheduling pol-
icy, but is instead general enough to improve a wide range of
scheduling policies (e.g., LAS, FIFO, SRTF, FTF, etc), cre-
ating Synergy-augmented variants for all of them. The main
challenge that Synergy addresses is, finding an efficient par-
tition of available cluster CPU and memory among jobs to
maximize throughput while ensuring that every job’s through-
put is at least that of GPU-proportional allocation. Synergy ’s
innovation thus lies in exploiting the differences in resource
sensitivity across jobs to improve overall cluster metrics.

2.3 Assumptions & Limitations
In the context of this work, we explicitly highlight certain
practical assumptions, many of which are derived directly
from large multi-tenant clusters we analyze - homogeneous
clusters, fixed GPU allocation for the lifetime of a job, and
the use of MinIO cache. Synergy ’s design is not tied to these
assumptions, but it aids in focused profiling (reducing the
dimensionality of the search space). In a large scale, multi-
tenant, production cluster, it is practical to assume that there
are tens of thousands of accelerators per homogeneous clus-
ter, and the GPU allocation for a job remains constant. While
recent works explore scheduling DNN jobs in heterogeneous
clusters [11,33,42], and GPU elasticity [48], there are several
practical challenges in seamlessly supporting these features.
For instance, with elastic training, the impact of changing
batch sizes and hyperparameters on training accuracy is un-
clear for a wide variety of tasks. We provide a detailed dis-
cussion on the practicality of each of these assumptions made
by Synergy, and what it means to relax these assumptions for
Synergy in Section 6.

3 Synergy: Design

Overview. Synergy is a round-based scheduler that arbitrates
multi-dimensional resources (GPU, CPU, and memory) in a



Figure 4: Optimistic profiling empirically evaluates the sen-
sitivity of a model to varying # CPUs assuming a fully cached
dataset; the rest of the matrix is completed using estimation

homogeneous cluster. Synergy augments existing scheduling
policies with resource sensitivity in two steps. First, it identi-
fies the job’s best-case CPU and memory requirements using
optimistic profiling (§3.1). Synergy then identifies a set of
runnable jobs for the given round using a scheduling policy
(e.g., SRTF, FTF, LAS, etc) such that their collective GPU de-
mand is less than or equal to the GPUs available in the cluster.
Then, using the profiled resource demands, Synergy packs
these jobs on to the available servers along multiple resource
dimensions using a near-optimal heuristic algorithm ( §4).
At the end of a round, the set of runnable jobs are updated
using the scheduling policy, and their placement decisions are
recomputed. We now discuss both the components of Synergy
in detail. Note that Synergy only alters the auxiliary resource
allocations; GPU demands are left unaltered for the lifetime
of a job and are provided as inputs by the user.

3.1 Optimistic Profiling

A DNN job is profiled for its resource sensitivity once per
lifetime of the job, i.e. on job arrival. Each incoming job is
profiled by varying the CPU and memory allocated to the
job. A resource sensitivity matrix is then constructed for dis-
crete combinations of CPU and memory allocations as shown
in Figure 4. Since DNN training has a highly predictable
structure, empirically evaluating training throughput for a
few iterations gives a fair estimate of the actual job through-
put [39, 55].

It is easy to see that naively profiling different combinations
of CPU and memory can be very expensive. For instance, if
the cost of profiling one combination of CPU, and memory
for a job is 1 minute, then to profile all discrete combinations
of CPU and memory (assuming allocation in units of 50GB)
on a server with 24 CPUs and 500GB DRAM takes about
24*10 = 240 minutes (4 hours)!

To tackle this problem, Synergy introduces an optimistic
profiling technique that exploits the predictability in the re-
lationship between job throughput and memory allocation.
We observe that, with DNN-specific, application-level caches
like MinIO [39], it is easy to model the job throughput be-
haviour as we vary the amount of memory allocated to a job
at fixed CPU allocation. This is because, MinIO ensures that

a job gets a fixed number of cache hits per epoch. Synergy
makes a conscious decision to use application-level MinIO
cache instead of Page Cache because MinIO provides mem-
ory isolation across independent jobs sharing the machine. If
we do not use MinIO, we will have to profile the model at
discrete memory allocations which could result in increased
profiling costs, and also potentially change the trends in pro-
filing matrix. However, the use of MinIO in Synergy makes
cache performance predictable and hence reduces Synergy ’s
profiling costs – allowing optimistic profiling.

For a given CPU allocation that determines the pre-
processing speed, and a known storage bandwidth, it is easy
to analytically model the job throughput for varying mem-
ory allocation. Therefore, we only need to empirically profile
the job for varying CPU values at full memory allocation as
shown in Figure 4. All the other entries can be estimated using
the above technique. This leads to a 10× reduction in profil-
ing time, bringing it down to 24 minutes! We experimentally
validate this in Figure 5a. For a 8-GPU ResNet18 job, we
compare the modeled job throughput using Synergy to the
empirical results obtained by training the job for 2 epochs
with varying memory allocations. As we see in Figure 5a,
Synergy’s estimations are within 3% of the empirical results,
without having to actually run the model.

To further optimize profiling time, we observe that we do
not require exact throughput values for a job with varying
CPU allocations. We instead need a curve depicting the em-
pirical job throughput. Therefore, instead of profiling the job
for all possible CPU values, we pick discrete points for CPU
profiling using the following algorithm. We start with the
maximum CPU allocation and do a binary search on the CPU
values to estimate job throughput. If the profiled point re-
sulted in a throughput improvement that is less than a fixed
threshold (say 10%), then we continue binary search on the
lower half of CPU values, else we profile more points on the
upper half. The idea here is to empirically profile CPU regions
that show significant difference in job throughput, while skip
those regions with little to no improvement in throughput. We
experimentally show the efficacy of our CPU profiling tech-
nique in Fig 5b for a 1-GPU ResNet18 job. We compare the
normalized job runtime (wrt 1 CPU) using empirical results
averaged over 2 epochs of the job and Synergy’s optimistic
profiling averaged over 50 iterations (approximately, a minute
per profile). Synergy is able to mimic the empirical job per-
formance very closely, in under 8 minutes (using just 8 CPU
profile points instead of 24). We believe that this is a reason-
able overhead as it is incurred only once per lifetime of the
job, which typically runs for hours.

