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Abstract
Content Delivery Networks (CDNs) deliver much of the

world’s web and video content to users from thousands of
clusters deployed at the “edges” of the Internet. Maintain-
ing consistent performance in this large distributed system
is challenging. Through analysis of month-long logs from
over 2000 clusters of a large CDN, we study the patterns of
server unavailability. For a CDN with no redundancy, each
server unavailability causes a sudden loss in performance as
the objects previously cached on that server are not accessible,
which leads to a miss ratio spike. The state-of-the-art miti-
gation technique used by large CDNs is to replicate objects
across multiple servers within a cluster. We find that although
replication reduces miss ratio spikes, spikes remain a perfor-
mance challenge. We present C2DN, the first CDN design
that achieves a lower miss ratio, higher availability, higher
resource efficiency, and close-to-perfect write load balancing.
The core of our design is to introduce erasure coding into
the CDN architecture and use the parity chunks to re-balance
the write load across servers. We implement C2DN on top of
open-source production software and demonstrate that com-
pared to replication-based CDNs, C2DN obtains 11% lower
byte miss ratio, eliminates unavailability-induced miss ratio
spikes, and reduces write load imbalance by 99%.

1 Introduction

Content Delivery Networks (CDNs) [20] carry more than
70% of Internet traffic and continue to grow [19]. Large
CDNs achieve this by operating thousands of clusters de-
ployed worldwide so that users can download content with
low network latency. When a user requests an object, the
CDN routes the request to a server proximal to the user [15].
If the server contains the requested object in its cache, the user
experiences a fast response (cache hit). If no server within
the cluster has the object in cache (cache miss), the object is
fetched from a remote cluster which could be another CDN
cluster or the origin (i.e., the content provider).
Detrimental effects of cache misses. Cache misses have
three detrimental effects. First, they degrade performance

by increasing the content download times experienced by the
user, as each object incurring a cache miss would have to be
downloaded over the WAN from a remote server. Second,
cache miss can result in additional traffic between the CDN
cluster and the origin, which is a significant bandwidth cost for
CDN operators. Third, if more cache misses are served from
the origin, content providers need to provision more servers
with higher network bandwidth. Consequently, a CDN’s goal
is to minimize the miss ratio and maintain a low miss ratio
over time for all content providers.
Why tail performance matters. The design goal of a CDN
is to consistently improve download performance for all ob-
jects on a content provider’s site, in every time window, and
for each client location. The performance improvement is
viewed as a “speedup” that the CDN provides over the con-
tent provider’s origin, i.e., it can be quantified as the ratio of
the time to download an object directly from origin (with-
out the CDN) to the time to download the same object from
the CDN. A CDN’s goal is to provide a significant average
speedup in every time window (say, 5-minute window) and
at each client location. A spike in the miss ratio in a single
cluster could violate these performance goals, even if that
spike is short-lived and impacts only a subset of the objects.
That is because the CDN likely offers no speedup over origin
for any client download that is a cache miss, and indeed a
short-lived spike in miss ratio could drastically decrease the
average speedup provided by the CDN during a 5-minute
period.
The challenge of frequent server unavailabilities. Due to
stringent performance goals, servers are continuously mon-
itored by the cluster’s load balancer. A server is declared to
be “unavailable” and (temporarily) taken out of service if it is
deemed incapable of serving content to users within specified
performance bounds. By analyzing a month long logs from
the load balancers in over 2000 clusters of a large CDN, we
find that server unavailability is very common in CDN edge
clusters. When a server is unavailable, the objects stored in its
cache are not available to serve user requests. Unless the re-
quested objects can be retrieved from other servers within the



cluster, these objects need to be fetched from a remote server,
resulting in a spike in the miss ratio, potentially causing a
violation of performance guarantees.
Limitations of the state-of-the-art approaches. To tolerate
server unavailabilities, the state-of-the-art approach adopted
by large CDNs is to replicate objects across two servers within
a cluster. We found that this approach has three significant
limitations. First, we find that object replication does not
eliminate the miss ratio spike following a server unavailabil-
ity event. The reason is that the replica of the object (within
the cluster) may no longer be present due to eviction from
its cache. Second, replicating objects is space-inefficient as
the CDN effectively has to provision twice the cache ca-
pacity, which is challenging due to the accelerating growth
in CDN traffic. Third, we observe a significant write imbal-
ance between servers due to DNS based load balancing. This
imbalance increases SSD read latency and reduces SSD life-
time [22, 61].
Bringing together efficiency and high availability. In this
paper, we present C2DN1, a CDN design that achieves both
high availability and high resource efficiency. To achieve high
resource efficiency, we apply erasure coding to large cached
objects. This requires overcoming multiple CDN-specific
challenges such as eviction of object chunks due to write
rate imbalances. In fact, we show that a naive application of
erasure coding fails to achieve the goal. The core of our design
is a new technique that enables CDNs to balance eviction rates
and write loads across servers in each cluster. We exploit the
fact that erasure coding enables more flexibility in assigning
chunks to multiple servers. Our key insight here is that the
chunk assignment can be reduced to a known mathematical
optimization problem, called Max Flow Problem.

The core contributions of C2DN are a novel chunk place-
ment scheme for consistent-hashing-based load balancing
in CDN clusters and a low-overhead implementation of era-
sure coding for CDNs that can serve the different traffic re-
quirements of production systems. Specifically, by solving an
instance of the Max Flow problem, we assign objects with
near-optimal balance in eviction and write rates for CDN
servers and their SSDs. As a consequence, C2DN can reduce
storage overheads and bandwidth costs. Finally, equal write
rates across servers essentially function as a cluster-wide
distributed wear-leveling for the servers’ SSDs, significantly
extending lifetimes.
Our contributions. We make the following contributions.
1. We show that server unavailability is common in CDN

clusters by analyzing a month-long trace from over 2000
load balancers of a large CDN. We show that the state-of-
the-art approach of replicating objects within a cluster does
not eliminate miss ratio spikes after a server unavailability
events.

2. We design C2DN with a hybrid redundancy scheme us-

1C2DN stands for Coded Content Delivery Network.

ing replication and erasure coding, along with a novel
approach for parity placement. C2DN reduces the storage
overhead of providing fault tolerance, and hence lowers
the miss ratio. Moreover, by leveraging the parity assign-
ment, C2DN balances the write loads and eviction rates
across cache servers.

3. We implement C2DN on top of the Apache Traffic Server
(ATS) [7] and evaluate it using production traces. We show
that C2DN provides 11% miss ratio reduction compared
to the state-of-the-art, and C2DN eliminates the miss ratio
spikes caused by server unavailabilities. Further, C2DN
decreases write load imbalance between servers by 99%.

2 Background

We describe CDN architecture, performance, and cost factors.
CDN Architecture. A CDN is a large distributed system
with hundreds of thousands of servers deployed around the
world [20, 50]. The servers are grouped into clusters, where
each cluster is deployed within a data center on the edge of
the Internet. The CDN cluster caches content and serves it on
behalf of content providers, such as e-commerce sites, enter-
tainment portals, social networks, news sites, media providers,
etc. By caching content in server clusters proximal to the end
users, a CDN improves performance by providing faster down-
load times for clients. Unlike storage systems, CDN servers
do not store the original content copies. When the requested
content is not available in the cluster (cache miss), the con-
tent is retrieved from other CDN cluster or the origin servers
operated by the content provider.
Bucket-based request routing. When a user requests an ob-
ject, such as a web page or video, the global load balancer
of the CDN routes the request to a cluster that is proximal to
the user [15]. Next, the local load balancer within the cluster
routes the request to one or more servers within the chosen
cluster that can serve the requested object. As an example, in
Akamai’s CDN, these routing steps are performed as DNS
lookups. A content provider CNAMEs its domain name (e.g.,
for all of its media objects) to a sub-domain whose author-
itative DNS server is the CDN’s global load balancer. At
the global load balancer, this sub-domain is CNAME’d to a
cluster-local load balancer that assigns the sub-domain to a
cluster server using consistent hashing [43].

