
Hardening Attack Surfaces
with Formally Proven Message Parsers

Nikhil Swamy Tahina Ramananandro Aseem Rastogi
Irina Spiridonova Haobin Ni Dmitry Malloy

Juan Vazquez Michael Tang Omar Cardona Arti Gupta

everest
Verified End-to-End Secure Transport

eꓦerpꓥrse3D

Secure Parsing is Critical

 Improper input validation = MITRE 2020 Top #3, 2021 Top #4

most dangerous CVE software weakness

 Still a thing today in widely-used >30-year-old formats
 Linux TCP parsing bug fix as late as 2019

 Windows 10 Bad Neighbor (ICMPv6, 2020)

A remote code execution vulnerability exists when the Windows TCP/IP stack improperly

handles ICMPv6 Router Advertisement packets. An attacker who successfully exploited this

vulnerability could gain the ability to execute code on the target server or client.

To exploit this vulnerability, an attacker would have to send specially crafted ICMPv6

Router Advertisement packets to a remote Windows computer.

The update addresses the vulnerability by correcting how the Windows TCP/IP stack handles

ICMPv6 Router Advertisement packets.

Handwritten parsing still around

 Handwritten C/C++ code
 Performance, deployability (e.g. OS kernel), legacy

 Bratus et al. (Usenix Mag. 2017), LangSec:
 “Roll your own crypto” considered harmful

 “Roll your own parsers” also should be

 Ongoing push for automatically generated parsers
 ProtocolBuffers, FlatBuffers, Cap’n Proto, JSON…

 But those libraries choose the data formats

 What about formats dictated by external constraints? (TCP, ICMP…)

Our Solution: EverParse3D

External source of

truth (RFC, etc.)

Format.3d

1. Author spec

Distill

Our Solution: EverParse3D

External source of

truth (RFC, etc.)

Format.3d Format.fst

EverParse3D Libs

Theorems

Memory safe

Arithmetically safe

Functionally correct

Double-fetch free

F* code and proofs

Format.c

1. Author spec 2. Proof-checking & codegen

Automatically

translate

Auto. verify

& code gen

Distill

Our Solution: EverParse3D

External source of

truth (RFC, etc.)

Format.3d Format.fst

EverParse3D Libs

Theorems

Memory safe

Arithmetically safe

Functionally correct

Double-fetch free

F* code and proofs

Format.c

C/C++ application

1. Author spec 2. Proof-checking & codegen

Handwritten

parser

Automatically

translate

Auto. verify

& code gen

Distill

C/C++ application

Our Solution: EverParse3D

External source of

truth (RFC, etc.)

Format.3d Format.fst

EverParse3D Libs

Theorems

Memory safe

Arithmetically safe

Functionally correct

Double-fetch free

F* code and proofs

Format.c

1. Author spec 2. Proof-checking & codegen 3. Integrate

Automatically

translate

Auto. verify

& code gen

Distill

C/C++ application

Our Solution: EverParse3D

External source of

truth (RFC, etc.)

Format.3d Format.fst

EverParse3D Libs

Theorems

Memory safe

Arithmetically safe

Functionally correct

Double-fetch free

F* code and proofs

Format.c

1. Author spec 2. Proof-checking & codegen 3. Integrate

Automatically

translate

Auto. verify

& code gen

Distill

C/C++ application

Now in Windows

and Azure network

virtualization

EverParse3D Guarantees

 Memory safety: no buffer overrun

 Arithmetic safety: no integer overflow

uint32_t fld_offset = input[current];
uint32_t fld = input[current+offset];

Missing checks for integer/buffer overflows

EverParse3D Guarantees

 Memory safety: no buffer overrun

 Arithmetic safety: no integer overflow

 Functional correctness:
 All ill-formed packets are rejected

 Every valid packet is accepted

uint32_t fld_offset = input[current];
uint32_t fld = input[current+offset];

Missing checks for integer/buffer overflows

EverParse3D Guarantees

 Memory safety: no buffer overrun

 Arithmetic safety: no integer overflow

 Functional correctness:
 All ill-formed packets are rejected

 Every valid packet is accepted

 Double-fetch freedom: no “time-of-check to time-of-use” bugs
 No exclusive read access to the input buffer

 Solution: Read each byte at most once

 Validation on a “logical snapshot” of the input data 4

Parser

Concurrent write

1 2 3

uint32_t fld_offset = input[current];
uint32_t fld = input[current+offset];

Missing checks for integer/buffer overflows

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer;

OPTION Options [];

UINT8 Data [];

} TCP_HEADER;

typedef union _OPTION_PAYLOAD {

all_zeros EndOfList;

unit Noop;