After profiling a job on arrival, the job along with its re-
source sensitivity matrix is enqueued into the main schedul-
ing queue, from which the scheduling policy picks a set of
runnable jobs every round.
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Figure 5: Optimistic profiling. The graphs compare the pro-
filing results to empirical runs for ResNet18

3.2 Scheduling mechanism
Synergy performs round-based scheduling. At the beginning
of each scheduling round, Synergy identifies a set of runnable
jobs from the scheduling queue that can be packed on the
cluster in the current round duration using a scheduling policy
such as FIFO, SRTF, LAS, or FTF. Using the resource sen-
sitivity matrix, Synergy packs these jobs onto the available
servers in the cluster while satisfying the multi-dimensional
resource constraints as opposed to simply performing a GPU-
proportional allocation .

Job demand vector. To pack the jobs onto servers, we first
construct a job demand vector that indicates the GPU demand,
and best-case CPU and memory requirements for the job. We
identify the best-case values using the resource sensitivity
matrix. We pick the minimum value of CPU and memory that
saturates the job throughput.

Packing a job with multi-dimensional resource demands is
analogous to multi-dimensional bin packing problem which
is NP hard [53]. Therefore, we first evaluate the efficacy of a
naive greedy scheduling mechanism as an approximation to
tackle the multi-dimensional resource allocation problem.

3.3 Synergy-GREEDY: Greedy Scheduling
A naive greedy multi-resource packing algorithm translates to
a first-fit approximation of the multi-dimensional bin packing
problem [20]. Given a job demand vector, the greedy algo-
rithm picks the next runnable job decided by the scheduling
policy, and places it on the server that can satisfy the job’s
demands in all dimensions. If no such server exists, the job
is skipped over for this round and the next runnable job is
checked for schedulability. Synergy-GREEDY thus introduces
two major problems in the cluster -
• It can result in auxiliary resources being exhausted by

jobs, while leaving GPUs underutilized, and fragmented.
We show that GPU fragmentation in Synergy-GREEDY
severely degrades cluster objectives (5.4).
• It also hurts the fairness of the scheduling policy as some

jobs can be skipped over for a long time if their resource
demands cannot be satisfied in the cluster.

The challenge ahead of us is to design a scheduling mecha-
nism that eliminates GPU under-utilization due to fragmenta-
tion, and upholds the fairness properties of the given schedul-
ing policy, while performing multi-dimensional resource al-
location. Before we come up with a heuristic scheduling
approach to tackle the above problems, one pertinent question
is to understand how good is the allocation produced by our
heuristic when compared to an optimal solution.

To this end, we first formulate a theoretical upper bound
on the optimal throughput achieved by the cluster given a set
of jobs and their resource sensitivity profiles. We then discuss
the challenges associated with materializing the optimal allo-
cation on a physical cluster and introduce Synergy-TUNE, an
empirically close-to-optimal heuristic solution.

4 Scheduling Algorithms

We first present our formulation of an optimal allocation that
provides an upper bound on the achievable cluster throughput.

4.1 Synergy-OPT

Our goal is to allocate CPU and memory to each job so as to
maximize overall throughput, while guaranteeing that each
job makes at least as much progress as it would do if we allo-
cate its GPU-proportional share. It is not hard to show that
our problem is NP-hard. So, we resort to finding approximate
solutions using LP formulation. To find an upperbound on
achievable throughput, we solve two LPs. In the interest of
space, we describe the first LP formulation here, and sum-
marize the challenges in operationalizing Synergy-OPT. A
complete description of Synergy-OPT formulation and proof
can be found in the extended version [38]. While the focus
of this work is on homogeneous cluster, we show how our
formulation can be extended to a heterogeneous GPU cluster
in the extended version of the paper [38].

4.1.1 Finding ideal allocation

First, we assume an idealized setting: all the CPU and memory
available across all the machines is present in one (super)
machine. Say there are a total of s homogeneous machines in
the cluster. We assume that, there is only one machine with
G units of GPU, C units of CPU, and M units of memory.
Note that, in reality Gi, Ci, and Mi denote the total GPU,
CPU, and memory in each machine i, which is G/s, C/s, and
M/s respectively in a homogeneous cluster. Based on this
assumption, we find the ideal CPU (c∗j ) and memory (m∗j )
allocation for every job j (whose GPU demand is denoted by
g j) in the set of runnable jobs (Jt ) for a round.

The variables of our LP are denoted by y{c,m, j}, which
should be interpreted as follows. If for a job j∈ Jt , y{c,m, j}= 1,
then it means that in the LP solution c units of CPU and
m units of memory are allocated. We further note that for



every job j, there is a variable y{c,m, j} for for every possible
allocation of CPU and memory. We consider these variables
in the discrete space as identified by our resource sensitivity
matrix (Wj). Wj[c,m] denotes the amount of progress made
by job j per round if c units of CPU and m units of (RAM)
memory are allocated to job j. For each machine i ∈ [s], we
denote Cg,Mg as the GPU-proportional allocation of CPU and
memory. That is, Cg =Ci/Gi ∗g j and Mg = Mi/Gi ∗g j. With
a baseline GPU-proportional allocation strategy the progress
a job makes in each round is equal to W [Cg,Mg].

Our objective function is to maximize the throughput. We
formulate it as follows using our LP variables.