CDN request routing stands in contrast to sharding in key-
value caches, such as Memcached and Redis, where consistent
hashing is often applied at a per-object granularity [49, 81–
83]. In CDNs, load balancing decisions are taken on the
granularity of groups of objects called buckets. Each bucket,
in a DNS-based load balancer, correspond to a domain name
that is resolved to obtain one or more server IPs that host
objects in that bucket. This resolution is computed using
consistent hashing. Since the number of buckets is limited in
the range of 100s, the computation is performed and cached
when a cluster server becomes available or unavailable.
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Figure 1: a) Size distributions show that large objects contribute to most of the unique bytes and b) most requests are for small objects. c)
Server unavailabilities are mostly transient. d) Object miss ratios spike after server unavailability both with and without the state-of-the-art
replication.

CDN Performance Requirements. A CDN aims to serve
content faster than a customer’s origin by a specified speedup
factor. This factor is commonly part of a service level agree-
ment (SLA) between the CDN and the content provider. The
SLA is monitored by recording download times from a glob-
ally distributed set of locations for the same content using both
CDN and origin servers. Hence, the goal is to ensure good
“tail” performance in every time interval for every content
provider from every cluster.
Operating Costs of a CDN. CDNs seek to minimize the op-
erating cost, which consists of the following main categories.
(i) Bandwidth : A major component of the operating cost of a
CDN is bandwidth, accounting for roughly 25% of operating
costs. The bandwidth cost can be further broken down, the
bandwidth cost caused by cache miss traffic called midgress
[69] that accounts for roughly 20%, while the rest is the cost of
egress i.e., the traffic from the CDN servers to clients. CDNs
have a great cost incentive to reduce the byte miss ratio and the
midgress traffic since a CDN gets paid by content providers
for the traffic to end users. The midgress traffic between CDN
clusters and the origin is purely a cost overhead for the CDN.
Even modest reductions in midgress translate into large cost
savings since the bandwidth costs tens of millions of dollars
per year for a large CDN [69].
(ii) SSD wearout: A second major cost component is server
deprecation which accounts for about 25% of the operating
cost of a large CDN. Hardware replacements are particularly
expensive for small edge clusters due to the large geographic
footprints of CDNs. SSDs are a key component due to the
high IOPS requirements of CDN caching. Unfortunately, us-
ing SSDs in caching applications is challenging due to their
limited write endurance [9, 22, 42, 67, 70]. With deployments
of TLC and QLC SSDs, reducing SSD write rates has become
even more critical. Besides reducing the average write rate
within a cluster, CDNs also seek to reduce the variance of
write rates of different servers and their SSDs. Large variance
leads to some SSDs not achieving their intended lifetime (e.g.,
3 years) as well as high tail latency (see §3.4). Consequently,
CDNs seek to reduce the peak write rate, ideally balancing
write rates across all SSDs in a cluster.

Per server load (TB) Max Min Mean Max/min

Weekly read 225.2 167.9 191.2 1.3
Weekly write 16.54 6.69 12.57 2.5

Table 1: Read and write load for a 10-server production cluster.

3 Production CDN Trace Analysis

This section motivates the design of C2DN by analyzing three
sets of traces from production Akamai clusters.

We collected request traces from two typical Akamai 10-
server-clusters (cluster cache size 40 TB), one mainly serving
web traffic and the other mainly serving video traffic. These
traces comprise anonymized loglines for every request from
every server over a period of 7 and 18 days, respectively. The
web trace totals 6 billion requests (1.7 PB) for 273 million
unique objects (79.8 TB). The video trace totals 600 million
requests (2.1 PB) for 130 million unique objects (224 TB).

Additionally, we collected availability traces from 2190
Akamai clusters over 31 days. The trace consists of snapshots
taken every 5 minutes from each cluster’s local load balancer.
Each snapshot contains the number of available servers as
determined by the load balancer. The smallest cluster has
two servers, the largest cluster has over 500 servers, and the
median cluster size is 17 servers. We observe that cluster size
has a wide range, and around 40% of clusters have fewer than
or equal to 10 servers. We plot the distribution of cluster size
in Fig. 10 in Appendix 10.1.

3.1 Diversity in workloads and object sizes
CDNs mix different types of traffic in clusters in order to fully
use their resources. For example, different “classes” of traffic
with small and large object sizes, such as web assets and video-
on-demand, are mixed to balance the utilization of the clus-
ter’s CPUs as well as network and disk bandwidth [68]. Con-
sequently, object sizes vary widely [10]. Figures 1a and 1b
show the size distribution for our production traces, weighted
by unique objects and by request count, respectively. As ex-
pected, object sizes vary from a few bytes to a few GBs. Fig 1a
shows that the majority of traffic and cache space is used by
large objects. Furthermore, objects smaller than 1 MB make



up less than 15% and 12% of the total working set in web
and video, respectively. Fig 1b shows that the majority of the
requests are for small objects with 95% of requests in web-
dominant workload smaller than 1 MB, and 50% of requests
in video-dominant workload smaller than 1 MB.

3.2 Unavailability is common and transient
Unavailability is common. Across all clusters, server un-
availabilities occur in 45.2% of the 5-minute snapshots. For
clusters with only ten servers (same size as the cluster we
collect request traces from), we observe that 30.5% of 5-min
time snapshots show server unavailability. Moreover, we ob-
serve that unavailability affects only a small number of servers
at any given time: 85% of unavailabilities affect less than 10%
of servers in large clusters, and 84% of unavailabilities affect
no more than a single server in a ten-server cluster.

These unavailability rates can appear high compared to
published failure rates in large data centers [25, 46, 54, 56, 59]
and HPC-systems [65]. However, environmental conditions
can be more challenging in small edge clusters. For example,
edge locations often have less efficient cooling systems than
highly optimized hyperscale data centers; edge clusters also
have less power redundancy, such as redundant battery and
generator backups [50]. Moreover, CDN clusters employ a
rigorous definition of server unavailability. When a server
does not meet the performance requirement, it is deemed
as unavailable by the load balancer. These types of unavail-
ability are rarely reported by data centers and HPC systems.
Unfortunately, the unavailability logs do not provide a causal
breakdown of failure events.
Unavailability is mostly transient. Fig. 1c shows a CDF
of the durations of unavailabilities. We observe that unavail-
abilities can last between 20 minutes and 24 hours with a
median duration of 200 minutes. These short unavailabili-
ties are mostly caused by performance degradation, such as
unexpected server overload and software issues (e.g., applica-
tion/kernel bugs or upgrades). Besides, we observe a long tail
of unavailability durations, with around 16% exceeding 24
hours and 2% exceeding an entire week. These cases may be
related to hardware issues. Qualitatively, our observations are
similar to storage systems in the sense that unavailabilities
are common and most unavailabilities are not permanent.

3.3 Mitigating unavailability is challenging
Upon detecting an unavailability, the load balancer removes
the corresponding server from the consistent hash ring and
reassigns their buckets to other servers [43]. We evaluate
how a bucket’s object miss ratio is affected by unavailability
using the video trace. Fig. 1d shows that the object miss
ratio in a CDN cluster without any redundancy increases by
more than 2× relative to no unavailability over the same time
period. This spike disproportionally affects a small group
of content providers because of bucket-based routing (§3.1).

The high latency resulting from cache misses can lead to SLA
violations.

The state-of-the-art mitigation technique for server un-
availability at large CDNs is replicating buckets across two
servers2. When one server becomes unavailable, requests are
routed to the other server, likely to hold the object. Fig. 1d
shows that replication reduces the intensity of the miss ratio
spike. However, we find that replication does not remove the
miss ratio spike. In contrast to storage systems, where replica-
tion guarantees durability, in CDN clusters, servers perform
cache evictions independently. Objects that are admitted to
two caches at the same time may be evicted at different times.
This is particularly common if the two caches evict objects at
very different rates, making replication ineffective. We next
discuss why this case is more common than one might expect.

