
Enable Simultaneous DNN Services Based on Deterministic
Operator Overlap and Precise Latency Prediction

Weihao Cui∗, Han Zhao∗, Quan Chen∗⋄, Ningxin Zheng†, Jingwen Leng∗⋄, Jieru Zhao∗⋄, Zhuo Song‡,
Tao Ma‡, Yong Yang‡, Chao Li∗⋄, Minyi Guo∗⋄

{weihao,zhaohan_miven,chen-quan,zhao-jieru,chaol,myguo}@sjtu.edu.cn
Ningxin.Zheng@microsoft.com,{songzhuo.sz,boyu.mt,zhiche.yy}@alibaba-inc.com

∗Shanghai Jiao Tong University,⋄Shanghai Qi Zhi Institute,†Microsoft Research Asia, ‡ Alibaba Cloud

ABSTRACT
While user-facing services experience diurnal load patterns, co-
locating services improve hardware utilization. Prior work on co-
locating services on GPUs run queries sequentially, as the latencies
of the queries are neither stable nor predictable when running si-
multaneously. The input sensitiveness and the non-deterministic
operator overlap are two primary factors of the latency unpre-
dictability. Hence, We propose Abacus, a runtime system that runs
multiple services simultaneously. Abacus enables deterministic op-
erator overlap to enforce latency predictability. Abacus composes
of an overlap-aware latency predictor, a headroom-based query con-
troller, and segmental model executors. The predictor predicts the
latencies of the deterministic operator overlap. The controller de-
termines the appropriate operator overlap for the QoS guarantee
of all the services. The executors run the operators as needed to
support the deterministic operator overlap. Our evaluation shows
that Abacus reduces 51.3% of the QoS violation and improves the
throughput by 29.8% on average compared with state-of-the-art
solutions.

KEYWORDS
DNN services, QoS, latency prediction, GPU, Co-location

ACM Reference Format:
Weihao Cui∗, Han Zhao∗, Quan Chen∗⋄, Ningxin Zheng†, Jingwen Leng∗⋄,
Jieru Zhao∗⋄, Zhuo Song‡, Tao Ma‡, Yong Yang‡, Chao Li∗⋄, Minyi Guo∗⋄.
2021. Enable Simultaneous DNN Services Based on Deterministic Operator
Overlap and Precise Latency Prediction. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC
’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3458817.3476143

1 INTRODUCTION
Deep Neural Network (DNN) empowers intelligent latency-critical
(LC) services (e.g., computational vision [19, 39, 46, 47], natural

Quan Chen and Minyi Guo are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476143

language processing [16, 20], recommendation system [49]). While
DNN-based latency-critical services are computationally demand-
ing and have stringent Quality-of-Service (QoS) requirements, the
common practice is deploying a single service on a dedicated GPU
and routing the loads to each GPU using a cluster-level load bal-
ancer. A large number of dedicated DNN serving systems [12, 15,
17, 40, 44] (e.g., Triton [29], Clipper [13], TF-Serving [32]) have
been proposed to run DNN inference queries on GPUs.

However, when the load of an LC service is low (services often
experience diurnal load patterns [8]), GPUs suffer from low uti-
lization. Prior works like Prema [11], Clockwork [17], Nexus [44],
and PipeSwitch [4] have shown that running multiple applications
simultaneously on a GPU is capable of improving the utilization.
Meanwhile, NVIDIA introduces MPS (Multi-Process Service) [26]
andMIG (Multi-Instance GPU) [25] for enabling concurrent sharing
of a single GPU among multiple applications.

Obviously, running multiple services simultaneously on a sin-
gle GPU increases the end-to-end latencies of user queries1. This
longer latency is acceptable if the latency increase is stable and
shorter than the QoS target. However, simply running multi-
ple DNN services simultaneously results in unstable long
latency, risking the QoS violation of the co-located services.
We find that the unstable long latencies originate from two main
reasons. 1) The latency of a query is sensitive to the input.
The queries may be executed in different batch sizes and have dif-
ferent sequence lengths. 2) The operator/kernel overlap is not
deterministic. The user queries are submitted and received at
a random time. How the simultaneous user queries overlap with
each other is not known before they are actually processed. When
the operators of simultaneous queries show different contention
degrees, the latency increase is not known.

Some prior works enable simultaneous services on both CPU
servers [9, 36] and GPU servers [17, 44, 53]. For works on CPUs,
computational resources are reallocated to the services dynamically.
They rely on low overhead resource reallocation techniques (e.g.,
core affinity, cache allocation, memory bandwidth allocation) and
are not applicable for co-locating services on GPUs due to the
large overhead. GPUs are non-preemptive, and the overhead of
reallocating resources is heavy.

Nexus [44] and Clockwork [17] are the most related works that
deploy multiple services on a GPU. To resolve the nondeterministic
operator overlap, the runtime serving system on a GPU sequen-
tially processes the operators of the user queries. The operators are

1A query is the processing of a user request.

https://doi.org/10.1145/3458817.3476143
https://doi.org/10.1145/3458817.3476143
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

add

relu

conv

conv

concat

add relu conv concatconv

Timeline

DFG:

EXE: matmul

matmul

Topological sorting

Figure 1: Processing a query of a DNN service.

executed in First-Come-First-Serve (FCFS), Shortest-Job-First (SJF),
or Earliest Deadline First (EDF) manner. In this case, the operators
are actually not overlapped at all, and the response latencies of user
queries are deterministic and predictable. However, the sequential
co-location manner results in low throughput, as the GPUs are not
fully utilized with a single operator [27, 53].

There is an opportunity to further improve the processing speed
for the simultaneous DNN services if the operators run simultane-
ously and the latency increase can be precisely predicted. We face
three challenges in taking advantage of the opportunity. 1) How
to make the operator overlap deterministic? A mechanism is
required to configure the operator co-location at runtime instead
of allowing the operators to overlap randomly. In this way, we are
able to control the response latencies of the queries for QoS. 2)
How to predict the latency increase due to the overlap? The
operators that run simultaneously contend for shared resources
(e.g., global memory bandwidth on GPU), but they have different
sensitivities to the contention. 3) How to guarantee the QoS of
all the simultaneous DNN services? All the user queries of the
simultaneous DNN services have QoS requirements. A low over-
head online scheduling policy is required to carefully manage the
operators of all the queries to ensure the QoS of all the services.

To resolve the above challenges, we analyze the way that a query
is processed. Figure 1 shows an example DNN model (expressed
to be a data flow graph, DFG) and the way it is processed. A DNN
query is processed by executing a series of operators (e.g., relu,
conv) sequentially in the topological order instead of invoking a
single huge function. In this case, By dividing the processing of
a query into several parts and controlling the time of issuing the
parts of each query, the operator overlap is determined.

Besides, our investigation shows that the latencies of a query in
multiple runs are stable if its co-located operators are determined.
The detailed experimental setup is described in Section 5.2. In our
40,000 runs of 21 co-location pairs, the average standard deviation
of the queries’ latencies is 0.65ms, while the 90%-ile of the stan-
dard deviation is 1.58ms. The deviation is small compared with the
queries’ average latency (4.53%). Therefore, the latency of a DNN
query is predictable if its input is known and the operator overlap
is determined. There is a chance to predict the co-running latency
by determining the operator overlap.

Based on the above two insights, we propose Abacus, a runtime
system armed with precise latency prediction to enable simultane-
ous DNN services on GPUs. Abacus consolidates the determinism
by issuing the deterministic operator group per round of sched-
uling. Abacus composes of an overlap-aware latency predictor, a
headroom-based query controller, and a segmental model executor.
The latency predictor is built using an MLP (Multilayer Perceptron)

model. The predictor can precisely predict the latency given a fixed
operator schedule group from already known DNN services. The
query controller is responsible for guaranteeing the QoS of all the
simultaneous DNN services. For each round of scheduling, The
query controller schedules a group of overlapped operators based
on each queries’ headroom to the QoS target. The headroom-based
scheduling does not provision the GPU for the query with the least
headroom. Instead, it tries to form a DNN operator group from
all queries for scheduling. Hence, the controller searches for the
optimal operator group to issue under the constraint of the least
headroom of all queries. A multi-way searching is conducted to add
as many operators as possible to the group while guaranteeing the
QoS of the query with the least headroom by consulting the latency
predictor. A segmental model executor processes the queries with
the configuration of the optimal operator group. The completely
processed queries return the results, and the partially processed
queries participate in the next round of scheduling.

The main contributions of Abacus are as follows:

• Comprehensive analysis of the unpredictability in simulta-
neously deployed DNN services. We identify the two leading
root causes for the unpredictability with simultaneous DNN ser-
vice deployment enabled. The analysis motivates Abacus.

• Design of a precise latency prediction model for operator
groups. We build an accurate model to predict the latency of
an operator group. The operators in an operator group are from
multiple DNN services and run simultaneously.

• Design of a deterministic operator overlapmechanism. The
mechanism does not bring in extra overhead like synchronization
for the determinism on non-preemptive GPUs.

Our evaluation using seven popular DNNs on an Nvidia A100
GPU shows that Abacus reduces 51.3% of the QoS violations for
simultaneous DNN services and improves the throughput by 29.8%
on average compared with state-of-the-art solutions.

2 RELATEDWORK
Addressing the QoS problem for simultaneous DNN services on a
single GPU is challenging. Nexus [44] and ClockWork [17] enable
simultaneous DNN services deployment through cluster-level man-
agement. However, from the perspective of a single GPU, Nexus
and ClockWork provision the GPU for a single DNN service at
a certain moment without improving throughput by DNN oper-
ator overlap. In evaluation, we compare Abacus with the default
scheduling policy (FCFS, SJF, EDF) used in Nexus and ClockWork.