Maximize ∑
j∈Jt

∑
[c,m]

Wj[c,m] · y{c,m, j} (1)

Now, we enforce constraints such that LP solution is feasible
in the idealized setting we talked about.
• Total CPU and memory allocated to jobs is no more than

the total capacity available:

∑
j∈Jt

∑
[c,m]

c · y{c,m, j} ≤C (2)

∑
j∈Jt

∑
[c,m]

m · y{c,m, j} ≤M (3)

• We want the LP to allocate only one configuration of
CPU and memory to each job.

∀j ∈ Jt : ∑
[c,m]

y{c,m, j} = 1 (4)

• LP solution is atleast as good as the fair allocation.

∀j ∈ Jt : ∑
[c,m]

Wj[c,m] · y{c,m, j} ≥Wj[Cg,Mg] (5)

Theorem 4.1. Throughput achieved by LP(1-5) is at least the
throughput achieved by an optimal solution to our problem.

Proof. Consider an optimal solution O to our problem. Sup-
pose job j receives c∗ units of CPU and m∗ units of memory
in O. Then we define the following feasible solution to our
LP (1-5): Set yc∗,m∗, j = 1. Clearly, this is a valid solution and
satisfies constraints (1-4).

In our experiments, we solve this as a Integer Linear Pro-
gram (ILP) where y{c,m, j} takes boolean values. For every job,
we define the total CPU (c∗j ) and memory (m∗j ) allocated by
the optimal ILP solution as follows.

For each job j, define c∗j := c if y{c,m, j}==1. (6)

and m∗j := m if y{c,m, j}==1. (7)

4.1.2 Feasible Allocation on Multiple Machines

Recall that in the LP(1-5), we assumed that all the resources
are present on a single machine. In reality, since these re-
sources are spread across machines, we find a feasible allo-
cation on multiple machines by solving a second LP. The
objective here is to minimize the number of jobs that get frag-
mented to account for the communication overhead when jobs
are split across machines. The variables of the second LP are
denoted by xi, j. Here index i denotes the machine and j de-
notes the job. If xi, j = 1, it means that resources of job j (that
g j units of GPU, c∗j units of CPU, and m∗j units of memory)
are allocated on machine i. Note that xi, j can be fractional;
if so, then job j is split across multiple machines. We can
prove that the solution to the second LP ensures that the total
number of jobs that get fragmented is at most 3s. Detailed
formulation is in the extended version of the paper [38].

4.1.3 Challenges with operationalizing Synergy-OPT

While the allocations identified by Synergy-OPT provides an
upper bound on the optimal cluster throughput, it is challeng-
ing to materialize these allocations in the real world due to
two main reasons;
• Solving two LPs per scheduling round is computation-

ally expensive. As cluster size and the number of jobs per
round increases, the time to find an optimal allocation
increases exponentially (§5.6)
• The allocation matrix obtained with the second LP can

result in fractional GPU allocations when jobs are split
across servers; for instance, a valid allocation might as-
sign 3.3 GPUs on server 1 and 2.7 GPUs on server 2
for a 6 GPU job. Realizing such an allocation requires a
heuristic rounding off strategy to ensure non-fractional
GPU allocations, as GPU time or space sharing, and its
impact on job performance is considered beyond the
scope of this work.

4.2 Synergy-TUNE

We now describe Synergy-TUNE, our heuristic scheduling
mechanism. Our goal is to design a scheduling mechanism
that performs multi-dimensional resource allocation for DNN
jobs, where the GPU demand is fixed, but the auxiliary re-
source allocations are fungible. In doing so, we want to ensure
that (1) we do not affect the fairness properties of the schedul-
ing policy used, (2) the expensive GPU resources are not
underutilized.

Allocation Requirements. Synergy-TUNE’s allocation must
satisfy the following requirements.
• The GPU, CPU, and memory resources requested by a

single-GPU job must all be allocated on the same server.
• A multi-GPU distributed-training job can either be consol-

idated on one machine, or split across multiple machines.



In the latter case, the CPU and memory allocations must
be proportional to GPU allocations across servers. For in-
stance, if a job requires (2GPU, 12 CPU, 300GB DRAM),
then while splitting it across two servers, we need to en-
sure that each server gets (1GPU, 6CPU, 150GB DRAM).
This is because, multi-GPU jobs train on a separate process
on each GPU, and synchronize at regular intervals, i.e., af-
ter one or many iterations. The job performance will vary
across processes if each GPU does not get the same ratio
of resources, and will eventually proceed at the speed of
the process with the lowest allocation of CPU and memory.
In a multi-tenant cluster, while carving out resources such

as CPUs and memory for jobs, it is import to enforce fairness
in terms of throughput achieved by individual jobs. We need
to ensure that no job runs at a throughput lower than what
it would have achieved if we allocated a GPU-proportional
share of CPU and memory resources. Additionally, we need to
respect the priority order of jobs identified by the scheduling
policy. For instance, a FIFO scheduling policy can be im-
plemented using a priority queue sorted by job arrival times.
Synergy-TUNE identifies a set of runnable jobs for a round
as the top n jobs from the scheduling queue, whose GPU de-
mands can be exactly satisfied by the available servers in the
cluster. Synergy-TUNE picks this runnable job set irrespec-
tive of the job’s other resource demands - which are fungible.
Note that, unlike Synergy-GREEDY, we do not skip over any
jobs unless it cannot be scheduled (GPU demand cannot be
met). Therefore, we never underutilize the GPUs when the
cluster is at full load.