3.4 The need for write load balancing
We measure the read and write load balance across servers
in a CDN cluster. To make the analysis independent from
eviction decisions, we present the read and write rates based
on compulsory misses from the web trace 3. Table. 1 shows
that the server with the highest read load serves 1.3× more
traffic than the server with the lowest read load. The server
with the highest write load writes around 2.5× more bytes
than the server with the lowest write load.

Write load imbalance causes three problems. First, imbal-
ance reduces the effectiveness of replication. A server with
a 2.5× higher write rate also has a 2.5× higher eviction rate.
So, a newly admitted object will traverse the cache with the
highest write load 2.5× faster than the one with the least write
load. Consequently, buckets mapped to these servers will have
many objects for which only a single copy is cached in the
cluster. We find that for 25% of objects, only a single copy ex-
ists in the cluster, which leads to the miss ratio spike observed
during unavailabilities (Fig. 1d). Second, SSD write load
imbalance often causes high tail latency. Specifically, high
write rates frequently trigger garbage collection, which can
delay subsequent reads by tens of milliseconds [11,77,78,80].
These delays are significant enough to have been recognized
as a problem by multiple CDN operators [61]. Third, the
imbalance can lead to short SSD lifetimes due to concen-
trated writes on some SSDs, and thus higher replacement
rates [9, 22], which increases CDN cost (§2).

4 C2DN System Design

C2DN’s design goals are to: (1) eliminate miss ratio spikes
2For operational flexibility, CDNs do not replicate servers as prima-

ry/backup. CDNs implement replication using additional virtual nodes for a
bucket on the consistent hash ring [36, 47].

3Compulsory misses are cache admissions forced by objects not pre-
viously seen in the trace (underestimating the real miss and write rate).
However, more compulsory misses only lead to more writes and evictions.
Therefore, write rates are often proportional to compulsory misses.



caused by server unavailability, and (2) balance write loads
across servers in the cluster. Erasure coding is a promising
tool to improve availability under server unavailability. We
first describe a naive implementation, called C2DN-NoRebal,
based on a straightforward application of erasure coding
(§4.1). C2DN-NoRebal fails to achieve the targeted goals,
and we identify write and eviction imbalance as the key chal-
lenge. We then describe a new technique to overcome this
challenge (§4.2) that exploits the unique aspects of the use of
erasure coding in the context of CDNs.

4.1 Erasure coding and C2DN-NoRebal
Erasure coding is widely used in production storage sys-
tems for providing high availability with low resource over-
head [32, 35, 48, 48, 54, 56]. Conceptually, erasure coding an
object involves dividing the object into K data chunks and
creating P parity chunks, which are mathematical functions
of the data chunks. Such a scheme, called a (K,P) coding
scheme, enables the system to decode the full object from any
K out of the K+P chunks. Thus, caching K+P chunks on dif-
ferent servers provides tolerance to P server unavailabilities.
As individual chunks are only a fraction 1/K of the original
object’s size, coding reduces space overhead compared to
replicating full objects4.

As CDNs use bucket-based routing (§2), coding needs to
be applied at the level of buckets rather than objects. Specif-
ically, the K data chunks of all the objects belonging to a
bucket are grouped into K distinct data buckets respectively.
Similarly, the corresponding P parity chunks are grouped into
P distinct parity buckets. These buckets (data and parity) are
each assigned to a distinct server in the cluster. Note that
while the routing happens at the level of buckets, requests are
still served at the level of objects. Hence we will use the term
buckets in the context of assignment and chunks in the context
of serving specific objects.

The application of erasure coding to CDNs is shown in Fig.
2a. To serve a user request, a server reads one chunk from
the local cache and at least K−1 chunks from other servers
to reconstruct the requested object. To find the location of
data and parity chunks, C2DN-NoRebal relies on a simple
extension of bucket-based consistent hashing. The location of
the first chunk is the server the bucket containing the object
hashes to. Then, subsequent K +P−1 chunks are read from
the subsequent K +P−1 servers on the consistent hash ring.

Owing to the reduced storage overhead, C2DN-NoRebal
provides cost benefits by reducing the average byte miss ratio
when compared to replication (as seen in our experiments in
§6). However, C2DN-NoRebal fails to eliminate the object
miss ratio spike during unavailability (§6). Specifically, we
find that coded caches are even more sensitive to write load im-
balance than replication. For replication, eviction rate imbal-

4The space overhead of an (K,P) coding scheme is K+P
K . For example, for

K = 3, P = 1, space overhead is 1.33× as opposed to 2× in two-replication.

ance may cause the second (backup) copy to be evicted, which
is required when a server becomes unavailable. Whereas for a
coded cache, eviction rate imbalance could lead to any of the
individual chunks being evicted, which leads to an effect we
call partial hits: less than K chunks of the object are cached
in the cluster, and this prohibits the reconstruction of the ob-
ject. A partial hit only requires fetching the missing chunks,
but incurs the same round-trip-time latency as a miss and
thus does not provide a speedup. Further, partial hits become
even more frequent during server unavailability, thus deeming
C2DN-NoRebal less effective.

4.2 Parity rebalance and C2DN
Having identified write imbalance as a key challenge for
erasure coding in CDNs, we next show how we exploit parities
in overcoming these imbalances. Our main idea is to assign
parity buckets to servers in a way that mitigates the write load
imbalance caused by data bucket assignment.

Like the state-of-the-art in CDNs and C2DN-NoRebal,
C2DN applies consistent hashing to assign the data buck-
ets (Fig. 2b). We define a server’s data write load as the
number of bytes written (i.e., admitted) to cache, counting
only data buckets. We also define a bucket’s parity write
load as the bytes written counting only parity buckets. Every
server records data write load and each bucket’s parity write
load since the cluster’s last unavailability event. After an un-
availability event, parity buckets are reassigned by the load
balancer using this information. The load balancer calculates
an assignment of parity buckets to servers to balance write
load. This assignment is a non-trivial calculation as not every
assignment is feasible: parity chunks cannot be assigned to
a server that holds a data chunk of the same object. In gen-
eral, C2DN’s parity bucket assignment problem is NP-hard
by reduction from the Generalized Assignment Problem [14].
C2DN’s parity bucket assignment algorithm. We obtain
an approximate solution in polynomial time using a MaxFlow
formulation (Fig. 2c). The solution provides us with feasible
server assignments for each parity bucket. We empirically
observe that by assigning the parity bucket to the least loaded
server among the feasible servers, the write load on each
server is well balanced. The inputs to the algorithm are:
1. parity write load of bucket n (sn),
2. data write load on server i (li),
3. total write load on the cluster (W ),
4. current assignment of data buckets to servers,
5. available servers in the cluster (A).

The flow graph (Fig. 2c) is constructed using a source-
node (S), parity-nodes corresponding to each parity bucket,
server-nodes corresponding to each server in the cluster, and
a sink-node (T). We add an edge from the source-node (S) to
each parity-node n with a capacity equal to the bucket’s parity
write load (sn). We add edges from parity-nodes to the server-
nodes if the corresponding parity bucket can be placed on that
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server, i.e., the data chunks of the bucket are not assigned to
the server. The capacity of these edges is again the bucket’s
parity write load (sn). Finally, we add edges from server-nodes
to the sink-node (T) with a capacity equal to the server’s
remaining write load budget, which is max(

⌈
W
|A |

⌉
− li,0).

After solving MaxFlow(S,T), C2DN iterates over parity
buckets. Each parity bucket is assigned to the least loaded
server with a positive flow from the parity-node to the server-
nodes. This leads to a well-balanced assignment. The assign-
ment is also feasible as no positive flow exists between a parity
bucket and the servers holding this bucket’s data chunks.

The parity rebalance algorithm is described in more detail
via a pseudo-code in Appendix 10.3.
Extension to heterogeneous servers. We incorporate het-
erogeneous servers by setting the capacity of the edge in the
graph between server-nodes to sink-node (T) proportional to
the size of the server.

4.3 C2DN resolves partial hits
Having shown how to balance write loads across servers
within the cluster, we show that this is sufficient to solve the
issue of partial hits. Specifically, we find that the probability
of a partial hit diminishes for large caches.