Baymax [8], Prophet [7], and Laius [52, 53] address the QoS prob-
lem for co-locating latency-critic(LC) jobs and best-effort(BE) jobs
on GPU. These works perform per-kernel scheduling and sacrifice
the performance of BE jobs for accelerating the LC jobs. In our
scenario, per-kernel scheduling incurs high overhead, and we need
to handle the QoS problem given multiple services.

There are some other works done on simulators. Works like
Themis [50, 58, 59], and HSM [60] model the slowdown of co-
locating applications on GPUs. The predictors used in these works
need the underlying hardware information for predicting the inter-
ference of multiple services, which is impossible for online sched-
uling in production. Some works are related to processing multiple

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

Pytorch TensorrtTensorflow Mxnet

Triton
Nexus Clock Work

K8S

DNN Framework

Node Scheduler

Cluster Scheduler

Library CUDA & CUDNN

Hardware Driver GPU Driver

Abacus

Figure 2: Layered software stack of DNN Serving. Abacus
enables simultaneous DNN services without modifying the
upstream cluster-level management.

DNNs on the same accelerators [3, 11]. Prema [11] addresses the si-
multaneous deployment of DNN services on a systolic array simula-
tor [10, 41]. The foundation of Prema is the preemptive mechanism
of the simulator. However, GPUs in production are non-preemptive.
Moreover, Prema provides no strict QoS guarantee for queries.

On top of the above works on a single GPU, some works focus
on the orchestration of DNN serving at the cluster level [37, 48,
51, 57]. Mark [51], and Swift [37] provide cost-efficient and QoS-
aware orchestration for single DNN services. Co-location is not
involved in improving throughput. Kube-knots [48] orchestrates
the GPU containers at the cluster level for enabling LC jobs and BE
jobs. It predicts the inter and intra-application correlation for QoS
guarantee before co-locating the relevant containers. It is not able
to guarantee the QoS of each LC query while co-locating LC jobs.

For co-location of multiple services on traditional CPUmachines,
several works like Parties [9], CLITE [36], Sinan [55], Avalon [6],
Ursa [54], Sturgeon [33, 34], Bats [56] have been proposed to achieve
high throughput and hardware utilization for traditional services [2,
21]. Techniques used in them are not applicable in GPU-based DNN
services. Basically, CPU-related resources can be reallocated with-
out interrupting the running services [1]. On GPUs, termination
of the running process is essential for reconfiguring the allocated
resources for DNN services.

Some works like Ebird [14, 15], and C.Guo et al. [18] exploit
multiple CUDA streams [24] for improving hardware utilization of
the single DNN service. However, they are not capable of guaran-
teeing the QoS while deploying multiple different DNN services
simultaneously. Some compiler-level works (e.g., Rammer [23], Ten-
sorRT [31]) enable intra-operator parallelism for accelerating the
DNN inference. In general, these compilers fuse multiple operators
into a single GPU function for providing stable high performance.
These works are not the opposite of the way that Abacus processes
the DNN query.

3 BACKGROUND AND MOTIVATION
In this section, we show the long tail latency problem of running
multiple DNN services simultaneously, and discuss the root causes
of this problem.

3.1 Philosophy of Abacus
Figure 2 shows the general software stack of DNN serving. Prior
researches like Nexus [44] and Clockwork [17] schedule multiple
DNN services on a cluster by exploiting cluster-level query routing.
On the contrary, we design and implement Abacus to manage
queries in the lower framework level.

50 100 150 200 250
Latency(ms)

0%

25%

50%

75%

100%

C
D

F

Resnet50
Resnet101
Inception_v3

VGG16
VGG19
Bert

Figure 3: The latency distribution of the queries of Resnet152
when it co-runs with other DNN services using Nvidia MPS.

For the works at the cluster level [17, 44], a central controller
is required to route queries of different services to different GPUs
inside the cluster. Network bandwidth becomes the bottleneck [17],
and they are not portable with popular DNN service schedulers
like Kubernetes [22] and Triton [29]. In addition, although multiple
DNN services are deployed on a GPU cluster, the cluster-level works
use one of FCFS, SJF, and EDF policies to run the queries sequentially
on each GPU for ensuring predictive QoS guarantee [17, 44]. The
sequential execution manner results in unnecessary long queuing
time, as the GPUs are not fully utilized with a single operator [53].
They support low peak throughput with QoS constraint due to the
poor GPU utilization (proved by the experiments in Section 7.2).

To overcome the above weakness, Abacus exploits the runtime
operator scheduling of DNN frameworks instead of modifying the
cluster-level management. While the schedulers guarantee that the
load does not exceed the hardware capacity, Abacus guarantees the
QoS of each individual query with simultaneous DNN services en-
abled. As Abacus does not rely on upstream cluster managers,
it can be used with existing cluster-level schedulers, like
Kubernetes, for large-scale in-production deployment. Ex-
periments in Section 7.6 show that by integrating Kubernetes with
Abacus, DNN services achieve much higher throughput compared
with state-of-the-art cluster-level DNN scheduler Clockwork [17].

3.2 Long Tail Latency
Without cluster-level throttling [17, 44], multiple queries from the
co-located DNN services may arrive at the GPU simultaneously. In
this subsection, we exploit whether the MPS technique of Nvidia
can effectively host simultaneous DNN services on a single GPU.

In this experiment, we run a DNN service Resnet152 with an-
other DNN service on an Nvidia A100 GPU and report the latency
distribution of its queries in Figure 3. In the experiment, We fix the
batch size of Resnet152 to be 32 and the image size to be 224 × 224
to create a stable load. The experiment is conducted in a close-loop
way, excluding the queuing time in a real serving system. In this
case, the end-to-end latencies of the Resnet152 queries are stable in
solo-run mode. The inputs of its co-located services change dynam-
ically, and the query arrival rate follows the Poisson distribution. In
the figure, the line “VGG16” represents the latency distribution of
Resnet152 when it runs with VGG16 simultaneously. The software
and hardware setup is presented in Section 7. Experiments with
other services show similar results.

As shown in Figure 3, the latencies of Resnet152 queries vary
significantly when it runs with other DNN services simultaneously.
The latencies range from 24 milliseconds to more than 241 millisec-
onds, while the solo-run latency is 24 milliseconds. The latency of

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

1 2 3 4 5

Executing

Sevice B:

Sevice A: 1 2 3 4 65

input

input

Operator Group

Operator

bs

seqlen

bs

H

W

tB

tA

tqos

Query

Query

Queue

Queue

q1

q2

tqueue

(1) tqueue

Processing Queries

Processed Queries

(2)

(3)

Figure 4: Unstable latencies of the queries when two or more
DNN services run simultaneously.

a query is impacted by its own load, its co-runners, the co-runners’
load, and how the queries overlap. Compared with other co-runners,
VGG16 and VGG19 result in much longer latencies.

For a DNN service that interacts with end-users, it is critical to
make sure that its tail latency (e.g., 99%-ile latency) to be below
the pre-defined QoS target (e.g., 50ms). It is not safe to directly run
multiple DNN services on a GPU with MPS, as we cannot predict the
latency of a query before it completes.

3.3 Unstable Latencies of Queries
The longer latency of a query when it runs simultaneously with
other queries is not a problem if it is shorter than the QoS tar-
get. As shown in Figure 3, the latencies of some queries are much
shorter than the QoS target, while other queries (some queries of
VGG16 and VGG19) suffer from QoS violation. The unstable query
latencies disable the opportunity to run multiple DNN services
simultaneously on a GPU.

We, therefore, analyze the reasons for the unstable latencies.
The root reasons are: 1) the queries arrive in irregular time
intervals; 2) the operators contend for shared resources. In
this case, the queries have different overlaps with other queries and
suffer from different performance interference.

Figure 4 illustrates the way that two services (Service-A and
Service-B) run on a GPU simultaneously. In the figure, Service-A
uses a computer vision (CV) model, and Service-B uses a natural
language processing (NLP) model. As observed, the end-to-end
latencies of Service-B’s queries are not identical because:
(1) Queries have different queuing time. The query may queue

up for the hardware resources or contend for PCI-E, NVLink
to transfer data. The queuing time and data transfer time are
affected by loads of the simultaneous DNN services. When the
load is high, the queuing and data transfer time is longer.

(2) Queries have different inputs and batch sizes. The input
size determines the processing time of a query, and DNN ser-
vices often accept queries with inputs of different sizes. For
instance, the input image can be of different resolutions for
Service-A, and the sequence length also varies for Service-B.
Besides, the batch size of query processing is determined by the
upper-level load balancer at runtime. Both different inputs and
batch sizes result in different processing time.

(3) Concurrent queries have non-deterministic overlap. The
operators 1-5 of the current query of Service-A are overlapped
with the operators 2-6 of the current query of Service-B in

q3

Segmental Model
Executor

LC 0:

LC 1:

LC 2:

Abacus Runtime System
HB Query Controller

1
2

3

Multi-way Search
Headrom

Sort

Overlap-Aware Latency Predictor
bs

seqlen latency

1
2

3

1
2
3

1

2

3

GPU

Profiling

q2
q1

 K8S &
Triton

Users

Data Flow

Control Flow

Figure 5: Design architecture of Abacus.