Next, Synergy-TUNE greedily packs each of these runnable
jobs along multiple resource dimensions on one of the avail-
able servers, with the objective of minimizing fragmentation.
To achieve this, Synergy-TUNE sorts the runnable jobs by
their GPU demands, followed by CPU, and memory demand.
For each job j in order, Synergy-TUNE then picks the server
with the least amount of free resources just enough to fit the
demand vector of j. If it is a multi-GPU job, then we find a
minimum set of servers with sufficient GPU availability that
can fit the job’s demands in entirety. However, it is possible
that the job cannot fit in the cluster along all dimensions. In
such a case,
1. We check if the job’s demand vector is greater than pro-
portional share of resources, In this case, we switch the job’s
demand to GPU-proportional share and retry.

2. If the job still does not fit the cluster, or if the job’s demand
vector was less than or equal to GPU proportional allocation
in step (1), then, we do the following.

(a) We repeat step (1) ignoring the job’s CPU and memory
requirements. We find a server that can just satisfy the
job’s GPU requirements. We know by construction that
there is atleast one job on this server, which is allocated
more than GPU-proportional share of resources. We
identify the job or a set of jobs (Js) on this server by

switching whom to GPU-proportional share, we can
release just as much resources required by the current
job j. We switch the jobs in Js to fair-share and by
design, job j will fit this server.

(b) We continue this recursively for all runnable jobs.

In the worst case, all the running jobs in a round could
be allocated GPU-proportional share of resources. Therefore,
Synergy ensures that its allocations results in job throughputs
that are never worse than GPU-proportional allocation. In
§5.6, we empirically compare Synergy-TUNE to Synergy-
OPT showing that it is practical and near-optimal.

4.3 Implementation

We implement Synergy and an associated simulator in Python.
Our scheduler is event-driven. There is a global event queue
where job arrivals, schedule events, and deploy events are
queued. These events are handled in the order of their arrival
time. There is a priority job queue, where all the jobs arriving
into the cluster are added, post profiling. This queue is sorted
by the priorty metric decided by the scheduling policy; for
instance, SRTF sorts the jobs in the order of job remaining
time.

When a schedule event occurs, the scheduler collects a
list of runnable jobs from the job queue and identifies the
appropriate placement for these jobs for the following round,
either using Synergy-GREEDY, Synergy-TUNE or Synergy-
OPT. Then when a deploy event is triggered, these allocations
are deployed on to the cluster. By default, every job requests
for a lease update to continue running on the same server [42].
The scheduler then either grants a lease update or terminates
the lease for the job, adding it back to the job queue.

The scheduler and the DNN jobs interact via a thin API
provided by the Synergy data iterator. DNN job scripts must
be updated to call the Synergy iterator which is a wrapper
around the default PyTorch [8] and DALI [7] iterators. The
iterator handles registering the job with the scheduler, and
appropriately sending lease updates. It also checkpoints the
job to a shared storage if its lease is terminated. The iterator
also synchronizes across GPU processes for a multi-GPU job
to ensure that each process makes identical progress. We use
gRPC [4] to communicate between the scheduler and the jobs.

We implement Synergy-OPT in cvxpy [19] for use in our
simulator. The optimistic profiling module is also imple-
mented in Python, and it profiles the incoming jobs hooked
to the Synergy iterator, prior to the job’s initial addition to the
scheduling queue (a one time overhead for each job).

5 Evaluation

In this section, we use trace-driven simulations from produc-
tion cluster traces, and physical cluster deployment to evaluate



Task Model Dataset

Image

Shufflenetv2 [58]

ImageNet [49]
AlexNet [32]

Resnet18 [28]
MobileNetv2 [50]

ResNet50 [28]

Language
GNMT [54] WMT16 [9]
LSTM [47] Wikitext-2 [36]

Transformer-XL [16] Wikitext-103 [36]

Speech M5 [15] Free Music [17]
DeepSpeech [27] LibriSpeech [45]

Table 4: Models used in this work.

the efficacy of Synergy. Our evaluation seeks to answer the
following questions.
• Does Synergy’s resource-sensitive scheduling improve

cluster objectives such as makespan and average JCT in
a physical cluster (§5.2) and in trace-driven simulations
of large-scale clusters (§5.3) ?
• How does Synergy-TUNE and Synergy-GREEDY per-

form with different workload splits and how well do they
utilize available resources (§5.4)?
• How does Synergy perform on different CPU:GPU ratios

(§5.5)?
• Compare Synergy-TUNE to Synergy-OPT (§5.6)?
• Compare Synergy to big data schedulers (§5.7)?

5.1 Experimental setup

Clusters. Our experiments run on both a physical and a large
simulated, homogeneous cluster. Our experiments are per-
formed on state-of-the-art internal servers at Microsoft - these
servers are part of a larger multi-tenant cluster. We run phys-
ical cluster experiments on a cluster with 32 V100 GPUs
across 4 servers. Each server has 500GB DRAM, 24 CPU
cores, and 8 GPUs. Unless otherwise specified, our experi-
ments assume a CPU:GPU ratio of 3 and fair-share memory
allocation of 62.5GB per GPU, matching the server configu-
rations above. For simulations, we assume two cluster sizes;
a 128 GPU cluster across 16 servers and a 512 GPU clus-
ter across 64 machines, where each machine resembles the
physical server configuration mentioned above.

Models. Our experiments consider 10 different DNNs (CNNs,
RNNs, and LSTMs) as shown in Table 4. We categorize these
models by task (image, language, and speech) and assign a cer-
tain weight to these tasks in our traces. We call this a workload
split. For instance, if the split for a given trace is (30,40,30),
then the percentage of image, language, and speech models
in the job trace is 30%, 40% and 30% respectively. All exper-
iments are performed on PyTorch 1.1.0.