We formulate our proof under the simplifying assumptions
of the independent reference model (IRM5), which is used
widely in caching analysis [5, 10, 23]. While our proof can
be extended to a range of eviction policies [44], we assume
the Least-Recently-Used (LRU) policy for simplicity. We
empirically observe that FIFO, which is used in open-source
caches such as Apache Trafficserver [7] and our empirical
evaluation in §6, behaves similarly to LRU.

We remark that we do not require explicit coordination of
individual eviction decisions among the caches. Our theorem
states that under IRM, in C2DN, if one chunk of an object is
present in a cache, then the other chunks are almost surely

5In the IRM, an object i’s requests arrive according to a Poisson pro-
cess with a rate λi, independent of the other objects’ requests. With recent
theoretical advances [34], our proof can be extended to not assume the IRM.
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Figure 3: Microbenchmarks. a) With vector instruction in modern
CPU, decoding is very efficient with high throughput, the sub-chunk
size to achieve maximum throughput across configurations is around
32-64 KB. b) Modern SSD achieves maximum throughput with I/O
size larger than 32 KB.

present in the other caches.
Theorem 1. Under IRM and LRU, in C2DN, for an object
with chunks x1, . . . ,xn, for any 1≤ i, j ≤ n., and as the cache
size grows large

P[chunk xi is in cache | chunk x j is in cache ]→ 1 (1)

Our proof uses the fact that balanced write loads lead to equal
characteristic times [10, 23, 26, 60], which is the time it takes
for a newly requested chunk to get evicted from each server’s
LRU list. Since data and parity chunks of an object are re-
quested simultaneously and the characteristic time is the same,
the chunks are also evicted simultaneously, and partial hits
become rare. Details can be found in Appendix 10.2.

5 C2DN Implementation

In addition to design goals (1) and (2), C2DN’s implementa-
tion seeks to (3) minimize storage/ latency/ CPU overheads
and (4) remain compatible with existing systems to facilitate
deployment. This entails subtle implementation challenges.
Enabling transparent coding. A key architectural question
is which system component encodes and decodes objects
into/from data and parity chunks. A natural choice might be to
encode objects at origin servers. However, this would require
changes to thousands of heterogeneous origin software stacks
— a barrier to deployment. Additionally, encoding at the origin



would increase origin traffic as each cache miss needs to
fetch both data and parity chunks, e.g., with K = 3, P = 1 the
origin traffic would increase by 33%. Thus, C2DN fetches
uncoded objects from origins and encodes chunks within the
CDN cluster. Additionally, any decoding operation is also
performed within the cluster for transparency on the client
side.
Selective erasure coding. While encoding and decoding are
fast due to broad CPU support for vector operations, the over-
head of fetching becomes significant for small objects. As
the majority of requests are for small objects (§3.1), we can
reduce processing overheads by using replication for small
objects. C2DN applies coding to large objects, which account
for most of the production cluster’s cache space (§3.1). Of
course, with selective coding, we now need to count uncoded
objects as part of the data write load in §4.2.

To decide the size threshold of coding, we perform two mi-
crobenchmarks studying how coding block size affects coding
throughput and SSD bandwidth. Fig. 3a shows that even on a
five-year-old Skylake Xeon, decoding is very efficient with
per-core throughput over 200 Gbps (data fits in CPU cache)
at a block size of 32 KB. This benchmark result suggests that
decoding will not be a bottleneck at a reasonable block size
(e.g., 32 KB) compared to NIC bandwidth. Fig. 3b shows the
relationship between SSD bandwidth and I/O size (setup as in
§6). We again find that a block size of 32-64 KB achieves the
peak SSD bandwidth. Based on these results, C2DN codes
object larger than 128KB so that each chunk is at least 42KB
for a (3, 1) coding scheme.

This hybrid approach enables load balancing and space
efficiency with no overhead for most requests. One might ask
why C2DN relies on replication for small objects after §2
showed that replication continues to suffer from miss ratio
spikes. We find that erasure coding large objects is sufficient
to balance eviction rates (using C2DN’s parity rebalance),
making replication effective for small objects.
Parity rebalance and parity look up. As described in § 4.2,
C2DN formulates the parity bucket assignment problem as
a Max Flow problem. We solve the problem using Google-
OR [53], which implements the push-relabel algorithm [18].
The time complexity of this algorithm is O(n2

node ∗
√nedge).

where nnode is the number of nodes (#buckets + #servers)
and nedge is the number of edges (≈#buckets × #servers).
In production systems, #buckets is in the range of 100s for
a 10-server cluster. Thus, the time complexity simplifies to
O(#buckets3). Empirically, we observe low run times as well,
for e.g., for 100 buckets and 10 servers, C2DN’s parity bucket
assignment runs within 50 µs. Also, note that the parity bucket
mapping is calculated in the background (off the critical path)
and only when there is an unavailability event. From our
analysis, we observe around 5.6 unavailability events on an
average day.
Support for large file serving, HTTP streaming, and byte-
range requests. To minimize latency, CDNs stream large ob-
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b1 b2 b3
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Data chunks Parity chunks

Figure 4: Support for HTTP streaming. C2DN efficiently supports
HTTP streaming and byte-range requests by splitting large files into
sub-chunks and performs coding on sub-chunks level.

System Replication(CDN) C2DN C2DN reduction

Object miss ratio 0.242 0.227 6.4%
Byte miss ratio 0.118 0.105 11%

Table 2: Object and byte miss ratio from prototype

jects to clients. We achieve compatibility with streaming by
subdividing data and parity chunks (for very large objects)
into smaller parts which we call sub-chunks. C2DN’s encod-
ing and decoding work on the sub-chunk level as shown in
Fig. 4. We implement streaming by serving sub-chunks as
they become available. For byte-range requests, C2DN fetches
the sub-chunks overlapping with the requested byte-range.
Delayed fetch of parity sub-chunks. C2DN can serve a re-
quest with any K sub-chunks (out of K +P). Because serv-
ing with data sub-chunks requires no decoding, C2DN first
fetches all K data sub-chunks. C2DN only fetches parity sub-
chunks after a heuristic wait period to overcome stragglers.
We record the time until the first data sub-chunk is returned.
If, after an additional 20% wait time, fewer than K data sub-
chunks have arrived, C2DN fetches parity sub-chunks.
Hot object cache (HOC). To facilitate serving hot objects,
C2DN caches decoded sub-chunks in DRAM so that if an
object is popular, it will be served directly and efficiently from
DRAM, thus avoiding fetching and possible decoding.
Metadata lookups. In the case of a HOC miss, C2DN needs
to know if the object was encoded or replicated. Storage
systems can rely on external metadata for this case, which
is not available in CDNs. Thus, C2DN stores metadata with
each cached object, indicating whether the object is coded
or not. On a HOC miss, C2DN first looks up the object in
its local SSD cache. If the metadata indicates a coded object,
C2DN fetches chunks from other caching servers within the
cluster. In the case of a local cache miss, C2DN retrieves the
object from other CDN clusters or the origin servers, then
C2DN serves the object to the end-user, stores it locally, and
encodes or replicates based on the object size.

6 Evaluation

We build C2DN on top of Apache Trafficserver and evaluate
it via a series of experiments on Amazon EC2. To study a
more comprehensive parameter range, we use simulations.
The source code of our prototype and simulator is released at
https://github.com/Thesys-lab/C2DN.

The highlights of our evaluation are: (1) C2DN eliminates
miss ratio spikes after unavailabilities. Additionally, C2DN re-

https://github.com/Thesys-lab/C2DN


duces byte miss ratio by 11%, enabling significant bandwidth
cost savings at scale. (2) C2DN reduces write load imbalance
by 99%. (3) C2DN achieves the same latency, lower average
SSD write rates with only a 14% increase in CPU utilization.

