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Abstract
The sparsely-gated mixture of experts (MoE) architecture can
scale out large Transformer models to orders of magnitude
which are not achievable by dense models with the current hard-
ware limitations, and have been proven to improve the conver-
gence as well. However, many applications still rely on tra-
ditional dense models, for both deployment and further com-
pression, in order to fit memory and latency requirements. In
this work, we propose a simple approach to distill MoE models
into dense models while retaining the accuracy gain achieved by
large sparse models. This can be used for further optimization
and compression using well-known techniques for dense mod-
els. We demonstrate the model compression efficiency of our
knowledge distillation (KD) technique through multi-lingual
speech recognition experiments. Experimental results show
that our proposed method can reduce the number of weights of
an MoE teacher network with almost the same accuracy from
677M to 99M for 24 experts and from 1.8B to 124M for 72 ex-
perts, respectively. The results also show that our KD method
can provide better recognition accuracy compared to conven-
tional training methods without the MoE teacher model.
Index Terms: Speech recognition, Sparsely-gated mixture of
experts (MoE), Transformers, Knowledge distillation, Teacher-
student learning

1. Introduction
Sparse Mixture of Experts (MoE) architectures [1], such as
GShard [2] and more recently the Switch Transformer [3],
have popularized the use of extremely large and sparse mod-
els for pre-training in the already ubiquitous Transformer ar-
chitecture [4]. As noted in [3], these models not only scale
better with respect to hardware, but also converge faster. The
core idea of these models is to enforce sparsity by activating
a subset of the fully connected layers (named as experts) on
each Transformer block. This decision is controlled by a gating
layer on each block. It has been recently shown in [5, 6, 7] that
such large MoE models can achieve better accuracy in the field
of Automatic Speech Recognition (ASR). Since Switch Trans-
former activates only one expert during inference, its computa-
tional complexity is comparable to that of a normal Transformer
network with the single expert. Regardless of such efficient
forward-pass computation, the MoE architecture still requires
large memory for inference [8], which may not be suitable in
many scenarios. In this work, we consider Knowledge Distilla-
tion (KD) to reduce MoE’s memory usage.

KD is a technique to train smaller models (students) aided
by well-trained large teachers, optimizing the student logits to
follow the teacher outputs [9, 10, 11]. Since KD was proposed,
multiple variants have been introduced for different types of
dense models such as hybrid Hidden Markov Model (HMM)
networks [10, 12, 13, 14], Transformer [4] and BERT architec-
tures [15]. TinyBERT [16] and DistilBERT [17] are techniques

developed to apply KD to these newer architectures in the NLP
domain. They extend the original KD formulation for BERT
models by distilling not only the output logits of the network
but also intermediate attention and hidden states. They also
combine the supervised loss with the distillation loss jointly.
Sequence-level KD was also introduced in [18], which consid-
ers distillation for sequence-to-sequence problems. [18] address
Neural Machine Translation (NMT) tasks, and proposes differ-
ent levels to apply KD, word-level and sequence-level, which
either optimizes the cross-entropy distillation loss over each el-
ement on the sequence or over the output of the entire decoded
sequence via beam-search on NMT. The sequence-level KD al-
gorithm has been also applied to ASR [19] and shown promis-
ing results. However, most prior work focuses on KD between
teacher and student dense networks.

In contrast to normal practice, we build upon these tech-
niques to apply KD from MoE models to dense models. This
will allow us to train powerful sparse models as teachers and
then deploy them efficiently via small dense models. The key
observation is that the MoE model becomes the same as its
dense counterpart. Based on such an observation, we re-use all
the weights but the experts, which we distill into a single expert
in the dense model.

We demonstrate effectiveness of our MoE KD technique
through multi-lingual ASR experiments. We first build a large
MoE Transformer model with multi-lingual speech data as a
teacher [7]. Multi-lingual MoE knowledge is distilled into a
dense student network by selecting one of the experts to min-
imize the KD loss. After MoE KD, we further fine-tune the
student network with the supervised loss only.

The rest of this paper is organized as follows. In section 2,
we briefly review the Switch Transformer architecture used for
a teacher model. In section 3, we describe our knowledge
distillation methods for the sequence-to-sequence Transformer.
Section 4 describes multi-lingual ASR experiments on MoE to
dense models. We conclude this work and describe our future
plan in section 5.