Traces. We run our physical and simulated experiments using
publicly available production traces from Microsoft Philly
cluster [5].We show evaluation with the actual Philly trace
preserving the job GPU demand, arrival time, and duration,

Policy Workload Mechanism Time (hrs)
(Metric) Split Deploy Simulate

FIFO
(Makespan) 60-30-10 Proportional 16 15.67

Tune 11.6 11.33
Opt - 11.01

SRTF
(Avg JCT) 30-60-10 Proportional 4.81 4.52

Tune 3.21 3.19
Opt - 3.06

SRTF
(99 Percentile

JCT)

30-60-10 Proportional 17.32 16.85
Tune 8.59 8.54
Opt - 8.21

Table 5: Physical cluster experiments. This table compares
the makespan, average JCT, and 99th percentile JCT for two
different traces; (1) a static trace using FIFO (2) a dynamic
trace using SRTF. Synergy-TUNE improves makespan by
1.4×, average JCT by 1.5 × and 99th percentile JCT by 2×.

on a cluster of 512 GPUs in §5.3.1. We use a subrange of the
trace containing 8000 jobs.

However, to comprehensively evaluate how Synergy re-
acts to varying cluster load, workload composition, and job
duration, for all other experiments, we construct a production-
derived trace as follows: we extract job GPU demand from
the Philly trace and assign a model based on the chosen split.
We then appropriately scale the job runtime and arrival time
for the chosen cluster size, while keeping the job duration
distribution similar to the one in Philly trace as follows:
• Duration. The duration of each job for the baseline

GPU-proportional allocation is sampled from an expo-
nential distribution: the job duration is set to 10x minutes,
where x is drawn uniformly from [1.5,3] with 80% prob-
ability, and from [3,4] with 20% probability similar to
the trace duration used in prior work [42].
• Arrival. We classify derived traces into two kinds based

on the job arrival time : (1) a static trace where all the
jobs arrive at the start of the workload, and (2) a dynamic
trace, where the job arrival time is determined by load, a
Poisson distribution at a rate λ.

The derived traces with varying job arrival rates uses a 128
GPU cluster. In both cases, we report the average metrics such
as JCT across a set of 1000 jobs in steady state.

For the physical cluster experiment, we choose a fixed ar-
rival rate for the derived trace that keeps our cluster at full
load (GPU demand of all runnable jobs > available GPUs
in the cluster). For the simulated experiments, we vary the
load λ on the cluster to evaluate its impact on cluster metrics.
For the simulated experiments, we show results for two trace
categories - (1) all jobs request single-GPU (2) multi-GPU
distributed training jobs that request upto 16 GPUs.

Policies and metrics. We evaluate Synergy against GPU-
proportional scheduling for 4 different scheduling polices;
FIFO, SRTF, LAS, and FTF. For a static trace, we measure
makespan (time to complete all jobs submitted at the begin-
ning of the trace) and for the dynamic job traces, we measure



Avg JCT(hrs)
Policy SRTF LAS FIFO

GPU-prop. 30 32 71
Synergy 26 28 62

(a) Average JCT with Synergy

JCT (hrs) Short Long

Avg Prop. 2 80
Synergy 1.7 68

99p Prop. 9 660
Synergy 4 641

(b) Cluster metrics (SRTF) (c) JCT speedup across jobs
Figure 6: Evaluation on Philly Trace. On a real production trace, Synergy improves avg JCT across a range of scheduling
policies over GPU-proportional scheduling. The JCT of individual jobs improves by upto 9× with Synergy.

(a) LAS (multi) (b) CDF of JCT at load 4 (short) (c) CDF of JCT at load 4 (long)
Figure 7: Average JCT and CDF of long and short jobs for LAS policy.

(a) SRTF (multi) (b) CDF of JCT at load 5.5 (short) (c) CDF of JCT at load 5.5 (long)
Figure 8: Average JCT and CDF of long and short jobs for SRTF policy.

the average job completion time (JCT) of a subset of jobs in
steady state (cluster at full load), and their CDF.

5.2 End-to-End Physical Cluster Experiments

For the physical cluster experiments, we run a Synergy-TUNE
(tune) and GPU-proportional allocation (proportional) for
two different workload traces. (1) A static production-derived
trace of 100 jobs with a split (60,30,10), scheduled using
FIFO and evaluated for makespan. (2) A dynamic production-
derived trace with continuous job arrivals and a split of
(30,60,10), scheduled using SRTF and evaluated for average
and 99th percentile JCT. Both scenarios use an appropriately
sized trace that keeps the cluster fully loaded. We compare
the obtained results to that of the simulator by replaying the
same trace. Additionally, we compare our metrics to the upper
bound generated by the optimal solution, Synergy-OPT (opt).
The results are shown in Table 5.

Synergy-TUNE reduces the makespan of static trace by
1.4× when compared to GPU-proportional allocation. For

the dynamic trace, Synergy-TUNE reduces average JCT of
steady-state jobs by 1.5× while reducing the 99th percentile
JCT of these jobs by 2× as shown in Table 5.

We compare the observed results from physical experi-
ments to the same trace replayed on our simulator. As shown
in Table 5, the difference between metrics in real and sim-
ulated clusters are less than 5%, demonstrating the fidelity
of the simulator. We also see from Table 5 that the cluster
objectives achieved by Synergy-TUNE are within 4% of the
optimal solution in this case. We do not deploy the optimal
allocations due to the challenges enumerated in §4.1.3

5.3 End-to-end results in simulation
5.3.1 Simulation with production traces

We run simulated experiments on a cluster of 512 GPUs across
64 servers using a subrange of the publicly available Philly
trace published by Microsoft [5]. We assume a workload split
of (20,70,10) for this trial. Table 6a lists the average JCT with
Synergy and GPU-proportional scheduling for three differ-



(a) FIFO (single) (b) CDF (9 jobs/hr)

Figure 9: Average JCT and CDF for FIFO. Synergy im-
proves the average JCT significantly compared to alllocation
for varying cluster load. At a load of 9 jobs/hr, Synergy re-
duces average JCT from 81hrs to 22hrs, which is close to the
upperbound of 20hrs predicted by Synergy-OPT.

ent scheduling policies. Across all policies, Synergy is able
to reduce the average JCT compared to GPU-proportional
scheduling due to better split of resources between jobs. The
gains in Synergy can be attributed to reallocating the underuti-
lized resources from a job to a different, resource-sensitive job
whose throughput can improve with the increased allocation.