6.1 Experimental methodology and setup
Traces. We evaluate C2DN using the two production traces
described in §3. In the following sections, we focus on the
video trace and present results for the web trace in §6.7.
Prototype evaluation setup. We emulate a CDN’s geo-
graphic distribution by placing sets of clients, a 10-server
CDN cluster, and an origin data center in different AWS
regions. CDN servers use i3en.6xlarge VMs with 80 GB
in-memory cache and 10 TB disk cache. To reduce WAN
monetary bandwidth costs of the experiments, we measure
latency via spatial sampling [72, 73] for 2% of requests. The
remaining requests are generated in the same region.

Unless specified otherwise, we use Reed-Solomon codes
(K = 3,P = 1). We only code objects larger than 128 KB
(§4). The prototype experiments use four days of requests
to warm up caches. Measurements are then taken for three
days of requests. This corresponds to replaying 1.18 PB of
traffic in total from local and remote clients in each prototype
experiment.
Simulation setup. We implement a request-level cluster sim-
ulator. While the simulator does not capture system overheads,
it is useful in comparing various schemes for the full dura-
tion of the trace and for various cache sizes (which are pro-
hibitively expensive to perform using prototype experiments.)
Simulations use 18-day long traces (compared to 7 days with
the prototype). Unless otherwise stated, the simulator uses
the same configuration as the prototype.
Baselines. We compare C2DN to three baselines. (1) No-
replication does not provide fault tolerance and incurs no
space overhead. (2) Replication (CDN) replicates each ob-
ject with two replicas. We use the (CDN) suffix as this is most
similar to the approach deployed today. (3) C2DN-NoRebal
a C2DN variant based on consistent hashing without par-
ity rebalance. In addition to C2DN, which uses one parity
chunk and tolerates one unavailability, we have also evalu-
ated C2DN-n5k3 and C2DN-n6k3, which uses two and three
parity chunks, and can tolerate two and three unavailabilities,
respectively.

6.2 Miss ratio without unavailability
We evaluate miss ratios of the competing systems under nor-
mal operation, i.e., without unavailability. Table. 2 shows the
object miss ratio and byte miss ratio of Replication (CDN)
and C2DN obtained from the prototype experiments. We ob-
serve that C2DN reduces object miss ratio by 6.4% and byte
miss ratio by 11.0%. These improvements are direct results
of the reduced storage overhead in C2DN. At a large scale,
these improvements lead to significant bandwidth savings.
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Figure 5: Byte miss ratio of the four systems.

To understand the sensitivity of byte miss ratio improve-
ments to cache size, we show simulation results in Fig. 5. For
smaller cache sizes, C2DN improves byte miss ratios by up
to 20%. Benefits diminish for cache sizes above 200 TB (5×
production cache size). For object miss ratios, the effect is
qualitatively similar (Fig. 12 in the appendix). Overall, the
reduction in miss ratio bridges the efficiency gap between No-
replication and Replication (CDN) and reduces the overhead
of providing redundancy in CDN edge clusters.

We also observe that C2DN improves miss ratios compared
to C2DN-NoRebal because C2DN balances the write loads
(eviction rates) across servers and reduces the probability of
partial hits. However, this effect is small, suggesting that most
of C2DN’s miss ratio reduction comes from reduced storage
overhead. The advantage of C2DN over C2DN-NoRebal will
become clear in the following section, where we find that
C2DN-NoRebal does not provide effective fault tolerance.

6.3 Miss ratio under unavailability
We now consider unavailabilities and evaluate the object miss
ratio as the primary performance metric affecting latency and
speedup. A first experiment introduces single unavailability
after warming up the cache. We then measure the relative
object miss ratio change: mr(un)−mr(av)

mr(av) for each 5 minute time
interval, where mr(un) and mr(av) stand for miss ratio with
unavailability and without unavailability, respectively. A sec-
ond experiment considers two simultaneous unavailabilities.

Fig. 6a show the relative object miss ratio increase where
the single unavailability event occurs 100 minutes after
warmup. As expected, No-replication does not provide fault
tolerance, leading to a large (2.2× as seen in 1d) miss ratio
spike. Replication (CDN) and C2DN-NoRebal have similar
performance with 25% miss ratio spikes.

The miss ratio of C2DN is not affected for several hours
after the unavailability event. This is because C2DN with
one parity chunk can tolerate one unavailability effectively.
In the long term, miss ratios for all systems increase as the
cluster’s total capacity is reduced. For C2DN, the increase in
the miss ratio becomes visible only after around 300 minutes
past unavailability. During unavailability, data that should
be written to the unavailable servers are written to the other
available servers. The extra writes take a long time to impact
the miss ratio of clusters with a large cache size. We remark
that the exact length of such no performance degradation is
not fixed and is dependent on the trace.

The reason for the miss ratio spike in Replication (CDN)
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Figure 6: a) Replicated CDN mitigates unavailability, but still has a spike after unavailability. C2DN mitigates the unavailability spike. b)
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Figure 7: With two simultaneous unavailabilities, two replication
(CDN) shows a big spike when the unavailability happens. Three
replication and C2DN-n5k3 still show a small spike due to evicted
replica/chunk. C2DN-n6k3 completely eliminates the spike.

and C2DN-NoRebal— despite using redundancy — is the
severe write and eviction rate imbalance in these systems
(§3.3 and 3.4). This imbalance leads to unprotected objects:
an object is unprotected if only a single copy is cached in the
cluster. For C2DN-NoRebal, unprotected objects are objects
with fewer than K +1 chunks cached in the cluster.

Fig. 6b shows the fraction of (un)protected objects in Repli-
cation (CDN). We observe that more than 25% of objects can
be unprotected. The fraction of unprotected objects initially
increases with cache size and then decreases. This pattern
is because only highly popular objects are cached when the
cache size is small, and hence the chance of having both repli-
cas is higher. On the other hand, replicas are less likely to be
evicted when the cache size is very large. Fig. 6c shows the
fraction of unprotected objects in C2DN-NoRebal and C2DN.
Since K =3 and P =1, objects with fewer than 4 chunks are un-
protected. For caches smaller than 300 TB, up to 24% of the
objects in C2DN-NoRebal are unprotected. In contrast, C2DN
protects nearly 100% of cached objects across all cache sizes
and effectively eliminates miss ratio spikes.

So far, we have only focused on one unavailability. When a
CDN operator seeks to tolerate more than one unavailability,
C2DN’s advantage over replication increases as the space
requirements for erasure coding scale significantly better. As
an empirical data point, we consider two unavailabilities and
compare two-replication and three-replication with C2DN-
n5k3 and C2DN-n6k3. C2DN-n5k3 (C2DN-n6k3) uses two

System/server load Max Min Mean Max/min

CDN write (TB) 16.83 9.26 13.48 1.82
C2DN write (TB) 8.44 8.40 8.42 1.00

Table 3: Write load on servers in Replication (CDN) and C2DN.

(three) parity chunks with 66% (100%) storage overhead
and can tolerate two (three) unavailabilities. In contrast, two-
replication and three-replication tolerate one and two unavail-
abilities with 100% and 200% storage overhead, respectively.

Fig. 7 shows that compared to two-replication, C2DN-n5k3
and three-replication significantly reduce the miss ratio spike
from over 80% to less than 20%. Furthermore, the miss ratio
spike disappears entirely with C2DN-n6k3, which has the
same storage overhead as two-replication.

6.4 Write (Read) load balancing
We quantify how well systems balance write load across
servers. Balancing writes is the key to mitigating miss ra-
tio spikes and helps control SSD tail latency and endurance.

Table. 3 shows bytes written per server in our prototype
experiments. The busiest server in Replication (CDN) writes
16.8 TB compared to 8.4 TB for the busiest server in C2DN.
With half the write rate, C2DN may double SSD lifetime
and reduce tail latency by up to an order of magnitude [80].
The write imbalance in Replication (CDN) between peak and
minimum write rate is 1.82×. In contrast, the write imbalance
in C2DN is less than 1.005×. We also observe that C2DN
reduces read imbalance from 1.69× for Replication (CDN)
to 1.34×. The read imbalance in C2DN remains as parity
rebalancing (§4.2) focuses exclusively on write rate.