…

} OPTION_PAYLOAD;

typedef struct _OPTION {

UINT8 OptionKind;

OPTION_PAYLOAD

OptionPayload;

} OPTION;

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer {UrgentPointer == 0 || URG == 1 } ;

OPTION Options [];

UINT8 Data [];

} TCP_HEADER;

Augmenting C data types with value constraints,

typedef union _OPTION_PAYLOAD {

all_zeros EndOfList;

unit Noop;

…

} OPTION_PAYLOAD;

typedef struct _OPTION {

UINT8 OptionKind;

OPTION_PAYLOAD

OptionPayload;

} OPTION;

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER(UINT32 SegmentLength)

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer {UrgentPointer == 0 || URG == 1 } ;

OPTION Options [:byte-size (DataOffset * 4) - sizeof(this)];

UINT8 Data [SegmentLength - (DataOffset * 4)];

} TCP_HEADER;

Augmenting C data types with value constraints,

variable-length structures
typedef union _OPTION_PAYLOAD {

all_zeros EndOfList;

unit Noop;

…

} OPTION_PAYLOAD;

typedef struct _OPTION {

UINT8 OptionKind;

OPTION_PAYLOAD

OptionPayload;

} OPTION;

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER(UINT32 SegmentLength)

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer {UrgentPointer == 0 || URG == 1 } ;

OPTION(SYN==1) Options [:byte-size (DataOffset * 4) - sizeof(this)];

UINT8 Data [SegmentLength - (DataOffset * 4)];

} TCP_HEADER;

casetype _OPTION_PAYLOAD

(UINT8 OptionKind, Bool MaxSegSizeAllowed) {

switch(OptionKind) {

case OPTION_KIND_END_OF_OPTION_LIST:

all_zeros EndOfList;

case OPTION_KIND_NO_OPERATION:

unit Noop;

…

}} OPTION_PAYLOAD;

typedef struct _OPTION(Bool MaxSegSize) {

UINT8 OptionKind;

OPTION_PAYLOAD(OptionKind, MaxSegSize)

OptionPayload;

} OPTION;

Augmenting C data types with value constraints,

variable-length structures, value-dependent unions

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER(UINT32 SegmentLength, mutable URGENT_PTR *Dst)

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer {UrgentPointer == 0 || URG == 1 }

{:on-success *Dst = UrgentPointer; };

OPTION(SYN==1) Options [:byte-size (DataOffset * 4) - sizeof(this)];

UINT8 Data [SegmentLength - (DataOffset * 4)];

} TCP_HEADER;

casetype _OPTION_PAYLOAD

(UINT8 OptionKind, Bool MaxSegSizeAllowed) {

switch(OptionKind) {

case OPTION_KIND_END_OF_OPTION_LIST:

all_zeros EndOfList;

case OPTION_KIND_NO_OPERATION:

unit Noop;

…

}} OPTION_PAYLOAD;

typedef struct _OPTION(Bool MaxSegSize) {

UINT8 OptionKind;

OPTION_PAYLOAD(OptionKind, MaxSegSize)

OptionPayload;

} OPTION;

Augmenting C data types with value constraints,

variable-length structures, value-dependent unions and actions

3D: A source language of message formats

for Dependent Data Descriptions

typedef struct _TCP_HEADER(UINT32 SegmentLength, mutable URGENT_PTR *Dst)

{

…

UINT16 CWR:1; UINT16 ECE:1; UINT16 URG:1; UINT16 ACK:1;

UINT16 PSH:1; UINT16 RST:1; UINT16 SYN:1; UINT16 FIN:1; …

URGENT_PTR UrgentPointer {UrgentPointer == 0 || URG == 1 }

{:on-success *Dst = UrgentPointer; };

OPTION(SYN==1) Options [:byte-size (DataOffset * 4) - sizeof(this)];

UINT8 Data [SegmentLength - (DataOffset * 4)];

} TCP_HEADER;

casetype _OPTION_PAYLOAD

(UINT8 OptionKind, Bool MaxSegSizeAllowed) {

switch(OptionKind) {

case OPTION_KIND_END_OF_OPTION_LIST:

all_zeros EndOfList;

case OPTION_KIND_NO_OPERATION:

unit Noop;

…

}} OPTION_PAYLOAD;

typedef struct _OPTION(Bool MaxSegSize) {

UINT8 OptionKind;

OPTION_PAYLOAD(OptionKind, MaxSegSize)

OptionPayload;

} OPTION;

Augmenting C data types with value constraints,

variable-length structures, value-dependent unions and actions
Also in the paper:

• Full formalization of the language in F*

• 3 denotational semantics of a hybrid shallow-deep embedding

• Built on top of dependently-typed monadic parsing combinators (USENIX 2019)

• Via partial evaluation and 1st Futamura projection

• Yields high-performance C code via Karamel F*-to-C compiler (ICFP 2017)

This paper: Verified Secure Parsers

for Microsoft Hyper-V Network Virtualization

 Hyper-V: Hypervisor for Windows 10, 11, and all Azure Cloud

 vSwitch: Dispatches network packets from/to guests

Host

Hyper-V
Normal

Guest

Network

device

Hypercall

(expensive)

This paper: Verified Secure Parsers

for Microsoft Hyper-V Network Virtualization

 Hyper-V: Hypervisor for Windows 10, 11, and all Azure Cloud

 vSwitch: Dispatches network packets from/to guests

 Some guest-side optimizations to give

some direct hardware access (VMBUS),

bypassing a hypercall

Host

Hyper-V
Normal

Guest

Optimized Guest

Network

device
VMBUS (cheap)

Hypercall

(expensive)

This paper: Verified Secure Parsers

for Microsoft Hyper-V Network Virtualization

 Hyper-V: Hypervisor for Windows 10, 11, and all Azure Cloud

 vSwitch: Dispatches network packets from/to guests

 Some guest-side optimizations to give

some direct hardware access (VMBUS),

bypassing a hypercall

 Need to protect against attacks from

network or malicious guests crafting

ill-formed packets to break isolation /

gain host access

Host

Hyper-V
Normal

Guest

Optimized Guest

Network

device
VMBUS (cheap)

Hypercall

(expensive)

Attack surface from

malicious guests

Hyper-V vSwitch: network packet layers

Beginning

of packet

End

of packet Talk to the

network

Talk to the

hypervisor

Hyper-V vSwitch: network packet layers

Beginning

of packet

End

of packet Talk to the

device

Talk to the

hypervisor

Hyper-V vSwitch with EverParse3D

 Now in Windows 10, 11, and Azure Cloud: Every network packet

passing through Hyper-V is validated by EverParse3D formally

verified code

 NVSP, RNDIS, OIDs and NDIS
 Some of which are proprietary

 Other formats (TCP, etc.) in progress

 5K lines of 3D specification
 137 structs, 22 casetypes, 30 enum types

 Verified in 82 s

 Generated 23K C code

Performance

Generated code is fast…

 Our code passed internal

performance regression testing,

imposing less than 2% cycles/byte

overhead

 In some cases, our code is more

efficient by virtue of eliminating

unneeded copies

… thanks to careful design

 Validators operate in-place

 Validators only read data at most

once: client code no longer needs to

copy data before validating it

 Layered specifications +

one single pass = fail early

Detailed performance results contain proprietary information, thus are not included in the paper

A multi-year (since summer 2019), multi-org effort

Research Team Testing TeamProduct Team Security Team

A multi-year, multi-org effort

Gather requirements:

• Parsing actions

• Double-fetch freedom

• <2% perf overhead

• Generated C code quality (guidelines, etc.)

Research Team Product Team

A multi-year, multi-org effort

Figure out the data format specification:

• Some protocols have no pre-existing specs

• Backward compatibility

Research Team Product Team

A multi-year, multi-org effort

Figure out the data format specification:

• Some protocols have no pre-existing specs

• Backward compatibility

• Complex testing matrices

Research Team Testing TeamProduct Team

A multi-year, multi-org effort

Security evaluation:

• Spec audited, security team wrote unit tests

• vSwitch code fuzzers stopped finding bugs:

• Malformed packets properly rejected by our parsers

• Helped refocus fuzzers to functionality fuzzing

Security Team

A multi-year, multi-org effort

Productivity improvements:

• EverParse3D now part of the Windows build

environment (incl. Z3, F*, Karamel)

• Critical to meet product deadlines:

• saves code writing cost

• more focused security reviews

Research Team Product Team

A multi-year, multi-org effort

Active Maintenance (2 years already):

• Product teams change the specs as they integrate

new features

• Backport to older product versions

• Generated C code checked in the product repo to aid

other teams’ understanding

Testing TeamProduct Team Security Team

+ Other teams (servicing, etc.)

EverParse3D Takeaway

 A sweet spot for formal verification
 Strong mathematical guarantees of memory safety and functional correctness

 Provably correct by construction: Zero user proof effort

 High-performance code generated from data format description in a high-level declarative

language

 High return on investment wrt. attack surface

 Project page and manual: https://project-everest.github.io/everparse/
 Open-source (Apache 2 license)

 Binary releases for Linux and Windows

https://project-everest.github.io/everparse/