We show a detailed overview of the average and 99th per-
centile JCT for SRTF policy in Table 6b.We split the set of
1000 monitored jobs into short (JCT < 4 hrs) and long jobs.
Synergy reduces the tail of the distribution by 2.2× for short
jobs and the average JCT of both long and short jobs by 15%.
For each of the 1000 monitored jobs, we plot the individual
job speedup with respect to GPU-proportional scheduling in
Figure 6c. We see that Synergy speeds up jobs by upto 9×
using better resource allocations.

5.3.2 Simulation with varying load

We run simulated experiments on a cluster of 128 GPUs across
16 servers using production-derived traces. We evaluate Syn-
ergy against GPU-proportional allocation mechanism for 4
different scheduling policies - FIFO, SRTF, LAS and FTF. We
run dynamic workload traces, where jobs arrive continuously
at a rate governed by a Poisson distribution. We show results
for both single-GPU traces (where all jobs request 1 GPU)
and multi-GPU traces (where jobs request upto 16 GPUs).
Our metric of evaluation is the average JCT of a set of 1000
jobs in cluster steady state.

We show the results for three scenarios : LAS (multi-GPU
trace) in Figure 7, SRTF (multi-GPU trace) in Figure 8, and
FIFO (single GPU trace) in Figure 9. In all cases, we assume
a workload split of (20,70,10). We plot both average JCT and
the CDF of job completion times for a specific cluster load
in both scenarios. For the multi-GPU trace, we split the CDF
into those for short and long jobs to distinctly differentiate
the tail of the distribution. We make three key observations.

First, Synergy-TUNE improves average JCT by up to 3.4×
in the single-GPU trace, and up to 1.6× in the multi-GPU
trace by speeding up resource sensitive jobs with dispropor-
tionate allocation. The improvement in average JCT is higher

(a) GPU utilization (b) CPU utilization
Figure 10: Cluster resource utilization

as the load increases, because at low load the cluster is not at
full capacity. As load increases, jobs start to get queued and in-
cur queuing delay before being scheduled on the cluster. Since
Synergy significantly speeds up individual jobs using dispro-
portionate resource allocation, pending jobs can get sched-
uled faster, thereby reducing their queuing delays. Therefore
Synergy improves cluster metrics by both reducing qeuing
delays and speeding up individual jobs. Note that, in GPU-
proportional allocation, at higher loads, all CPUs and memory
in the system are allocated to the running jobs but they can
still be underutilized by individual jobs. We show later in Fig-
ure 10b, how Synergy’s resource-sensitivity aware allocation
improves CPU utilization in the system compared to GPU-
proportional allocation. At low load, jobs are spread across
the cluster and the unallocated CPU and memory is assigned
to the jobs that benefit from additional auxiliary resources.
Second, Synergy-TUNE is able to sustain a larger cluster load
than GPU-proportional allocation. For multi-GPU scheduling
with LAS, Synergy-TUNE reduced the 95th percentile JCT
of long jobs by 2×. Third, the average JCT achieved with
Synergy-TUNE is within 10% of the optimal solution in all
cases.

Similarly, for FTF scheduling policy, Synergy-TUNE ob-
served 2.3× and 2× improvement in average JCT for a single-
GPU and multi-GPU trace respectively.

5.4 Impact of workload split
Workload split decides the percentage of resource sensitive
jobs in the workload. As the percentage of speech and im-
age models increase in the trace, there may not be enough
spare CPU and memory resources to perform disproportion-
ate allocation, as they are mostly CPU- and memory-hungry.
Figure 11 plots the average JCT with varying load for 3 dif-
ferent workload splits with FIFO scheduling for multi-GPU
jobs. As the percentage of resource-sensitive jobs increase, we
observe that Synergy-GREEDY breaks down, and ends up de-
grading JCTs significantly compared to a GPU-proportional
allocation. This is because, the naive greedy technique results
in resource fragmentation when the demand along CPU and
memory dimensions are high, leaving several GPUs underuti-
lized. Whereas, by the design of Synergy-TUNE, it allocates
at least as many resources required to achieve the throughput
of GPU-proportional allocation; therefore, even in the worst
case workload split shown in Figure 11c, where all the jobs



(a) Split=(20,70,10) (b) Split=(33,33,33) (c) Split=(50,0,50)
Figure 11: Evaluation of Synergy with varying workload split

(a) Ratio 4 (b) Ratio 5 (c) Ratio 6
Figure 12: Evaluation of Synergy across different CPU:GPU Ratio

are CPU- and memory-sensitive, Synergy-TUNE performs as
good as GPU-proportional allocation.

Resource utilization. Figure 10a plots the GPU allocation
over time for the workload in Figure 11c at a load of 5.5
jobs/hr where the cluster GPU demand is higher than 100%.
While Synergy-TUNE is able to sustain a higher load by fin-
ishing jobs faster, Synergy-GREEDY severely under-utilizes
GPU resources throughout the workload, trading it off for
higher CPU and memory allocation. At low loads, as shown
in Figure 10b, GPU-proportional allocation only utilized 60%
of the available CPU resources, while Synergy-TUNE utilized
it up to a 90%, resulting in 1.5× lower average JCT.