We further explore the effects of load balancing across var-
ious cache sizes using simulations. If M is the write (read)
load on the server with maximum write (read) load and m is
the minimum write (read) load across the servers, then write
(read) load imbalance = M−m

m . Fig. 6d shows that C2DN
eliminates write imbalance for all cache sizes. When aver-
aged across cache sizes, C2DN reduces the write load im-
balance by 99.9% compared to No-replication, 99.8% com-
pared to Replication (CDN), and 99.5% compared to C2DN-
NoRebal. C2DN also reduces the read load imbalance: by
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Figure 8: First-byte and full response latency of serving small and large objects in CDN and C2DN.

93.9% compared to No-replication, 78.9% compared to Repli-
cation (CDN), and 70.5% compared to C2DN-NoRebal on an
average across the different cache sizes.

6.5 Latency
We quantify potential latency overheads by measuring the
time-to-first-byte (TTFB) and content download time (CDT)
of our prototype implementations of C2DN and Replication
(CDN). In each case, we separately measure the latency distri-
bution for objects below the 128KB coding threshold (“small”
objects) and for objects above the threshold (“large” objects).
Fig. 8a and Fig. 8b show the cumulative distributions of TTFB
for small and large objects, respectively. For small objects,
we find that the TTFB distributions for C2DN and Replica-
tion (CDN) are similar, as expected: C2DN does not code
these objects. C2DN slightly improves the TTFB distribution
(shifting to the left) due to its lower object miss ratio. For
large objects, we find about a 1 ms overhead in TTFB at low
percentiles (25th-60th percentile). The slight increase is for
cache hits due to fetching the first sub-chunk from K servers
before serving the object.

We now consider CDT. In practice, this metric is more
relevant for large objects than the TTFB. Fig. 8c and Fig. 8d
show a cumulative distribution of the content download time
for small and large objects, respectively. Again we find that
small objects behave similarly in Replication (CDN) and
C2DN, with slightly better latency for C2DN due to lower
object miss ratio. For large objects, C2DN and Replication
(CDN) have a similar CDT. The overheads of fetching chunks
are hidden by our streaming implementation based on sub-
chunks (§5).

We remark that C2DN improves the tail latency in all cases
(barely visible in the CDFs). For example, C2DN reduces
the P90 TTFB by up to 3× compared to Replication (CDN).
We attribute this to a lower miss ratio and the mitigation of
stragglers using parity chunks to serve requests. This is as
expected based on prior work on using coding to reduce tail
latency [55].

6.6 Overhead assessment
We quantify the resource overheads of our C2DN prototype.
CPU usage. Fig. 9a measures CPU utilization in fractional
CPU cores for userspace and kernel tasks, respectively. C2DN
generally leads to higher CPU usage. The userspace CPU us-
age is higher due to the encoding and decoding of objects, and
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Figure 9: Resource usage. C2DN uses slightly more CPU resources
and slightly more read disk IOPS than CDN, however, C2DN reduces
write disk IOPS, especially at peak.

the kernel CPU usage is higher due to additional network and
disk I/Os. Overall, CPU usage increases by 14% on average
with a similar increase in kernel and userspace CPU usage.

The increase in the CPU overhead is small as C2DN per-
forms the encoding and decoding operation only on a fraction
of requests. For the current coding size threshold of 128 KB,
the number of requests served with coded objects is around
50%, while the number of bytes served using coded objects is
close to 90%. Also, recall that most requests for coded objects
do not need to be decoded as the object is recreated by con-
catenating data chunks in the output buffer. Decoding only
happens in the case of stragglers and partial hits. In fact, only
6% of requests require decoding in our experiments. These
cases happen primarily due to the straggler problem (individ-
ual slow servers); actual data chunk misses (partial hits) occur
for less than 0.6% of requests. A future version of C2DN
may further reduce CPU overheads by using kernel-bypass
networking or increasing the object size threshold for coding.
Increasing the threshold can happen with minimal side effects,
as we show in the next section.
Disk usage. Fig. 9b compares disk IOPS of Replication
(CDN) and C2DN for reads and writes. For reads, we ob-
serve that C2DN uses 23% more IOPS in the mean and less
at the tail. Read-IOPS increase by 2% at the P99 and decrease
by 11% at the P99.9 (we calculate this percentile across time
and servers). For writes, C2DN uses 24% fewer writes IOPS
in the mean. The tail write IOPS decreases by 46% at the
P99 and 50% at the P99.9. The read IOPS increases because
C2DN fetches at least K = 3 chunks to serve an object if
coded. However, due to 1) most of the requests being for
small uncoded objects, 2) the presence of DRAM hot object
cache, the increase in reading IOPS is much smaller than 3×.
While mean read IOPS increase, the peak read IOPS is similar
or lower in C2DN. We attribute this to better load balancing



in C2DN. Write IOPS in C2DN is significantly reduced when
compared to Replication (CDN). C2DN has a lower storage
overhead than Replication (CDN) and thus writes less to disk.
In addition, the improvement in the miss ratio that C2DN pro-
vides further reduces the number of write operations. Besides,
C2DN also improves the tail write IOPS, which is due to a
better load balancing strategy of erasure coding and parity
rebalance.
Intra-cluster network usage. C2DN uses network band-
width within the cluster, about 0.9 Gbps in the mean and
2.3 Gbps at the P95. In conversations with CDN operators,
this internal bandwidth usage is feasible for production clus-
ters, as these links generally show little usage. For example,
production CDN clusters use dedicated 10-Gbps-NICs for
communication within the cluster.

6.7 Sensitivity analysis
We discuss the sensitivity of C2DN to its parameters.
Coding size threshold. The size threshold for coding im-
pacts the performance in multiple ways. By reducing the
size threshold, C2DN encodes more objects, improving cache
space usage and load balance across cluster servers. At the
same time, it leads to more CPU and I/Os (due to coding and
fetching) and increases the latency for small objects. The size
distribution in Fig. 1a shows that small objects contribute a
small fraction of cache space usage. Thus, the potential bene-
fit of coding diminishes as we decrease the size threshold for
coding. At the same time, C2DN would use more cluster re-
sources. We observe that reducing the size threshold to below
128 KB does not significantly benefit the object and byte miss
ratio. Increasing the size threshold to over 8 MB increases
the byte miss ratio by 2.79% and the write load imbalance
by 258%. We believe that 128 KB is a good tradeoff for our
production traces. Fig. 13 in the appendix shows our results.
Coding parameter K. Most of this section assumed C2DN
configured with K = 3. We explore the impact of parameter
K and P on miss ratio and write load balancing. We find that
increasing K and keeping P constant reduces miss ratios for
C2DN but increases miss ratios for C2DN-NoRebal. When
adding chunks, the probability of getting partial hits increases
for C2DN-NoRebal due to unbalanced eviction rates between
servers. Because C2DN uses parity rebalance to achieve sim-
ilar eviction rates between servers, the miss ratio decreases
with increasing K due to lower storage overhead. While the
impact of coding parameters has different impacts on miss
ratios for C2DN-NoRebal and C2DN, the impact on load bal-
ancing is similar, as K increases, because an object is broken
into more (and smaller) chunks, both the read and write load
imbalance in C2DN-NoRebal and C2DN reduce. Fig. 14 in
the appendix shows our results.
Different workloads. Throughout this section, we have used
the video trace. We repeated our evaluation for the week-long
web trace (§3). Compared to the video trace, the web trace
has a significantly smaller working set. The video trace has a

compulsory byte miss ratio of 0.1 and a compulsory object
miss ratio of 0.21. In the web trace, the compulsory miss
ratio is 0.06 for both byte and object miss ratios. In addition,
compared to the video trace, the web trace has a more diverse
object size range, as shown in Fig. 1a. Less than 10% of large
objects (possibly large software) contribute to more than 90%
of the cache space usage. Therefore, the fraction of requests
that require coding is significantly smaller.