Figure 4. The overlap increases the response latencies, as the
overlapped operators share and contend for the resources in
the GPU. However, previous and later queries may have totally
different overlaps, because queries arrive in irregular time in-
tervals. The non-deterministic overlap results in the different
latency increases of the queries.

It is profitable to delay several operators of 𝑞1 to reduce the
operator overlap in Figure 4, if the latency of 𝑞1 is much shorter
than its QoS target and 𝑞2 suffers from QoS violation. For instance,
if we can delay operators 4-5 of 𝑞1 until 𝑞2 completes, the latency of
𝑞2 is reduced due to shorter overlap. Meanwhile, the slight latency
increase of 𝑞1 does not lead to its QoS violation. It is challenging
to determine the overlapped operators so that both 𝑞1 and 𝑞2
can satisfy the QoS targets.

To achieve the above purpose, we have to precisely predict the
latencies of the queries with different input sizes and overlap situ-
ations. However, for 𝑞2, it knows neither the inputs nor the start
time of 𝑞1 with the current MPS-based co-location solutions. The
end-to-end latencies of queries in the simultaneous-DNN-service
scenario are currently not predictable. A mechanism is required
to obtain all those runtime information, predict the latencies with
different overlap options, and stabilize the appropriate overlaps for
each query at runtime.

4 DESIGN OF ABACUS
Since the factors that affect the query’s latency for simultaneous
DNN services are only known at runtime, we propose Abacus to
be a runtime operator management system at the framework level.

Figure 5 presents the overview of Abacus. It is comprised of an
overlap-aware latency predictor, a headroom-based query controller,
and segmental model executors. The latency predictor precisely pre-
dicts the processing time of an operator schedule group in which
the operators are issued to run on the GPU in parallel. The query
controller determines the processing order of the received queries,
and identifies the optimal operator schedule group for each query.
A segmental model executor processes a query’s corresponding
operators in an operator schedule group. In more detail, Abacus
runs multiple DNN services simultaneously in the following steps.

(1) Abacus sorts the received queries based on the latency head-
rooms to their QoS targets in ascending order. Let 𝑞2 in Figure 5
represent the query that has the shortest headroom to its QoS
target. Abacus schedules the operators to ensure its QoS first.

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

(a) sequential prediction (b) sync-based prediction (c) sync-free prediction

ka1

kb1

ka2

kb2

co-location

fe
nc

e

fe
nc

e

fe
nc

e

ka1

kb1 kb2

ka2 ka4ka3

kb3

co-location

sl
ic

e

sl
ic

e
sl

ic
e

sl
ic

e
sl

ic
e

sl
ic

e

ka1

kb1 kb2

ka2 ka4ka3

kb3

co-location

fe
nc

e

fe
nc

e

fe
nc

e

task a task b wasted

Figure 6: Three kernel-level duration prediction methods.

(2) If 𝑞2 still has latency headroom to the QoS target, Abacus iden-
tifies the optimal operator group that can run with 𝑞2 without
incurring QoS violation. For an operator group candidate, Aba-
cus predicts the latency of 𝑞2 if the operator group runs with 𝑞2
simultaneously. The group that conveys the largest throughput
without incurring 𝑞2’s QoS violation is the optimal one. Aba-
cus uses multi-way search to make the prediction for multiple
operator group candidates (Section 6.3). The prediction is made
based on a precise offline trained duration model (Section 5.5).

(3) Once the operator schedule group is identified, the query con-
troller launches it only if the segmental model executor is idle
for ensuring the deterministic of the former scheduled opera-
tor group. The segmental model executor then processes the
queries’ corresponding operators in the group. The segmental
model executor saves the intermediate results for those partially
processed queries.

(4) Once 𝑞2 returns, Abacus identifies the next query with the
shortest latency headroom to its QoS target, and searches the
optimal operator group for it.
Several challenges have to be resolved in Abacus. Only when

the predictor is accurate and fast, the query controller is able to
identify the optimal operator schedule group in time. The query
controller also needs to minimize the number of tries needed to find
the optimal group, as each prediction takes time. The segmental
model execution has to parse and resume the execution of a query
with low overhead. Otherwise, the overhead itself may already
result in the QoS violation.

Given 𝑁 DNN services, Abacus only trains a single model for
the latency predictor to predict the duration of an operator schedule
group, no matter which of the 𝑁 services run simultaneously. Our
experiments show that it is not necessary to train separate models
for different co-location pairs as prior works do [8, 53].

5 OVERLAP-AWARE LATENCY PREDICTION
In this section, we first discuss the reason for performing the predic-
tion in operator group granularity. Then, we show that it is possible
to predict an operator group’s latency, although the operators may
be overlapped. Lastly, we detail the way to select features, collect
training samples, and identify appropriate prediction techniques.

5.1 Incapable of Prior Kernel-level Prediction
In order to guarantee the QoS of a query, we have to predict its
latency if it co-runs with other services. A straightforward way is
predicting the duration of each kernel in the query and aggregat-
ing the durations to be the query’s duration. Prior researches like
Prema [11] adopt this way.

0 10 20 30 40 50 60 70 80
End-to-end latencies / Standard deviation of latencies (ms)

0%

50%

100%

C
D

F e2e std

Figure 7: Statistics of collected training samples.

Figure 6 shows three kernel-level duration prediction methods.
As shown in Figure 6(a), Prema [11] inserts a synchronization fence
between kernels and runs the kernels sequentially. In this way, the
duration of a query can be predicted by aggregating the solo-run
time of the kernels. This method disables the kernel overlap, thus
results in low throughput.

An improved idea is enabling the overlap, making the kernel
overlap deterministic by adding explicit fences and predict the
duration of the overlapped kernel pairs, as shown in Figure 6(b).
However, the overlapped kernels have different processing time,
and the throughput is still not maximized.

Without hurting the throughput, an optimal way is to predict
the duration when allowing the kernels to overlap freely, as shown
in Figure6(c). For instance, some prior simulator-based researches,
such as HSM [60] and Themis [59], predict the slowdown of each
overlap slice based on performance event counters. However, they
are not applicable in real systems as such events are not available at
runtime in the in-production GPUs. In addition, they are posteriori
methods and are not able to predict the kernel duration proactively.
Proactive prediction is necessary to determine whether two kernels
should be overlapped.

Our measurement also shows that the time needed to perform
the above duration prediction takes 0.1𝑚𝑠 in real systems, while the
duration of kernels/operators in DNN models often have the same
order of magnitude. Kernel-level duration prediction introduces
too heavy overhead to be applied in real systems.

Therefore, we introduce operator group for flexible kernel overlap,
high prediction accuracy, and low prediction overhead in general.
Specifically, Abacus groups the overlapped DNN operators into
operator groups and predicts the duration of each operator group.
Abacus flexibly determines the DNN operators that can be safely
overlapped proactively.

5.2 Latency Determinism of Operator Group
The operators from multiple models in an operator group may have
different overlaps in different runs. It is crucial to find whether the
latency of an operator group is deterministic or not.

To this end, we generate 42,000 operator groups by co-running
7 DNN models in a pair-wise manner. The detailed method to gen-
erate the operator groups is shown in Section 5.4. For the 42,000
operator groups, we run each group 100 times and collect the cor-
responding latencies. Figure 7 reports the latency distribution of
the operator groups, and the standard deviations of the operator
group latencies at different runs.

As observed, the standard deviations are shorter than 1𝑚𝑠 , while
the actual latencies of the operator groups are much longer. The
average latency (𝑇𝑒2𝑒_𝑎𝑣𝑔) is 15.9𝑚𝑠 , while the 90%-ile of the la-
tency is 25.8𝑚𝑠 . For operator groups generated from triplet-wise

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

0 0 0 1 0 0 1 3 18 4 0 4 12 16 32

Muti-Hot Vector for Models Model 4 Model 7

ops ope bs seqlen

Figure 8: Input features for training a duration model for
operator groups of pair-wise model co-running.

co-location and quadruplet-wise co-location show similar results.
The latency of an operator group is deterministic and predictable.

5.3 Determining Representative Features
Optimally, we can use the runtime performance events (e.g., cache
misses, global memory bandwidth) [60] and the inherent features
of the operators as the inputs to build a duration model for operator
groups. However, Nvidia does not provide an interface to obtain
runtime events online. The hardware events reported by tools like
nvprof [30], nsight compute [28] can only be obtained after the ap-
plication completes. It is not applicable to rely on runtime hardware
events to build the model for in-production GPUs, as such events
cannot be obtained during the online scheduling.

Some readers may think that we can build a performance model
for each individual operator, and calculates the duration of an op-
erator group accordingly. However, the operators in an operator
group may run either sequentially or in an overlapped manner,
depending on the resource requirement of each operator, as well
as the issuing order of the operators [7]. Building a model for each
operator is not able to capture such unstable overlap behaviors.

We, therefore, collect the durations of operator groups and the
corresponding representative features to train such duration model.
Suppose there are 𝑁 possible models that may co-run on a GPU. For
each model, its operators are numbered with their topological order
in the model. There are many operators in DNN models (e.g., 241
operators for Resnet101). A large input feature will be generated if
Abacus selects the information of all operators as the input feature
like previous work [8, 11]. Figure 8 shows an example input feature
in Abacus for training a duration model for operator groups when
two of the 𝑁 models co-run. In the input feature vector, a 𝑁 -bit
bitmap is used to indicate which two models co-run. Besides, for
each of the co-running models, the feature vector also indicates the
start operator 𝑜𝑝𝑠 , the end operator 𝑜𝑝𝑒 , the batch size 𝑏𝑠 , and the
sequence length 𝑠𝑒𝑞𝑙𝑒𝑛 in the operator group sample.