5.5 Impact of CPU:GPU ratio
While our prior experiments assume a CPU:GPU ratio of 3
(similar to the NVIDIA DGX-2), Figure 12 plots the aver-
age JCT for a FIFO scheduler on a single-GPU trace as we
increase cluster load and vary the CPU:GPU ratio from 4
to 6 (corresponding to other server SKUs in Table 2b). As
the CPU:GPU ratio in a server increases, the baseline GPU-
proportional scheduler gets more CPU cores per GPU, thereby
reducing data stalls in the baseline. This in turn, reduces the
gap between GPU-proportional and Synergy-TUNE. Despite
that, at a load of 9 jobs/hr, Synergy-TUNE lowers the avg JCT
by 3.4×, 3×, 2.2×, and 1.8× for a CPU:GPU ratio for 3, 4, 5
and 6 respectively.

5.6 Comparison to Synergy-OPT

Calculating optimal allocations for every scheduling round
with Synergy-OPT can be quite expensive, especially for large

Figure 13: Comparison to big data scheduling policies

cluster sizes. We experimentally validated that the time taken
for per-round allocations for Synergy-OPT increases expo-
nentially with increasing cluster sizes, while that for Synergy-
TUNE is hardly a second. We also show experimentally that
the allocations given by Synergy-TUNE are close to those
estimated by Synergy-OPT in §5.2 and §5.3.2. For a cluster
size of 128 GPUs used in our experiments, Synergy-TUNE
converges at allocations that are within 10% of the optimal
value, 200× faster than Synergy-OPT.

5.7 Comparison to DRF and Tetris

Big data schedulers like Dominant Resource Fairness
(DRF) [21] and Tetris [23] have explored multi-dimensional
resource allocation for map-reduce jobs. DNN jobs have dif-
ferent properties when compared to big-data jobs. DNN jobs
are gang-scheduled, meaning they can run only when all the
GPUs requested by them are available on the cluster at once.
Further, the auxiliary resource requirements like CPU and
memory are fungible unlike the GPU demand. DRF and Tetris
assume resources to be statically allocated throughout the life-



time of a job, whereas Synergy assumes these resources to be
fungible and could result in varied allocations throughout the
lifetime of a DNN job. Furthermore, profiling the DNN job’s
resource demands is unique to Synergy; big data schedulers
assume that the job request already encodes resource demands
across all dimensions. To evaluate Synergy against these poli-
cies, we assume that the best-case resource requirement for
CPU and memory is fed as input to the bigdata scheduling
policies using Synergy’s profiling mechanism.

On a cluster of 128 GPUs, we evaluate these policies on
two different workload compositions : W1 (20,70,10), and
W2 (50,0,50) and compare the naive policy with its Synergy-
variant, which allows resource tuning. W1 represents a work-
load split with a good mix of resource-sensitive as well as
resource-insensitive jobs. W2 is a workload dominated by
resource-sensitive jobs, which is one of the worst-case scenar-
ios for multi-dimensional scheduling as it could lead to GPU
fragmentation (explained in §5.4)

We plot the results in Figure 13. Tuning resource allocation
across jobs using Synergy reduced the average JCT of DRF
by 7.2× and that of Tetris by 1.8× for the workload split W2.
This is because Synergy is able to allocate auxiliary resources
in a fungible-manner every round, whereas the big-data sched-
uler’s static allocations performs similar to greedy techniques,
resulting in GPU fragmentation, and thereby degrading the
overall cluster metrics. Synergy performs the best in each
scenario as it uses the best-case resource demands of jobs to
perform fungible, disproportionate allocation.

6 Discussion and Future Work

In this section, we elaborate on some of the assumptions made
by Synergy, derived from our experiences with large scale
deployed cluster schedulers at Microsoft, and discuss what
happens if these assumptions are relaxed.

Homogeneous clusters. Scheduling in Synergy assumes that
the GPU cluster is homogeneous. This assumption is based
on the practical observation that our clusters have thousands
of accelerators per homogeneous cluster [5]. While there is
heterogeneity in hardware across clusters, it is often the case
that users select one homogeneous cluster to run their job in
production. For instance, a production cluster could have two
homogeneous virtual clusters (VCs), each comprising of a
specific generation of GPU. Each VC is managed separately,
and assigned to a specific task - training or inference, for pre-
dictable performance. While recent works have explored the
impact of blurring these boundaries and scheduling across
heterogeneous hardware [11, 33, 42], such co-scheduling
poses several practical challenges [52]. For example, some
tasks such as low-latency inference are business-critical, user-
facing applications which need to run on specific hardware,
and need data isolation. Others have specific GPU memory re-
quirements, or need advanced hardware features like NVLink.

Hence, users in our production settings specify a specific in-
stance type to run each of their jobs on. Hence it is useful for
a scheduler to optimize resource utilization in the context of
homogeneous clusters. That said, Synergy ’s ideas can also
be extended to a heterogeneous cluster by profiling CPU and
memory requirements along an additional dimension - GPU
type, at an additional profiling cost. The optimal algorithm can
then maximize throughput based on a 3-dimensional resource-
sensitivity matrix Wj. We present the formulation for this in
the extended version of the paper [38].

Use of MinIO. Synergy assumes the use of MinIO [39] be-
cause it is a DNN-aware caching mechanism that outper-
forms traditional OS page caching and allows performance
predictability. It provides resource isolation and reduces stor-
age fetch stalls [39]. If we do not use MinIO, we will have to
profile the model at discrete memory allocations which will
increase the profiling costs, and also potentially change the
trends in profiling matrix.

Preprocessing overhead. Preprocessing for vision tasks in-
cludes random cropping and transformations of the image
in the critical path. Reusing the same transformed images
across epochs hurts accuracy [34, 37, 39], whereas it is practi-
cally infeasible to pre-process offline due to the prohibitive
storage cost (dataset size * epochs). It is possible to alter the
extent of CPU intensiveness by varying the number of aug-
mentations performed. In this work, we have assumed that
the augmentations required for each model are as specified by
the published models themselves and we do not change this
so as to not affect accuracy. On the horizon, we do observe re-
cent schemes such as RandAugment [14], AutoAugment [13]
which consider more computationally-intensive augmentation
schemes (and associated accuracy gains). Such a rising trend
in extreme preprocessing, makes a strong case for a system
like Synergy.