In prototype experiments with the web trace, only 3% of all
requests are served coded. However, these 3% of requests ac-
count for 80% of served traffic. As a comparison, in the video
trace, the prototype serves about 50% of requests from coded
objects (with only 6% requiring decoding). Consequently,
coding overheads on the web trace are negligible. In terms
of the miss ratio, we observe a 10% reduction in object miss
ratio and a 6% reduction in byte miss ratio. The write imbal-
ance for Replication (CDN) is 1.72×, which is reduced to
1.03× in C2DN. The read imbalance for Replication (CDN)
is 4.8×, which is reduced to 2.5× in C2DN.
Different eviction algorithms. Throughout this section, we
have used FIFO as the eviction algorithm for the cache. FIFO
provides stable performance on SSDs and extends the lifetime
of an SSD by minimizing device write amplification [9,22,70].
Many open source caches such as Apache Trafficserver [7]
and Varnish [71] use FIFO. To understand the impact of the
eviction algorithm, we evaluate the Least-recently-used algo-
rithm (LRU) using simulation. We observe a slight reduction
in both object and byte miss ratios for all systems. All other
results are qualitatively and quantitatively the same. Appendix
10.4, Fig. 16 and Fig. 17 show these results.
Variants of replication. Besides two-replication for all ob-
jects, CDNs have explored systems that replicate based on
popularity. Specifically, only popular objects are replicated on
two servers to reduce space overheads. As might be expected
from our findings that write imbalance matters, popularity-
based replication does not provide good fault tolerance. In
simulation experiments, we observe object miss ratio spikes
by 82%. Interestingly, we also observe that popularity-based
replication leads to an even worse load imbalance than Repli-
cation (CDN), which explains the high miss ratio spike.

7 Discussion

DNS vs anycast-based CDN request routing. Different
CDNs use different global load balancing architectures [33].
Akamai is well known for its DNS architecture [64]. Lime-
light [33], Wikipedia [58], and Cloudflare rely on anycast.
While these designs have different performance implications,
both rely on algorithms like consistent hashing. In DNS-based
systems, consistent hashing is applied by the cluster-local
load balancer to return the IP of the server responsible for
the shard. Anycast-based systems typically route requests to
any server in a cluster, and the server uses consistent hashing
to identify another server that likely stores the object. Server



unavailability, storage overheads of redundancy, and write
imbalance are important problems in all CDN designs. While
the cluster-local load balancer in our prototype relies on DNS,
the principle design components of C2DN can be equally ap-
plied in anycast systems. We also expect that C2DN’s benefits
will transfer with similar quantitative improvements.
Larger clusters and multiple unavailabilities. In clusters
of large size, multiple concurrent unavailabilities are not un-
common. As evaluated in §6, we find that C2DN is more
effective in this setting as erasure coding is more efficient at
tolerating multiple unavailabilities than replication. For large
clusters, server unavailabilities become more common. We
thus recommend either using a coding scheme with more par-
ity chunks or handling the cluster as multiple smaller clusters.

8 Related work
While there is extensive work on caching, coding, load bal-
ancing, and flash caching, our work is uniquely positioned at
the intersection of these areas. We discuss work by area.
Erasure coding in storage systems. Prior work has charac-
terized the cost advantage offered by coding over replication
in achieving data durability in distributed storage systems [75,
85]. Erasure codes are deployed in RAID [52], network-
attached-storage [4], peer-to-peer storage systems [37, 40, 57,
79], in-memory key-value store [16, 17, 84], and distributed
storage systems [32, 48, 56, 76]. Coding for CDNs differs
due to the unique interplay of coding and caching and the
two-sided transparency requirement (§4). Additionally, CDNs
employ coding for different reasons (performance) than stor-
age systems (durability), which magnifies overhead concerns.
Caching for coded file systems. Several recent works have
explored augmenting erasure-coded storage systems with a
cache to reduce latency [3,29,41,55]. Aggarwal et al. [3] pro-
posed augmenting erasure-coded disk-based storage systems
with an in-memory cache at the proxy or the client-side that
cache encoded chunks. Halalai et al. [29] propose augment-
ing geo-distributed erasure-coded storage systems by caching
a fraction of the coded chunks in different geo-locations to
alleviate the latency impact of fetching chunks from remote
geo-locations. EC-Cache [55] employs erasure coding in the
in-memory layer of a tiered distributed file system such as
Alluxio (formerly [39]). Although EC-Cache is technically
a cache, there is no interaction between coding and caching
in EC-Cache since it operates in scenarios where the entire
working set fits in memory, i.e., no evictions are considered.
In contrast, C2DN focuses on CDN clusters with working
sets in the hundreds of TB and starkly different tradeoffs,
workload characteristics, and challenges as compared to file
systems. In the area of cooperative caching [6, 30, 62], nodes
synchronize caching decision via explicit communication. In
contrast, C2DN proves that explicit communication is not
required to synchronize the eviction of the K chunks, which
significantly decreases overheads.
Chunking and caching. Prior work has explored the chal-

lenge of serving large files over HTTP, e.g., CoDeeN [74].
Similar to C2DN, CoDeeN breaks a large file into smaller
chunks. A chunk cache miss does not require transferring the
whole large file from the origin. In contrast to CodeeN, C2DN
addresses unavailability tolerance, which is not provided by
chunking alone.
Load balancing. Load balancing and sharding are well-
studied topics [1, 2, 12, 13, 21, 27, 28]. To reduce the load
imbalance, John et al. study the power of two choices that
reduces the imbalance [12]. In addition, to serve skewed work-
loads, Fan et al. [24] study the effect of using a small and fast
popularity-based cache to reduce load imbalance between
different caches in a large backend pool.Yu-ju et al. [31] de-
signed SPORE to use a self-adapting, popularity-based repli-
cation to mitigate load imbalance. Rashmi et al. [55]used
erasure coding to reduce read load imbalance for large object
in-memory cache. In summary, prior work on load balancing
focuses on read load balancing, with little attention paid to
write load balancing.

Load imbalance in consistent hashing can be solved with
additional lookups via probing [47]. Unfortunately, these
lookups are costly in CDNs (particularly for DNS-based
systems). Additionally, this approach cannot be applied for
erasure-coded caches due to the constraint that parity chunks
should not be colocated with data chunks. In contrast to using
load balancing to achieve a similar SSD replacement time,
Mahesh et al. [8] used parity placement to achieve differential
SSD ages so that SSDs of a disk array fail at different times.
Flash cache endurance. Flash caching is an active and chal-
lenging research area. A line of work [38,45,51,63,66,67,70]
shows how eviction policies can be efficiently implemented
on flash. Flashield [22] proposes to extend SSD lifetime via
smart admission policies. All these systems focus on a single
SSD. Our work focuses on wear-leveling across servers in a
cluster, which significantly extends the lifetime of a cluster.

9 Conclusion
We re-architected the cluster of a CDN by introducing a hy-
brid redundancy scheme using erasure codes and replication,
along with a novel approach for parity placement. We showed
that our approach reduces the miss ratio and eliminates the
miss ratio spikes caused by server unavailability. Further, our
approach is more space-efficient than replication and is more
attractive as CDN traffic and content footprint scale rapidly
with Internet usage. Finally, our approach also reduces the
write load imbalance by optimally placing the parities to re-
duce the lifetime of SSDs. We believe that C2DN is attractive
for deployment in a production CDN since it integrates well
with production CDN components.
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10 Supplemental information

10.1 Cluster size distribution
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Figure 10: Cluster size ranges from 1 to over 500 servers.

10.2 Proof details
Proof of Theorem 1.
Let T i

c denote the characteristic time [23, 26] of the cache
at server i, given capacity C, where the characteristic time
of an LRU cache measures how long it takes for a newly
requested chunk to get evicted. We first prove that for any
two servers i and j, T i

c and T j
c are nearly the same. More

precisely, we show that for any i 6= j, Prob(|T i
c −T j

c | ≥ ε) is
at most O(W/(ε2C)), using a mathematical argument similar
to [60]. Where C denotes the cache size of each server and W
is the variance of the write load imbalance across the servers
in the cluster. Due to parity rebalancing in C2DN, W → 0.
So, this probability O(W/(ε2C)) vanishes as the cache size
grows large.