Note that the design of the bitmap unifies the information about
the overlapped operators inside an operator group, and 𝑠𝑒𝑞𝑙𝑒𝑛 is
only used for Bert-like DNN models2.

5.4 Improving Sampling Efficiency
We use 6 CVmodels and 1 NLPmodel to collect the training samples.
The queries’ batch size is randomly chosen to simulate the input
non-determinism for all models. For Bert, the sequence length is
also involved in randomization. Table 1 shows the details of the
models used to collect the samples.

The sample space increases exponentially as the involved models
increase. Naive sampling results in a huge sample space that results
2The sequence length used here is only for Bert-like DNN models. Traditional NLP
models like LSTM [20] do not need the sequence length information, which is related
to the number of operator and included in the first two elements of model vector

Table 1: DNN models used for serving.

Models Random Parameters
Resnet50 [19]; Resnet101; Resnet152;

Batch Size: [4, 8, 16, 32]
Inception_V3 [47]; VGG16 [46]; VGG19

Bert [16]
Batch Size: [4, 8, 16, 32]
Seq Length: [8, 16, 32, 64]

Model A:

Model B:

Model C:

Randomize QoS queries Randomize new queries Randomize the else(1)

(2) (3)

(3)

Figure 9: Generating the operator group through instance-
based sampling.

in too long offline time. We analyze the creation of operator groups
in Abacus. There are two principles when Abacus builds operator
groups. First of all, in an operator group, at least a query completes.
Second, a new query may be received, and its operators may be
added to the current operator group.

Hence, we adopt instance-based sampling [45] to improve the
sampling efficiency. More specifically, we sample the operator
groups in the same principles. Figure 9 shows the way we gen-
erate the operator group samples. (1) We first randomly choose the
number of models to complete in the operator group. In Figure 9,
2 models (Model A, Model B) are selected. (2) Then, we randomly
choose the number of the newly arrived models that are processed
from the first operator. In Figure 9, 2 models (Model B, Model C)
are selected. (3) After the above two steps, the operators of Model
B for the operator group are determined. The beginning operator
of Model A and the end operator of Model C are randomized.

In this way, we get samples that exist in the real scheduling
of Abacus. The sampling efficiency and the predictor’s accuracy
are improved. In addition, the same number of operator groups
are sampled for each possible batch size. Our statistics show that
Abacus takes 42 hours to collect 2000 ×𝐶2

7 = 42, 000 samples (each
sample run 100 times) for pair-wise service co-location.

5.5 Determining Modeling Techniques
We evaluate three widely-used prediction methods, Linear Regres-
sion (LR) [42], Support Vector Machines (SVM) [5], and Multilayer
Perceptron (MLP), in training the duration model. We limit the
hidden layer of the MLP model to 3 layers, whose dimension is 32.

We randomly choose 80% of the collected 40,000 samples in
Section 5.4 to train the model and using the rest for testing. As
mentioned in Section 5.4, we have 21 pair-wise co-location combi-
nations. There are two possible options: 1) train a durationmodel for
each co-location combination; 2) train a unified duration model for
all the combinations. The latter option consumes fewer resources
but may result in low accuracy.

Figure 10 shows the prediction errors of both options. In the
figure, the column “all” shows the prediction errors of the unified
duration models. Here, the prediction error is measured by the

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

(Res50,Res101)

(Res50,Res152)

(Res50,IncepV3)

(Res50,VGG16)

(Res50,VGG19)

(Res50,bert)

(Res101,Res152)

(Res101,IncepV3)

(Res101,VGG16)

(Res101,VGG19)

(Res101,Bert)

(Res152,IncepV3)

(Res152,VGG16)

(Res152,VGG19)

(Res152,bert)

(IncepV3,VGG16)

(IncepV3,VGG19)

(IncepV3,bert)

(VGG16,VGG19)

(VGG16,bert)

(VGG19,bert) all
0.0

0.1

0.2

0.3

0.4

Pr
ed

ic
tio

n
E

rr
or

Linear Regression SVM MLP Cross Validation

Figure 10: Prediction errors of all the evaluated modeling techniques: Linear Regression, SVM, and MLP. We also show the
cross validation accuracy of MLP.

Service A:

Service B:

Service C:

Save

Input

Inter Result

Operator

Final Result

Return

Return

Input

Save

Operator Group

Sync
Current Round
Prior/Next Round

Figure 11: Executing queries in a deterministic way with the
flexible segmental model executor.

mean absolute percentage error, as shown in Equation 1.

𝐸𝑟𝑟𝑜𝑟 =
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑡𝑒𝑛𝑐𝑦−𝑅𝑒𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 |

𝑅𝑒𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
(1)

Specifically, if a model is trained for each combination, LR and
SVM achieve prediction errors of 23.5% and 21.5% on average. For
VGG-related pair-wise co-location, the errors of LR and SVM are
up to 47.0% and 37.2%. For all combinations, the MLP model shows
consistently high accuracy (the average error is 5.5%).

If a unified model is trained for all combinations, the errors of
LR and SVM are 30.1% and 29.2%, and the error of MLP is 5.7%. The
cross-validation shows that MLP always has high accuracy in pre-
dicting the duration of operator groups. The bar “Cross Validation”
in Figure 10 shows the prediction error of the cross-validation. Be-
sides, for triplet-wise co-location and quadruplet-wise co-location,
the prediction errors of the unified duration model trained predictor
are 4.9% and 6.4%, respectively.

6 HEADROOM-BASED SCHEDULING
In this section, we first introduce the flexible segmental model ex-
ecutor. Then, we show the way to perform headroom-based sched-
uling based on the latency predictor.

6.1 Flexible Segmental Model Executor
Abacus controls the query execution of simultaneous services by
issuing operator groups. The whole execution of a query can be
divided into several segments. The query controller requires a flex-
ible model executor to perform the headroom-based scheduling.
Hence, Abacus designs the segmental model executor to satisfy the
requirements for executing the operator schedule group.

Figure 11 illustrates the segmental model executor. First of all,
each DNN service is deployed in a separate process inside the model
executor for the purpose of privacy and avoiding the chain reaction
of the crash. The segmental model executor controls the execution
of the operator group through communicating with each DNN

service. After receiving an operator schedule group, the model
executor notifies corresponding processes for executing operators
included in the operator group. Then the model executor waits
for all processes’ completion and replies to the query controller.
The model executor works in an exclusive way to guarantee the
determinism of executed operator group.

During the processing of the operator group, there are a few
things to deal with. As depicted in Figure 11, only the first three op-
erators are executed in the current round of scheduling for queries
like Service C. The model executor saves the intermediate results
for these queries. For queries like Service A, the first operator has
been processed in the former round of scheduling. Then, the model
executor restores the input from early saved intermediate results.
A synchronization operation on GPU is needed before replying to
the query controller for determinism, and the final results of those
fully processed queries are returned.

6.2 Headroom-based QoS Guaranteeing
Abacus has to guarantee the QoS of DNN services deployed simul-
taneously on a GPU. Abacus achieves the goal of QoS guarantee
under the scheduling of query controller. Instead of directly con-
sidering the QoS of all DNN services, the query controller only
guarantees the QoS of one query for each round of scheduling. Like
the Earliest Deadline First scheduling (EDF), the query controller
prioritizes the query with the earliest deadline. However, the query
controller forms an operator group based on the deadline priority
rather than schedule the query with the highest priority.

𝑇ℎ = 𝑇𝑄𝑜𝑆 −𝑇𝑞𝑢𝑒𝑢𝑒 −𝑇𝑐𝑜𝑚𝑚𝑠 −𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

= 𝑇𝑄𝑜𝑆 − (𝑇𝑐𝑢𝑟 −𝑇𝑠𝑡𝑎𝑟𝑡)
(2)

The query controller first calculates the QoS headroom (denoted
by 𝑇ℎ) in Equation 2. The headroom is obtained by subtracting
the queueing time (𝑇𝑞𝑢𝑒𝑢𝑒), the data transfer time through PCI-E
and/or NVLink (𝑇𝑐𝑜𝑚𝑚𝑠), and the duration of completed operators
(𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑) from the QoS target (𝑇𝑄𝑜𝑆). In the equation, we already
know the start timestamp (𝑇𝑠𝑡𝑎𝑟𝑡) of each query and the current
timestamp (𝑇𝑐𝑢𝑟). Hence, in the second row of the equation, 𝑇𝑐𝑢𝑟 −
𝑇𝑠𝑡𝑎𝑟𝑡 already contains 𝑇𝑞𝑢𝑒𝑢𝑒 , 𝑇𝑐𝑜𝑚𝑚𝑠 , and 𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 .

Then the controller sorts all queries according to the QoS head-
room in ascending order and then searches for the operator group
under the constraint of the least QoS headroom. In the current
round of scheduling, the query controller ensures the execution of
the query with the least QoS headroom by adding all its operators
to the candidate operator group. The query controller tries to add

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

q1

q2

q3

headroom: 45ms
start: 1
end: 5

headroom: 35ms
start: 2
end: 5

headroom: 25ms
start: 1
end: 5

2345

12345

12345

q1

q2

q3

add ops of q2 to group, search between
op 1-5 in three ways inside q1

2345

12345

12345

q1

q2

q3

 add q3 to op group due to the
least headroom, search among

q1, q2, q3 in three ways

2345

12345

12345

q1

q2

q3

search between op 1-3 in three ways
inside q1, add first 2 ops of q1 to group

Operators of ServicesOperator Group

headroom = 15ms headroom = 10ms headroom = 0ms

Multi-Say Search

Queries:

Figure 12: Generating an operator schedule group based on the QoS headrooms of all the active queries.

as many operators as possible to the operator group as long as the
predicted latency given by the overlap-aware latency predictor does
not exceed the QoS headroom. The added operators from the rest
queries are selected in the order sorted by their QoS headrooms.