Sharing storage and network. In our paper, we show how
to reallocate CPUs and memory across jobs resident on the
same server, for example, by co-locating a CPU-intensive
task with a non CPU-intensive task. For our DNN training
jobs, we assume that a dataset is downloaded locally and
loaded into server memory when the job is started (con-
strained by the memory allocation limits). Prior work has
similarly looked at co-locating network-intensive jobs with
non network-intensive jobs [26, 35], but unlike Synergy, re-
allocation of shared network bandwidth is not explicitly han-
dled by those schedulers. We leave it to future work to explore
how ideas in Synergy can also be extended to reason about
demands that individual jobs place on storage and network
bandwidths.

GPU elasticity and sharing. While some recent works ex-
plore transparently changing the GPU allocation during the
life of a job [48], the impact of changing batch sizes and
hyperparameters on training accuracy is unclear for a wide
variety of tasks. It is therefore practical to assume that the



GPU demand of a job is constant throughout its lifetime as is
the case for jobs in our production clusters.

Synergy works by improving the throughput of jobs that
are bottlenecked on data stalls. For jobs that have data stalls,
GPU efficiency cannot be improved by multiplexing (spatial
sharing) because they are waiting for input data. However,
for a subset of jobs that are insensitive to auxiliary resource
allocation, GPUs could be multiplexed between jobs. It would
be interesting to explore how to impart resource-sensitivity
awareness alongside GPU spatial sharing, which we leave for
future work.

Tradeoff between consolidation and allocation. When
multi-GPU jobs are split across physical servers, they may
incur a penalty due to network communication [41,55]. DNN
jobs therefore prefer consolidation. In this work, we assume
that no more than a server’s worth of CPU or memory re-
sources can be allocated to a job if its GPU demands can be
satisfied by one server. However, we find that some jobs may
benefit from giving up consolidation if the throughput gain
due to increased CPU or memory allocation is higher than the
penalty due to splitting. We leave the exploration of the trade
off between consolidation and allocation, while taking into
account the network overhead, to future work.

Leveraging model and pipeline parallelism. Our evalua-
tion assumes distributed data-parallel jobs. But model and
pipeline parallel execution schemes also have an input stage
that ingest and pre-process data. Unlike data-parallel training,
each stage in the pipeline might have a different CPU-GPU
and memory-GPU requirement. While these jobs would have
to be profiled to identify the CPU and memory sensitivity of
each stage of the pipeline, Synergy ’s contributions directly
carry forward to such settings.

7 Related Work

DNN cluster schedulers. A number of recent schedulers for
DNN workloads each focus on improving a certain objec-
tive; Cluster utilization (Gandiva [55]), JCT (Tiresias [26]),
and fairness (Themis [35], Gandiva-Fair [11]). Some have
also looked at exploiting performance heterogeneity among
accelerators to improve cluster objectives [33, 42]. All these
schedulers assume GPU to be the dominant resource in the
scheduling task; i.e., a user requests a fixed number of GPUs
for her DNN job, and when the requested number of GPUs
are all available, the job is scheduled to run. Rather than allo-
cating a fixed number of GPUs, building on GPU-elasticity
for a single job [44], some recent schedulers like AFS [30]
and Pollux [48] leverage throughput metrics to provide GPU
elasticity in multi-tenant clusters (in addition to tuning batch
size and learning rate). However, in all these cases, auxiliary
resources such as CPU and memory are allocated propor-
tional to the number of GPUs allocated to the job. Existing
schedulers thus ignore resource-sensitivity of the DNN tasks

to CPU and memory. Synergy shows that, irrespective of
the number of GPUs allocated, auxiliary resource-sensitive
allocation is crucial to achieve better cluster utilization.

Big data schedulers. Our work builds upon the insights
drawn from the rich literature of schedulers for big data
jobs [21, 23–25, 29, 51]. Big data schedulers like Tetris [23],
and DRF [21] have looked at the problem of multi dimen-
sional resource allocation for big data jobs. They propose
new scheduling policies aimed at optimizing a specific cluster
objective for jobs whose resource demands are prior known.
In contrast, the primary resource in a DNN job is the acceler-
ator (GPU), whose requirement is specified by the job; other
resources are fungible. Our work exploits this insight to per-
form disproportionate allocations by profiling job resource
sensitivity, and then appropriately packing them onto servers.

Data stalls. Recent, deep characterization studies explored
the impact of CPU and memory on individual DNN jobs [39,
40] Unlike prior work that focuses on individual jobs, the
focus of our paper is on the tricks we can play when we
schedule multiple jobs together in a cluster.

Disaggregated data prep. There have been recent orthogo-
nal efforts that aim at reducing the cost of data preprocess-
ing, and thereby the load on CPUs using disaggregated data
prep [59]. However, one has to pay the network cost of shuf-
fling preprocessed tensors, which could quickly become the
bottleneck especially for vision models with rich datasets.
Synergy on the other hand, assumes standard pre-processing
pipelines at the training servers, and aims to reduce the cost
of pre-processing using better resource allocation.

8 Conclusion

This paper introduces Synergy, a resource-sensitive sched-
uler for DNN training jobs. Synergy is based on the insight
that not all jobs exhibit the same level of sensitivity to CPU
and memory allocation during DNN training; breaking the
shackles of GPU-proportional allocation can result in im-
proved utilization of existing cluster resources and improved
job and cluster-wide objectives. Our experiments on physical
and large simulated clusters show that Synergy can reduce
average JCT by upto 3.4× over GPU-proportional allocation.
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