2. Sparsely-gated mixture of experts (MoE)
The original MoE layer proposed by [1] consists of a weighted
sum over k experts out of N as

y =
∑
i∈T

pi(x)Ei(x), (1)

where T is the set of the k expert indices. These indices are
the top-k values of pi(x), which in turn is the Softmax func-
tion over the input token x projected by a router matrix Wr [3].
The Switch Transformer further simplifies this architecture by
selecting only one expert instead of k, which reduces memory,
communication and training instability. In addition, the Switch
Transformer simplifies the gating loss that ensures pi(x) dis-
tributes the experts utilization evenly. More recent work has



Figure 1: Block chart of MSE loss for each Transformer layer

been done to improve the switch architecture [20, 21, 22]. In
this work, we focus on the encoder-decoder network with the
switch architecture [7, 23] but the same technique can be, in
principle, applied to other similar models. The MoE technique
is typically applied to every other layer in the Transformer. We
also follow that scheme in this work.

3. Proposed MoE Knowledge Distillation
3.1. Transformer-Layer Distillation

We start from the key observation that on Switch Transform-
ers [3], only one expert is activated on each forward pass for
each token. In terms of FLOPS, this is approximately equivalent
to the corresponding dense model with only one “expert” (fully
connected layer in the Transformer). Our main idea is similar
with the Transformer-Layer distillation approach proposed by
TinyBERT [16]; we will exploit the structural similarities be-
tween the teacher and the student models.

Figure 1 illustrates a block chart of computing the KD
loss (2) between the MoE teacher and student Transformer
layer. As illustrated in figure 1, we only distill the Feed-
Forwarding Network (FFN) of each transformer layer and the
experts on the MoE architecture, but do not include prediction-
layer and hidden or attention distillation explicitly. We also ap-
ply LayerNorm [24] before performing each layer distillation.
We observed that layer normalization decreases the magnitude
of some of the layer losses and helps the convergence. Finally,
we include the supervised loss criterion on the final optimiza-
tion as well, similar to [17], which we noticed helps the conver-
gence.

Here, let us denote MT
i and MS

i as the teacher expert and
student layer outputs for layer i. For each layer i, we use the
Minimum Squared Error (MSE) loss functions:

Li = MSE(MT
i (x),MS

i (x)) (2)

This is applied to each Transformer layer as shown in figure 1.
The teacher and student output will be closer at each layer
through MSE loss optimization (2).

We then optimize the whole student network with the
weighted MSE and supervised loss simultaneously. The total-
loss criterion for KD can be expressed as

L = λsup Lsup + λL

∑
i

Li, (3)

Figure 2: Schematic diagram of total KD loss computation

where Lsup is the supervised loss over the training set. Fig-
ure 2 shows a schematic diagram of computing the total KD
loss between the MoE teacher and dense student network. Un-
like prior work in hybrid ASR tasks [10, 13, 14], we observed in
our preliminary experiment that the KLD distance on the log-
its degraded convergence performance with no accuracy gain.
Thus, we do not employ the KLD loss in this work.

At first glance, it might seem that this method is not prac-
tical to load such big teacher models along student models for
optimization. However, in practice, most of the memory goes to
optimizer states due to tracking different statistics per parameter
in methods like Adam [25], and also due to the weights dupli-
cation when using techniques such as mixed precision. Here,
we only load the teacher in inference mode, so we need to track
only the optimizer states for the student model, which is typ-
ically significantly smaller. However, we still need to apply
inference over an teacher during KD, so we apply KD for a
fixed number of steps and then continuously fine-tune the stu-
dent over Lsup. Finally, we apply these techniques over the
same pre-training dataset used by the teacher, which helps to
better guide the student and to produce a dense model which
can be cheaply re-used for different downstream tasks.

3.2. Student initialization

As [17] notes, the student initialization method is important for
the distillation procedure converge. We have found that it is
critical to find good initial weights for each expert. The MoE-
to-dense setup is convenient because all the student’s non-expert
weights can be initialized directly from the teacher, since there
is not a change in the architecture layout. The expert weights,
on the other hand, can be used directly from one of the experts
for each layer in the network. Notice that the weights of the
routing gates can be safely discarded.