Figure 12 illustrates an example of scheduling three queries by
the query controller. The headrooms of the queries waiting for
scheduling are (𝑞1:45ms; 𝑞2:35ms; 𝑞3:25ms). Therefore, the head-
room (25𝑚𝑠) of 𝑞3 is the headroom for QoS guaranteeing in this
round of scheduling. Then the controller directly adds the opera-
tors of 𝑞3 into the operator group, and leaves the QoS headroom of
15𝑚𝑠 , predicted by the latency predictor. Because 𝑞2’s headroom
is smaller than that of 𝑞1, the controller first considers adding op-
erators of 𝑞2 to the operator group, and only 10𝑚𝑠 of headroom
is left for 𝑞1. After adding the first two operators of 𝑞1, none of
the QoS headroom is left. Finally, the operator schedule group is
generated and ready for execution. The operators of 𝑞1 that did not
enter the operator group will be scheduled in the next round of
headroom-based scheduling.

The query controller also adopts a drop mechanism to avoid the
QoS violation. If the latency predictor predicts that the headroom
is not enough for finishing the execution of the query with QoS
target for this round of scheduling, the query controller directly
drops the query and enters the next round of scheduling. Keeping
processing causes the QoS violation of current and later queries.

6.3 Identifying the Optimal Operator Group
Identifying the optimal operator group requires scanning opera-
tors and predict the duration of different possible operator groups.
Although making a prediction only takes 0.06ms, it is still time-
consuming to try all the possibilities. To this end, we adopt multi-
way search to speed up the searching, and pipeline the operator
scheduling and operator execution to hide the scheduling overhead.

Multi-way search. The process of one headroom-based sched-
uling requires many times prediction. Figure 12 shows an example
of adding 6 DNN operators into the operator group for 𝑞2 and 𝑞1.
In this example, the latency prediction is done 6 times sequentially,
resulting in a slow search. We notice that each latency prediction
is independent. Based on this observation, we conduct a multi-
way search for accelerating the exploration of the optimal operator
group by feeding the duration model with batched input features
for computation all at once. The multi-way search consumes more
computation, as the batched computation of MLP may need more
CPU cores. Our experimental data in Section 7.7 shows that a single
core is enough for the multi-way search.

GPU Context

Operator Group:

Headroom-based
Scheduling:

Execution on
GPU:

Sync

headroom scheduling headroom

determine
headroom
Multi-way

search

returned
query

processing
query

Figure 13: Pipelined headroom-based operator scheduling.

More specifically, for the three queries 𝑞1, 𝑞2, and 𝑞3 in Figure 12,
we first search between queries in three ways instead of trying to
add operators directly. After the first prediction, we know that the
operators of𝑞2 and𝑞3 can be added to the operator group. The query
controller continues to conduct the search in three ways among
the operators of 𝑞1. After two predictions, the query controller
completes the exploration of the optimal operator group.

Pipeline scheduling and execution. Execution on GPU is
asynchronous with the operation of the host side. We leverage this
property for generating an operator group while executing the
former operator group. Figure 13 shows the detailed scheduling
process. After issuing the operator group, the query controller
immediately starts the next round of headroom-based scheduling.
Since the latency of the scheduled operator group is often larger
than that of the searching process, the overhead is hidden.

Note that we need to update the headroom used for searching
the operator group. The headroom (𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ℎ) used for forming
the new operator group is calculated by Equation 3.

𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_ℎ = 𝑇ℎ −𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑙𝑎𝑡 (3)

Because the identified operator group is not issued until the GPU
completes the former one, the predicted latency of the former op-
erator group (𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡_𝑙𝑎𝑡) needs to be subtracted from the QoS
headroom (𝑇ℎ) for scheduling. Otherwise, the query would not
return before the required QoS target.

It is worth noting that Abacus does not increase the total times
of synchronizations during the pipelined scheduling. As observed
in Figure 13, at least a query (selected for QoS guarantee by query
scheduler) returns for each time of synchronization in each round
of Abacus’s scheduling. Due to the asynchronization feature of
GPUs, each query in sequential scheduling also needs an explicit
synchronization for confirming the completion of execution. There-
fore, a DNN query may be divided into several operator groups, but
the total synchronizations do not increase. The pipeline scheduling
does not introduce extra synchronization overhead.

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

1.5

1.0

0.5

0.0

N
or

m
al

iz
ed

 9
9%

-i
le

 L
at

en
cy

(Res50,Res101)

(Res50,Res152)

(Res50,IncepV3)

(Res50,VGG16)

(Res50,VGG19)
(Res50,Bert)

(Res101,Res152)

(Res101,IncepV3)

(Res101,VGG16)

(Res101,VGG19)
(Res101,Bert)

(Res152,IncepV3)

(Res152,VGG16)

(Res152,VGG19)
(Res152,Bert)

(IncepV3,VGG16)

(IncepV3,VGG19)

(IncepV3,Bert)

(VGG16,VGG19)

(VGG16,Bert)

(VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 14: End-to-end 99%-ile latency of each pair-wise co-location with FCFS, SJF, EDF, and Abacus.

Table 2: Evaluation specifications.

Hardware CPU: Intel(R) Xeon(R) Silver 4210R (2.4GHz); GPU: Nvidia A100 (128 SMs)

Software
OS: Ubuntu 20.04.1 (kernel 5.8.0); GPU Driver Version: 460.39;

CUDA Version: 11.2, CUDNN Version: 8.1

7 EVALUATION
In this section, we evaluate the effectiveness of Abacus in ensuring
QoS and improving throughput. Pair-wise deployment is firstly
measured in detail. We also extend Abacus to more services and
integrate it with MIGs. The techniques like multi-way search and
pipelining scheduling and execution are also evaluated. In the end,
we discuss the overhead of Abacus.

7.1 Experiment Setup
We have implemented Abacus based on Pytorch [35]. All the eval-
uations are performed on a machine that equips the latest Nvidia
Ampere 100 (A100) GPU. On the GPU, MPS is enabled for sharing
GPU resources between the deployed services. More details about
the experiment environment are shown in Table 2.

Table 1 shows the widely-used 7 DNN inference models from im-
age processing and natural language processing fields used to eval-
uate Abacus. For easing of description, we use (𝐴, 𝐵) to represent
the case that 𝐴 and 𝐵 run on a GPU simultaneously. (𝐴, 𝐵) + (𝐶, 𝐷)
means that four services are divided into two deploy groups. The
two groups are deployed on a single GPU using MIG [25] that
divides an A100 GPU into multiple smaller instances.

We compare Abacus with FCFS (First Come First Serve), SJF
(Shortest Job First), and EDF (Earliest Deadline First), the scheduling
policies used in Clockwork [17], and Nexus [44] for co-locating
multiple services. Besides, for a fair comparison, we enable the
query-drop mechanism [44] for the baselines to improve their QoS.
After adopting the mechanism, a queued query is directly dropped
if its latency is already over the QoS target and is not counted in the
latency experiment for the baselines. The batch size and sequence
length of each query are randomly selected in Table 1. The service
load is generated using MLperf [38], and the arrival time pattern
satisfies the Poisson distribution. Same as prior DNN inference
work [7, 44], the QoS targets of the DNN services are set to be 2×
their solo-run latencies with the maximum inputs (ranging from
50 to 150 milliseconds).

(R
es

50
,R

es
10

1)

(R
es

50
,R

es
15

2)

(R
es

50
,In

ce
pV

3)

(R
es

50
,V

G
G

16
)

(R
es

50
,V

G
G

19
)

(R
es

50
,b

er
t)

(R
es

10
1,

R
es

15
2)

(R
es

10
1,

In
ce

pV
3)

(R
es

10
1,

V
G

G
16

)

(R
es

10
1,

V
G

G
19

)

(R
es

10
1,

B
er

t)

(R
es

15
2,

In
ce

pV
3)

(R
es

15
2,

V
G

G
16

)

(R
es

15
2,

V
G

G
19

)

(R
es

15
2,

be
rt

)

(I
nc

ep
V

3,
V

G
G

16
)

(I
nc

ep
V

3,
V

G
G

19
)

(I
nc

ep
V

3,
be

rt
)

(V
G

G
16

,V
G

G
19

)

(V
G

G
16

,b
er

t)

(V
G

G
19

,b
er

t)

0%

20%

40%

60%

Q
oS

 V
io

la
tio

n(
%

)

FCFS SJF EDF Abacus

Figure 15: QoS violation ratio of each pair-wise co-location
with FCFS, SJF, EDF, and Abacus.