In C2DN, when an object is requested, its chunks x1, . . . ,xn
are requested at the same time from the individual servers.
Since the characteristic time of the servers that these chunks
reside in are (nearly) the same as shown above, it follows
that these chunks are evicted from these caches at (nearly)
the same time. Thus, the chunks x1, . . . ,xn of an object enter
and exit their individual caches in a synchronized way, even
though there is no explicit coordination among the caches.

10.3 Additional details on parity rebalance
Here, we give more details about the bucket assignment al-
gorithm discussed in §4 under the three scenarios (1) Initial
bucket assignment, (2) Server failure, (3) Server addition. We
first consider the case where the servers are homogeneous
and later extend the algorithm to the heterogeneous case.
Initial bucket assignment. The algorithm runs in two phases.
In the first phase, the data buckets are assigned to the
servers using the consistent hashing algorithm. The algorithm
chooses K consecutive servers on the consistent hash ring

from the bucket’s hash location in a clockwise direction to
assign the K data chunk buckets. In the second phase, the
parity chunks are assigned to the servers such that the load
is evenly balanced across the servers. The second phase is
described in Algorithm 1.

Algorithm 1 Phase 2. Parity rebalance
1: Input : Set of available servers A and the total write load on the

cluster W .
2: Set of N parity buckets. For n ∈ N , the sum of sizes of the

parity chunks in the bucket is sn.
3: A set L with li denoting the current write load (due to assignment

of data buckets and uncoded objects) on server i.
4: Output : A valid assignment of parity bucket to the servers.
5: Initialize : A set of vertices V ← φ, a set of edges E ← φ, an

empty graph G = (V,E).
6: Add source node S, terminal node T , nodes corresponding to

parity buckets and available servers to V .

7: for n ∈N do // Loop through parity buckets
8: e ← ((S,n),ns) // Create edge between nodes between

source-node S and bucket-node n with weight equal to size
of the bucket ns

9: V ← n, E← e
10: for a ∈ A do
11: if data chunk of bucket n is not assigned to a then
12: e← ((n,a),ns) // Create edge between parity bucket

node n and available server a with size of parity bucket ns.
13: end if
14: end for
15: end for

16: for a ∈ A do // Loop through available servers
17: ca← max(d W

|A |e− li,0) // Available budget on each server
18: e← ((a,T ),ca) // Create edge between server nodes a and

sink-node T with weight ca
19: V ← v, E← e
20: end for

21: Run MaxFlow(S, T ) between the source-node S and terminal
node T .

22: for Each parity bucket n ∈N do
23: Assign the parity bucket to the least loaded server that has a

positive assigned flow from the bucket.
24: end for

Post running the Phase 1 of the algorithm, the available
write budget on each server a (ca) in line 17 of Algorithm 1,
is obtained as follows. If the total unique bytes requested to
the cluster is W , then each server should host traffic not more
than

⌈
W
|A |

⌉
bytes. After phase 1 of the algorithm, if li is the

traffic assigned to server i, then the available budget on server
i i.e., ci is obtained as max(

⌈
W
|A |

⌉
− li,0). An empty graph

is initialized in line 5 and the source and terminal nodes are
added in line 6. In line 8, for each bucket n we add an edge
from the source node S to the bucket-node with a capacity



that equals the size of the parity bucket. Through lines 10-
14, for each bucket n add a directed edge from the node that
corresponds to the parity bucket to a server-node that is not
assigned a data chunk of bucket n. These edges capture if
the parity bucket can be assigned to a server. Then we assign
these edges with a capacity that equals to the size of the parity
bucket. In lines 16-19 directed edges are added from server
nodes (a) to the sink node with a capacity ca i.e., the available
write budget on the server. Now run the max-flow algorithm
in the graph between the source-node S and the sink-node
T to find a valid assignment of parity buckets to the servers.
To assign a parity bucket to a server, we find edges from the
parity-node to the server-nodes that are assigned a positive
flow. The servers are potential candidates for assignment.
Empirically, we find that in most runs, the algorithm finds a
single candidate server, if not, we assign the parity bucket to
the least loaded server among the potential candidates.
Server failure. When a server fails the data buckets (D) and
parity buckets (P) belonging to the server need to be reas-
signed. As done previously, the data buckets are reassigned
using the consistent hash ring. Now, the new data bucket al-
location could invalidate some of the previous parity bucket
assignments (on the currently available servers) as the data
chunks and parity chunks cannot cohabit the same server. Let
the invalidated parity buckets be P′. The available budget ci
of each server i is recalculated using the total traffic W and
the number of available servers |A |. Now, the buckets P∪P′

(parity buckets of failed server and invalidated parity buckets)
are assigned to the servers using Algorithm 1 by reassigning
corresponding capacities in line 9. When a server fails we also
keep track of the parity buckets that were assigned to it be-
fore failure. Some of these buckets could be reassigned to the
server when it is available again depending on the available
write budget at each server.
Server addition. When a server is available again, it gets as-
signed the data buckets using the consistent hashing algorithm.
We recompute the capacity of each server as done previously.
Now, as we have kept track of the parity buckets the server
was assigned prior to failure, we try to re-assign as many of
those parity buckets as possible. If we get back all buckets
and we still have capacity for more buckets to be assigned, we
iteratively pick parity buckets from the most loaded server.
Algorithm complexity. In Algorithm 1 the cost of construct-
ing the graph can be computed using O(|T |× |N |) time com-
plexity where T is the number of servers. And the time com-
plexity is because we need to decide if we wish to add an
edge between the parity chunk and the server. Further, the
runtime complexity of the MaxFlow algorithm in line 21 is
computed as follows. The total available budget on the servers
is B = ∑i∈S

(⌈
W
|A |

⌉
− li
)

. Then, the runtime complexity is

B×|N |× |T |).
Heterogeneous servers. We extend consistent-hashing-based
bucket assignment to the case of heterogeneous servers. Each
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Figure 11: Consistent Hashing for a cluster with heterogeneous
servers. The data buckets D1, D2 and D3 are hashed to unique
servers S1, S2 and S3.

server is represented by at least one virtual node on the con-
sistent hashing ring. The number of virtual nodes added is
proportional to the capacity of the server (e.g., if server A
is 2× larger than server B, then server A would have 2× as
many virtual nodes).

The data buckets are mapped to the consistent hashing
ring as follows. From the bucket’s hashed position on the
ring, we move along the ring in a clockwise direction and
assign — the K data buckets — iteratively to the virtual nodes
encountered. However, while assigning, we step over servers
that have been assigned any of the other K data buckets. This
ensures each of the K data buckets are assigned to different
servers. Figure 11 shows a placement example. The cluster
consists of 4 servers S1, S2, S3 and S4 of capacity C, 2C, C,
C respectively. Virtual nodes are indicated by the server name.
Note that, as S2 is twice the capacity of the servers, we create
two virtual nodes for S2. By chance, we assume that the two
virtual nodes hash to adjacent positions on the ring. Now, if
the bucket is hashed to a location X on the consistent hash
ring, then the data buckets D1, D2 and D3 are assigned to the
first three servers encountered by moving in the clockwise
direction from X. This is S1, S2 (S2 again and thus skipped),
and S3, which is the resulting bucket placement. After data
buckets are assigned, we use Algorithm 1 to assign parity
buckets.
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Figure 12: Object miss ratio of different systems.



10.4 Additional figures for sensitivity analysis
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Figure 13: Impact of coding size threshold on miss ratio and load
balancing.
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Figure 14: Impact of parameter K on miss ratio and load imbalance.
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Figure 15: Impact of number of servers on miss ratio and load
imbalance.
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Figure 16: Impact of coding size threshold on miss ratio and load
balancing (LRU).
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Figure 17: Impact of parameter K on miss ratio and load imbalance
(LRU).
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