[3] reports a few distillation experiments where student’s
non-expert weights are randomly initialized and a mixture of
teacher and student probabilities is applied to the KD prediction
loss. In this work, we propose to strategically select experts per
layer according to a metric which can be modified depending
on the task, so that we can initialize the student network with a
fully-trained teacher expert. We use the utilization metric pro-
posed in [26] for expert pruning, where we record how many
tokens have been routed to an expert on the validation set; this
is a computationally inexpensive way to measure which expert
is favored over the others after pre-training. As we will see on



experimental results, this can be beneficial for layers where the
expert utilization distribution is not completely uniform.

3.3. Increasing the dense model capacity

As we will see in the experimental results, we cannot compress
so much capacity into an only single expert layer. As we in-
crease the number of experts in the teacher, the retained quality
of the model decreased. To overcome this issue, we propose
to increase slightly the capacity of the student model, so that
we can leverage more teacher experts while fitting in a certain
computational budget. Typically, the feed-forwarding network
(FFN) layer is defined by [4] as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

We propose a simple change to introduce additional FFNs
which can be initialized from the teacher directly. Such a mod-
ified FFN can be written as

ˆFFN(x) =

K∑
i

αi FFNi(x), (5)

where K indicates the number of FFNs on a single layer and αi

is a learnable scalar that weights the output of each FFN.
This framework allows us to re-use a few teacher FFN

weights, where typically K would be much smaller than the full
amount of teacher experts. The definition above and the follow-
ing experiments employ the popular FFNs used in [4], but any
type of feed-forwarding module on the Transformer block can
be used.

4. Experiments
4.1. Datasets

We conducted multilingual ASR experiments to verify the ef-
fectiveness of our KD method. The dataset used for train-
ing consists of 10 languages totaling approximately 75 thou-
sand hours. As shown in Table 1, our training dataset is com-
prised of data from English, Spanish, Romanian, German, Ital-
ian, French, Portuguese, Dutch, Polish and Greek. It is worth
noting here that we report the experimental results for multi-
ple variants of English (US and UK), Spanish (ES-ES and ES-
MX) and Romanian (RO). Table 2 tabulates the statistics of our
test set for each locale: number of utterances and number of
words. The dataset of each locale also contains not only vari-
ous speakers but also different speech recognition tasks such as
command-and-control tasks in mobile, office and car scenarios,
Cortana phrases, dictation, conversational speech in telecom-
munication and so on. We consider the English test, Spanish
test and Romanian test as a high-resource task, mid-resource
task and low-resource task, respectively.

For training a network, we further split the whole training
data set into training and validation sets in order to determine
the convergence. The amount of training data for each language
is different as shown in Table 1. We, thus, sample the lower re-
source data more frequently to balance the language data distri-
bution during training. For all the experiments reported here, we
used a 80-dimensional log filter-bank energy feature extracted
at an interval of every 10ms. 10014 unique BPE [27] tokens are
used for covering vocabulary of 10 languages.

4.2. Training configuration

For the multi-lingual teacher model, we use the sequence-to-
sequence Transformer and replace the FFN layer with the MoE

Language Hrs
English (EN) 38585
Spanish (ES) 7584
German (DE) 4893
French (FR) 5955
Italian (IT) 6580

Portuguese (PT) 4302
Polish (PL) 2112
Greek (EL) 2190

Romanian (RO) 1899
Dutch (NL) 880

Table 1: Duration of Training data: 10 language data

Language Code No. utterances No. words

English EN-US 219965 1374748
EN-UK 16743 79191

Spanish ES-MX 15279 124742
ES-ES 19275 150980

Romanian RO 16626 365828

Table 2: Test dataset details

switch module every other layer [3]. The teacher model is
trained with the multi-lingual data described in section 4.1;
see [7] for the details on training the MoEs. Our baseline stu-
dent model is composed of 18 Transformer blocks in the en-
coder and 6 blocks in the decoder, with 8 heads on each and
2048 dimension on the fully connected layer. This is the equiv-
alent to the teacher network with the single FFN. As described
in section 3.3, we will also consider the student network with
the larger capacity. For the baseline, we train the multi-lingual
student network from scratch for 500 thousand steps with the
AdamW [28] optimizer by using a linear learning rate sched-
uler starting from 0.0 and peaking on 0.001252 on the first 31k
steps. We use the similar training setting for KD; after updat-
ing the model for 30k steps based on the KD criterion (3), we
further perform fine-tuning using the supervised loss only.