(R
es5

0,R
es1

01
)

(R
es5

0,R
es1

52
)

(R
es5

0,I
ncep

V3)

(R
es5

0,V
GG16

)

(R
es5

0,V
GG19

)

(R
es5

0,b
ert

)

(R
es1

01
,R

es1
52

)

(R
es1

01
,In

cep
V3)

(R
es1

01
,V

GG16
)

(R
es1

01
,V

GG19
)

(R
es1

01
,Bert

)

(R
es1

52
,In

cep
V3)

(R
es1

52
,V

GG16
)

(R
es1

52
,V

GG19
)

(R
es1

52
,bert

)

(In
cep

V3,V
GG16

)

(In
cep

V3,V
GG19

)

(In
cep

V3,b
ert

)

(V
GG16

,V
GG19

)

(V
GG16

,bert
)

(V
GG19

,bert
)

0.0

0.25

0.5

0.75

1.0

N
or

m
al

iz
ed

 9
9%

-il
e

L
at

Figure 16: 99%-ile latencies with small co-located DNNs

7.2 Ensuring QoS
We first evaluate the effectiveness of Abacus in ensuring the QoS
of the pair-wise co-located services. In this experiment, the queries
are submitted at a load of 50 queries-per-second (QPS). This load
does not saturate the GPU and better reveals whether Abacus can
ensure the QoS and reduce tail latency.

Figure 14 presents the 99%-ile latency of all the 𝐶2
7 = 21 DNN

service co-location pairs normalized to the QoS targets. Observed
from this figure, Abacus reduces the 99%-ile latency by 23.1%, 34.1%,
23.8% on average compared with FCFS, SJF, and EDF, respectively.
If the query-drop mechanism is disabled, FCFS, SJF, and EDF result
in much longer tail latency.

Moreover, Figure 15 shows the percentage of the queries that
suffer from QoS violation. Abacus reduces the percentages of the
queries that suffer from QoS violation by 38.8%, 71.0%, 44.0% on
average compared with FCFS, SJF, and EDF. There is almost no
query that suffers from QoS violation with Abacus. In this figure,
the dropped queries are counted to reveal the real user experience.

As shown in Figure 15, FCFS, SJF, and EDF result in the most QoS
violations for (Res152, IncepV3). This is because most operators
of Res152 and IncepV3 are convolution operators that have small

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

100

80

60

40

20

0

Q
P

S

(Res50,Res101)

(Res50,Res152)

(Res50,IncepV3)

(Res50,VGG16)

(Res50,VGG19)
(Res50,Bert)

(Res101,Res152)

(Res101,IncepV3)

(Res101,VGG16)

(Res101,VGG19)
(Res101,Bert)

(Res152,IncepV3)

(Res152,VGG16)

(Res152,VGG19)
(Res152,Bert)

(IncepV3,VGG16)

(IncepV3,VGG19)

(IncepV3,Bert)

(VGG16,VGG19)

(VGG16,Bert)

(VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 17: The peak throughput of each co-location pair with FCFS, SJF, EDF, and Abacus while guaranteeing the QoS.

kernel sizes. While these small operators cannot saturate the GPUs,
FCFS, SJF, and EDF result in unnecessary queuing. On the contrary,
Abacus is effective through the adaptive operator groups.

To conclude, Abacus is able to reduce the tail latencies of all
pairs of DNN services and keep the QoS violation ratio at a low
level. Abacus results in low latency because it has more headroom
for executing more operators through scheduling operator group.
In the meantime, the precise prediction of overlap-aware latency
predictor guarantees the QoS with Abacus.

We can also observe that FCFS and EDF control the tail latency
more effectively than SJF. However, this is achieved by dropping
queries. SJF performs the worst among the four scheduling policies.
This is mainly because SJF needs to predict the queries’ latency
ahead of the scheduling. Unlike Abacus, SJF is not able to hide
the prediction overhead through pipelined scheduling proposed
in Section 6.3. This also proves the effectiveness of the proposed
pipelined scheduling in Abacus.

We also evaluate whether Abacus adapts to small DNNs. In this
experiment, we fix the input of DNNs to be theminimumone and set
the QoS target to be the 2× solo-run latencies of the minimum input
(around 10ms). Figure 16 shows the 99%-ile latencies of the small
DNNs normalized to their QoS targets with Abacus. As observed,
Abacus is capable of ensuring the QoS targets of small DNNs, as
Abacus does not introduce extra synchronization fences (discussed
in Section 6.3).

By comparing Figure 16 and Figure 14, we can find that the 99%-
ile latencies of the small DNNs are closer to their QoS targets. This
is because the QoS target is reduced in this experiment, and Abacus
has less room to generate operator groups. In general, Abacus also
works for small DNNs.

7.3 Improving Peak Throughput
In this subsection, we evaluate the effectiveness of Abacus in im-
proving the peak serving throughput by increasing the query load
to be 100QPS. In this case, the hardware is saturated, and the num-
ber of successfully processed queries per second of each scheduler
is reported to be its peak throughput. The throughput presented in
this experiment does not indicate the processed images per second
or sequences per second (the load 100QPS is corresponding to 1500
images or sequences per second).

Figure 17 shows the peak throughput achieved with FCFS, SJF,
EDF, and Abacus. As observed, Abacus improves the peak process-
ing throughput by 25.7%, 38.1%, 25.7% on average compared with
FCFS, SJF, EDF, respectively. At the same time, Abacus reduces

1.5

1.0

0.5

0.0

N
or

m
al

iz
ed

 9
9%

-i
le

 L
at

en
cy

(Res101,Res152,VGG19,Bert)

(Res101,Res152,VGG19)

(Res101,Res152,Bert)

(Res101,VGG19,Bert)

(Res152,VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 18: The 99%-ile latency in triplets- and quadruplets-
wise deployments with FCFS, SJF, EDF, and Abacus.

100

80

60

40

20

0

Q
P

S

(Res101,Res152,VGG19,Bert)

(Res101,Res152,VGG19)

(Res101,Res152,Bert)

(Res101,VGG19,Bert)

(Res152,VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 19: Peak throughputs in triplets- and quadruplets-
wise deployments with FCFS, SJF, EDF, and Abacus.

55.7%, 63.2%, 54.3% QoS violations compared with FCFS, SJF, EDF
in this experiment.

As observed, the throughput improvement is larger for DNN
models like Resnet and Inception than VGG. For instance, Aba-
cus achieves the largest throughput improvement in the case of
(Res50, Res152). This is because the operator number of Resnet
and Inception models is much larger than the operator number of
VGG, and the operators of Resnet and InceptV3 can not saturate the
GPU hardware. More operators and low hardware occupancy give
Abacus more chance for generating operator scheduling groups.

On the contrary, we can also find that the performance of Aba-
cus on (VGG16, VGG19) is slightly degraded with Abacus. This
is because the operators of VGG are already able to saturate the
GPU. In this case, there is nearly no room for operator overlap. The
operators are executed in sequential, and Abacus brings in slight
extra scheduling overhead.

7.4 Beyond Pair-wise Co-location
We also evaluate Abacus in triplet-wise and quadruplet-wise ser-
vice deployment. Due to the large co-location possibilities, we show

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

Table 3: Nvidia MIGs setup

Profile Name Fraction of Memory Fraction of SMs

MIG 1g.5gb 1/8 1/7
MIG 2g.10gb 1/4 2/7
MIG 4g.20gb 1/2 4/7

1.5

1.0

0.5

0.0

N
or

m
al

iz
ed

 9
9%

-i
le

 L
at

en
cy

Res101+Res152+VGG19+Bert

(Res101,Bert)+(Res152,VGG19)

(Res101,Res152)+(VGG19,Bert)

(Res101,VGG19)+(Resn152,Bert)

(Res101,Res152,VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 20: The 99%-ile latency of the services with MIGs.

100

80

60

40

20

0

Q
P

S

Res101+Res152+VGG19+Bert

(Res101,Bert)+(Res152,VGG19)

(Res101,Res152)+(VGG19,Bert)

(Res101,VGG19)+(Resn152,Bert)

(Res101,Res152,VGG19,Bert)

 FCFS SJF EDF Abacus

Figure 21: The peak throughputs of the services with MIGs.

the experimental results with Res101, Res152, VGG19, and Bert. Ex-
periments with other models show similar results. In this experi-
ment, same to the pair-wise experiment, the loads of the models are
50QPS and 100QPS when measuring the QoS and measuring the
peak throughput, respectively. Figure 18 and Figure 19 show the
99%-ile latency of the benchmarks, and the peak throughputs with
Abacus, FCFS, SJF, and EDF in triplet-wise and quadruplet-wise
service deployment scenarios, respectively.

For triplet-wise deployment, Abacus reduces the 99%-ile latency
by 21.3%, 35.3%, 20.8%, reduces the QoS violation by 87.7%, 93.4%,
85.3%, and improves the peak throughput by 51.0%, 72.3%, 57.0%,
respectively compared with FCFS, SJF, and EDF. For quadruplet-
wise deployment, Abacus reduces the 99%-ile latency by 16.1%,
34.3%, 21.1%, and eliminates 87.7%, 93.4%, 85.3% of the QoS violation
respectively, and improves the peak supported throughput by 38.4%,
53.9%, 63.4% respectively compared with FCFS, SJF, and EDF.

We can observe that the peak throughput supported by Abacus
does not reduce when the number of co-located models increase,
as the scheduling overhead is well controlled. To conclude, Abacus
ensures the QoS and improves the peak throughput beyond pair-
wise co-location.

7.5 Integrating with MIGs
The SOTA GPU (e.g.,A100) supports MIG that divides a GPU into
several isolated GPU instances [25]. The GPU instances have sepa-
rate and isolated paths through the entire memory system and other
resources. In this experiment, we compare the cases that directly
isolate the models with MIG or co-locate them with Abacus. Three
GPU instance specifications in Table 3 and four models (Res101,
Res152, VGG19, Bert) are used to run the experiment.

7k
8k
9k

10k
11k

T
pu

t
(r

/s
)

85
90
95

100

99
%

-il
e

L
at

(m
s)

0 20 40 60 80 100 120
Timeline (minutes)

20

30

40

50

A
vg

 L
at

(m
s)

Offered load Abacus Clock

Figure 22: The throughput, 99%-ile latency, and average la-
tency of the benchmarks with Abacus and Clockwork.

In this experiment, we compare three cases: fully isolated, pair-
wise isolated, and no isolation. As for the full isolate case, we create
four instances withMIG 1g.5gb and deploy each model onto a single
instance. As for the pair-wise isolate case, we create two instances
with MIG 2g.10gb and perform the pair-wise deployment. As for
the no isolate case, we create one instance with MIG 4g.20gb and
deploy the four models on this large instance.

Figure 20 and Figure 21 show the 99%-ile latency and the peak
throughput in the three cases with Abacus, FCFS, SJF, and EDF. As
observed from Figure 20, the 99%-ile latency of the fully-isolated
case with MIG 1g.5gb is much longer than the QoS target. This
is because DNN models that need more computation resources
are not allowed to occupy some resources of other models. The
queries of these models suffer from QoS violation. Instead, Abacus
flexibly schedules the queries of simultaneously deployed models
and eliminate such QoS violation.

We can also find that quadruplet-wise deployment in no isola-
tion case shows similar performance with pair-wise deployment in
pair-wise isolation case. If the pair-wise deployment like (VGG16,
VGG19) is avoided under peak load, Abacus only needs pair-wise
deployment to benefit from overlap-aware scheduling for reducing
QoS violation and improving the peak throughput.

Pair-wise deployment is enough in most cases. The profiling of
Abacus for training the latency predictor can be limited to pair-wise
deployment with the help of MIG.

7.6 Applying in a DNN Serving Cluster
In this subsection, we integrate Abacus into Kubernetes for evalu-
ating Abacus at the cluster level. Kubernetes itself is not aware of
the interference between co-located services and results in severe
QoS violation without Abacus. Therefore, we compare the method
of using Kubernetes to perform the cluster-level scheduling and us-
ing Abacus to perform the node-level scheduling with STOA DNN
scheduler Clockwork [17]. Clockwork performs EDF scheduling
for accepted queries at the cluster level, and processes the queries
in the manner of FCFS on every single GPU.

We perform the experiment on a cluster with 4 nodes (each node
is equipped with four Nvidia V100 GPUs, 16 GPUs in total). Same
to Clockwork [17], we replay two hours of the Microsoft Azure
Functions (MAF) workload trace [43] with a QoS target of 100ms.
We conduct the quadruplets-wise deployment of the four DNN

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

5 10 15
Searching ways

0.00

0.05

0.10

L
at

en
cy

 (m
s)

Figure 23: Duration of determining an appropriate operator
group with different search ways.

models in Section 7.5 on each GPU for Abacus. Clockwork also
deploys 4 instances on each GPU, but only one instance can be
activated for processing DNN queries. Clockwork and Abacus use
the same amount of GPU global memory.

Figure 22 shows the throughput, 99%-ile latency, and average la-
tency of the benchmarks with Abacus and Clockwork. What should
be highlighted is that Abacus supports 17.8% higher throughput
than Clockwork on average, as Abacus drops much fewer queries
than Clockwork. The throughput improvement mainly comes from
the deterministic operator overlap. Both Abacus and Clockwork
guarantee that the 99%-ile latency of the queries is shorter than the
QoS target. Clockwork does not schedule some queries until it will
miss the QoS deadline, leading to the 99%-ile latency being close
to the QoS target. The average latency of Abacus is slightly longer
than Clockwork, as Abacus trades the QoS headrooms of short
queries for throughput improvement with deterministic overlap.

Moreover, because GPUs exhibit highly linear energy efficiency
with respect to utilization, as stated by Kube-knots [48], Abacus
also improves the energy efficiency for the large-scale GPU-based
DNN serving systems.

7.7 Effectiveness of Multi-way Search
Multi-way search reduces the scheduling complexity. If we search in
𝑚-ways and the total number of DNN operators is𝑁 , the scheduling
complexity is 𝑂 (𝑙𝑜𝑔𝑚𝑁). While we can search in parallel for the
operator group to reduce the scheduling overhead, the predictor
latency is an important factor.

In this experiment, we affiliate the scheduler of Abacus to a
single core and evaluate the response latency of the predictor with
different numbers of search ways. Figure 23 shows the time of
identifying an operator group with Abacus, when different numbers
of search ways are used. As observed, the latency grows from
0.066𝑚𝑠 to 0.088𝑚𝑠 , as the search ways grow to 2. The latency does
not further increase with the number of search ways.

According to our measurement, with the help of a 4-way search,
most of the scheduling decisions are completed with less than three
predictions, and the overall prediction latency is 0.26𝑚𝑠 . It is shorter
than the processing time of most DNN operators, like convolution.
Through pipelined scheduling, Abacus is able to hide the search
time behind the execution of the current running operator group.

7.8 Overhead
In this subsection, we discuss the overhead introduced by Abacus
during offline profiling and online scheduling.

Offline Profiling. Before online serving, Abacus needs offline
profiling. For a pair of co-location, we sample 2,000 operator groups
and run each group 100 times, done in 2 hours. We have proved
that pair-wise deployment is enough in Section 7.5, and Abacus
only needs to profile pair-wise co-location. Co-location like (VGG16,
VGG19) can be avoided by analyzing the profiling data. If the latency
of the co-located DNN models always equals that of sequential exe-
cution, Abacus does not deploy them together. In general, given 𝑁

DNNs, Abacus practically divides them into several service groups
of size 𝑘 to resolve the scalability problem of profiling. Then only
the models in the same service group are deployed together on the
same GPU. The profiling complexity is reduced to 𝑂 (𝑁).

Online scheduling. Abacus consumes more CPU resources
than FCFS and SJF. The model of predictor occupies some main
memory, which is approximately 14kB. The predictor needs a single
core for fast prediction, as shown in Figure 23. Abacus does not
consume extra GPU resources compared with other scheduling
policies. The global memory used for storing intermediate results
in the segmental model executor is small (20MB) compared with
the global memory used for the whole DNN services.

7.9 Discussion and Future Work
Abacus relies on Kubernetes to perform cluster-level scheduling.
An interesting future work is enhancing Abacus, so that it can auto-
matically scale the resource usage in a DNN serving cluster. Scaling
of a serving cluster includes the scaling in/out (adjust the number
of the server nodes) and scaling down/up (adjust the resource of
the server nodes). Based on the experiment results, Abacus can be
extended to determine whether to scale out or up. At the cluster
level, Abacus may also identify the DNN models that are suitable
to be co-located for maximizing cluster utilization.

8 CONCLUSION
We propose Abacus that improves the system throughput while
ensuring the QoS requirement of multiple DNN services deployed
simultaneously on a single GPU. To achieve the above purpose,
Abacus identifies the importance of predictability, and enables the
precise overlap-aware latency prediction and deterministic sched-
uling of overlapped DNN operators for simultaneous deployment.
Experimental results demonstrate the effectiveness of Abacus in
handling QoS of multiple services and improving the system-wide
throughput. Abacus reduces 51.3% of the QoS violation and im-
proves the peak throughput by 29.8% on average compared with
state-of-the-art solutions.

ACKNOWLEDGMENTS
This work is partially sponsored by the National Natural Science
Foundation of China (NSFC) (62022057, 61832006, 61632017, 61872240,
62072297) and the Program of Shanghai Academic/Technology Re-
search Leader under Grant 18XD1401800.

REFERENCES
[1] 2021. cgroups. https://www.kernel.org/doc/Documentation/cgroup-v2.txt.
[2] 2021. memcached. https://memcached.org.
[3] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. 2020. A multi-neural network

acceleration architecture. In ISCA. IEEE, 940–953.

https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://memcached.org

Enable Simultaneous DNN Services SC ’21, November 14–19, 2021, St. Louis, MO, USA

[4] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast Pipelined
Context Switching for Deep Learning Applications. In OSDI. 499–514.

[5] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology 2, 3 (2011),
1–27.

[6] Quan Chen, Zhenning Wang, Jingwen Leng, Chao Li, Wenli Zheng, and Minyi
Guo. 2019. Avalon: towards qos awareness and improved utilization through
multi-resource management in datacenters. In Proceedings of the ACM Interna-
tional Conference on Supercomputing. 272–283.

[7] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise qos prediction on non-preemptive accelera-
tors to improve utilization in warehouse-scale computers. In ASPLOS. 17–32.

[8] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: Qos
awareness and increased utilization for non-preemptive accelerators in ware-
house scale computers. ASPLOS 51, 4 (2016), 681–696.

[9] Shuang Chen, Christina Delimitrou, and José FMartínez. 2019. Parties: Qos-aware
resource partitioning for multiple interactive services. In ASPLOS. 107–120.

[10] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE journal of solid-state circuits 52, 1 (2016), 127–138.

[11] Yujeong Choi and Minsoo Rhu. 2020. Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units. In HPCA. IEEE, 220–233.

[12] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E Gon-
zalez, Ion Stoica, and Alexey Tumanov. 2018. Inferline: Ml inference pipeline
composition framework. arXiv preprint arXiv:1812.01776 (2018).

[13] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system. In
NSDI. 613–627.