4.3. Results and discussions

We distill two MoE teacher models with 24 and 72 experts, re-
spectively. For the larger teacher model, we increase the model
capacity as described in section 3.3, using two FFNs instead of
one FFN. The results in table 3 show the final WER on different
language locale test sets for each training method. As a refer-
ence, table 3 shows the WERs of the MoE teacher models. It
is clear from table 3 that our final distilled network can consis-
tently provide better accuracy over all the locales than the dense
baseline model trained from scratch in both cases. The results
also suggest that as the teacher model has a larger number of ex-
perts, the student requires more network capacity to retain the
teacher model quality. The final distilled students with 1 expert
retain 97.98% and 91.03% of teacher’s recognition accuracy for
24 and 72 experts, respectively. And the distilled student with
2-FFNs retains 96.85% WER from 72 experts teacher, which
indicates that extra capacity was indeed required for the larger
teacher model.

4.4. Analysis

In this section, we describe more detailed analysis on our KD
performance.

Figure 3 plots the validation accuracy curves with respect
to the number of the model updates for each training method in
the case of a small teacher with 24 experts and large on with
72 experts. As a reference, figure 3 also shows the validation



Model Parameters EN RO ES ES-MX Overall

Distilling from MoE 24 experts

MoE Teacher 677M 9.66 18.97 14.18 14.78 11.69
Dense Baseline 98.9M 10.15 21.15 15.63 14.37 12.58
Final Distilled Student 98.9M 9.79 20.18 13.25 13.95 11.93

Distilling from MoE 72 experts

MoE Teacher 1.8B 9.17 18.20 12.34 13.60 11.07
Dense Baseline 98.9M 10.15 21.15 15.63 14.37 12.58
Dense Baseline 2-FFN 124M 9.88 20.55 15.23 14.44 12.23
Final Distilled Student 98.9M 9.94 20.76 13.20 13.61 12.16
Final Distilled Student 2-FFNs 124M 9.50 18.97 12.42 13.20 11.43

Table 3: Overall weighted WER over test 4 test sets in 4 language locales. The WER is weighted by the number of words, which is
1453939, 365828, 150980, and 124741 for EN, RO, ES, ES-MX, respectively.

(a) 24 experts (b) 72 experts

Figure 3: Token accuracy on the validation set during fine-tuning
after KD

accuracy curves of the MoE teacher networks. For figure 3,
we computed the KD’s accuracy curves after distilling for 30k
steps. It is clear from figure 3 that our KD method provides a
much faster convergence speed in the case of 24 and 72 experts.
It is also clear from figure 3 that the KD can provide the better
accuracy than the student baseline model trained from scratch.
From figure 3, we can also observe a small drop after the first
few iterations in fine-tuning the KD model. This is presumably
attributed to the adaptation from the combined optimization of
KD and supervised loss to the sole supervised loss optimization.

We finally investigate the frequency distribution of expert
usage for the encoder and decoder. Figure 4 shows how many
times each expert is selected out of 24 experts during inference
on the validation data. Figure 4 (a) shows the expert usage fre-
quency at the second, sixth, tenth, fourteenth and eighteenth
layer in the encoder and figure 4 (b) shows that at the second,
fourth and sixth layer in the decoder. It is clear from figure 4
that the expert utilization count has a peak on each layer, which
are substantially bigger than other experts. We did notice this
effect on the larger 72 experts model, but not so much on the en-
coder of both models. In fact, encoder’s expert tends to have a
more uniform frequency distribution than the decoder’s expert.
We hypothesize the decoder requires higher level specialization,
hence a few experts activate more frequently for certain types of
tokens. This phenomenon motivated the student initialization
based on the expert usage, since an expert was more likely to be
used during pretraining, it would be more likely to be useful as
a starting point during the distillation phase.

(a) Encoder expert frequency (b) Decoder expert frequency

Figure 4: Histogram of expert utilization during validation.
Each bar represents the number of tokens routed to an indi-
vidual expert on each layer during inference.

5. Conclusion

We have described a new knowledge distillation technique to
produce compact dense models out of large MoE models, which
have proven recently to be a relatively straightforward to scale-
up models both in size and quality. We have shown that our
KD method can retrain 97.98% and 96.85% of teacher model’s
recognition accuracy for 24 and 72 experts, respectively. Our
method can produce a compact dense model suitable for low-
memory applications where is not feasible to load a model with
a very high number of experts. In future work we would like
to apply this method to other MoE applications to verify its ef-
fectiveness, and to distill larger models and develop possible
techniques to cope with the GPU memory limitations.
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