[14] Weihao Cui, Quan Chen, Han Zhao, Mengze Wei, Xiaoxin Tang, and Minyi
Guo. 2020. E 2 bird: Enhanced Elastic Batch for Improving Responsiveness
and Throughput of Deep Learning Services. IEEE Transactions on Parallel and
Distributed Systems 32, 6 (2020), 1307–1321.

[15] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen Leng, Li Li, and
Mingyi Guo. 2019. Ebird: Elastic batch for improving responsiveness and through-
put of deep learning services. In 2019 IEEE 37th International Conference on Com-
puter Design (ICCD). IEEE, 497–505.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In OSDI. 443–462.

[18] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse dnn
models without hardware-support via tile-wise sparsity. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1–15.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[21] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications. In IISWC. IEEE, 1–10.

[22] Kubernetes. 2021. Kubernetes. https://kubernetes.io.
[23] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-

iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
Holistic Deep Learning Compiler Optimizations with rTasks. In OSDI. 881–897.

[24] NVIDIA. 2021. CUDA C/C++ Streams and Concurrency. https://developer.
download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf.

[25] Nvidia. 2021. Multi-Instance GPU. https://docs.nvidia.com/cuda/mig/index.html.
[26] NVIDIA. 2021. Multi-Process Service. https://docs.nvidia.com/deploy/pdf/

CUDA_Multi_Process_Service_Overview.pdf.
[27] NVIDIA. 2021. NVIDIA A100 Tensor Core GPU Architecture.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-
ampere-architecture-whitepaper.pdf.

[28] NVIDIA. 2021. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-
Compute.

[29] NVIDIA. 2021. NVIDIA Triton Inference Server. https://github.com/NVIDIA/
triton-inference-server.

[30] NVIDIA. 2021. Profiler User’s Guide. https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

[31] NVIDIA. 2021. TensorRT. https://developer.nvidia.com/tensorrt.
[32] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-

wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

[33] Pu Pang, Quan Chen, Deze Zeng, and Minyi Guo. 2020. Adaptive preference-
aware co-location for improving resource utilization of power constrained dat-
acenters. IEEE Transactions on Parallel and Distributed Systems 32, 2 (2020),
441–456.

[34] Pu Pang, Quan Chen, Deze Zeng, Chao Li, Jingwen Leng, Wenli Zheng, and Minyi
Guo. 2020. Sturgeon: Preference-aware Co-location for Improving Utilization of
Power Constrained Computers. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 718–727.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[36] Tirthak Patel and Devesh Tiwari. 2020. Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers. In HPCA. IEEE,
193–206.

[37] Heyang Qin, Syed Zawad, Yanqi Zhou, Lei Yang, Dongfang Zhao, and Feng
Yan. 2019. Swift machine learning model serving scheduling: a region based
reinforcement learning approach. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–23.

[38] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee,
Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micike-
vicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan,
Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank
Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. 2019. MLPerf Inference Benchmark.
arXiv:1911.02549 [cs.LG]

[39] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[40] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2019.
INFaaS: A Model-less Inference Serving System. arXiv preprint arXiv:1905.13348
(2019).

[41] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-sim: Systolic cnn accelerator simulator. arXiv preprint
arXiv:1811.02883 (2018).

[42] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329. John
Wiley & Sons.

[43] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205–218.

[44] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In SOSP. 322–337.

[45] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-
based object detectors with online hard example mining. In CVPR. 761–769.

[46] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[47] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In CVPR.
2818–2826.

[48] Prashanth Thinakaran, Jashwant Raj Gunasekaran, Bikash Sharma, Mahmut Tay-
lan Kandemir, and Chita R Das. 2019. Kube-knots: Resource harvesting through
dynamic container orchestration in gpu-based datacenters. In 2019 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 1–13.

[49] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,
and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In CIKM. 417–426.

[50] Mengze Wei, Wenyi Zhao, Quan Chen, Hao Dai, Jingwen Leng, Chao Li, Wenli
Zheng, and Minyi Guo. 2020. Predicting and reining in application-level slow-
down on spatial multitasking GPUs. J. Parallel and Distrib. Comput. 141 (2020),
99–114.

[51] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. Mark: Exploiting
cloud services for cost-effective, slo-aware machine learning inference serving.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 1049–1062.

[52] Wei Zhang, Quan Chen, Ninxing Zheng, Weihao Cui, Kaihua Fu, and Minyi Guo.
2021. Towards QoS-awareness and Improved Utilization of Spatial Multitasking
GPUs. IEEE Trans. Comput. (2021).

[53] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen, Daniel Edward Mawhirter,
Bo Wu, Chao Li, and Minyi Guo. 2019. Laius: Towards latency awareness and
improved utilization of spatial multitasking accelerators in datacenters. In ICS.
58–68.

https://kubernetes.io
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://docs.nvidia.com/cuda/mig/index.html
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/nsight-Compute
https://developer.nvidia.com/nsight-Compute
https://github.com/NVIDIA/triton-inference-server
https://github.com/NVIDIA/triton-inference-server
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://developer.nvidia.com/tensorrt
https://arxiv.org/abs/1911.02549

SC ’21, November 14–19, 2021, St. Louis, MO, USA Weihao Cui et al.

[54] Wei Zhang, Ningxin Zheng, Quan Chen, Yong Yang, Zhuo Song, Tao Ma, Jingwen
Leng, and Minyi Guo. 2020. Ursa: Precise capacity planning and fair scheduling
based on low-level statistics for public clouds. In 49th International Conference on
Parallel Processing-ICPP. 1–11.

[55] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G Edward Suh, and Christina
Delimitrou. 2021. Sinan: ML-based and QoS-aware resource management for
cloud microservices. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 167–
181.

[56] Han Zhao, Quan Chen, Yuxian Qiu, Ming Wu, Yao Shen, Jingwen Leng, Chao Li,
and Minyi Guo. 2018. Bandwidth and Locality Aware Task-stealing for Many-
core Architectures with Bandwidth-Asymmetric Memory. ACM Transactions on
Architecture and Code Optimization (TACO) 15, 4 (2018), 1–26.

[57] Han Zhao, Weihao Cui, Quan Chen, Jingwen Leng, Kai Yu, Deze Zeng, Chao Li,
and Minyi Guo. 2020. CODA: Improving Resource Utilization by Slimming and
Co-locating DNN and CPU Jobs. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 853–863.

[58] Wenyi Zhao, Quan Chen, and Minyi Guo. 2018. KSM: Online Application-Level
Performance Slowdown Prediction for Spatial Multitasking GPGPU. IEEE Com-
puter Architecture Letters 17, 2 (2018), 187–191.

[59] Wenyi Zhao, Quan Chen, Hao Lin, Jianfeng Zhang, Jingwen Leng, Chao Li, Wenli
Zheng, Li Li, and Minyi Guo. 2019. Themis: Predicting and reining in application-
level slowdown on spatial multitasking GPUs. In IPDPS. IEEE, 653–663.

[60] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. HSM: A Hybrid Slowdown
Model for Multitasking GPUs. In ASPLOS. 1371–1385.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Our experiments have two major parts: the evaluation of Latency
and Throughput.

For all evaluations, we use seven DNN models, including
ResNet50, ResNet 101, ResNet 152, Inception V3, VGG16, VGG
19, Bert. For measuring latency, we test the seven DNN models
with modest serving load and record the 99%-ile latency and QoS
violation ratio. For measuring throughput, we test the seven DNN
models with the load that exceeds the hardware limit and record
the peak supported throughput. In all experiments, we run those
models according to the experiment setup on a Ubuntu Server
that equips Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz and an
NVIDIA Ampere 100 GPU.

Author-Created or Modified Artifacts:

Persistent ID:

https://github.com/Raphael-Hao/Abacus/tree/master↩→

Artifact name: Abacus

Persistent ID:

https://zenodo.org/badge/latestdoi/295328892↩→

Artifact name: Abacus

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Intel(R) Xeon(R) Silver 4210R CPU @
2.40GHz, A100-PCIE-40GB

Operating systems and versions: Ubuntu 20.04 running Linux
kernel 5.8.0

Compilers and versions: gcc 9.3, nvcc V11.2.152

Applications and versions: ResNet50, ResNet 101, ResNet 152,
Inception V3, VGG16, VGG 19, Bert

Libraries and versions: GPU Driver Version: 460.39; CUDA Ver-
sion: 11.2, CUDNN Version: 8.1, pytorch 1.8.1

Key algorithms: FCFS, SJF, EDF

URL to output from scripts that gathers execution environment
information.
https://github.com/Raphael-Hao/Abacus/blob/master/en ⌋

vironment.txt↩→

	Abstract
	1 Introduction
	2 Related work
	3 Background and Motivation
	3.1 Philosophy of Abacus
	3.2 Long Tail Latency
	3.3 Unstable Latencies of Queries

	4 Design of Abacus
	5 Overlap-aware Latency Prediction
	5.1 Incapable of Prior Kernel-level Prediction
	5.2 Latency Determinism of Operator Group
	5.3 Determining Representative Features
	5.4 Improving Sampling Efficiency
	5.5 Determining Modeling Techniques

	6 Headroom-based Scheduling
	6.1 Flexible Segmental Model Executor
	6.2 Headroom-based QoS Guaranteeing
	6.3 Identifying the Optimal Operator Group

	7 Evaluation
	7.1 Experiment Setup
	7.2 Ensuring QoS
	7.3 Improving Peak Throughput
	7.4 Beyond Pair-wise Co-location
	7.5 Integrating with MIGs
	7.6 Applying in a DNN Serving Cluster
	7.7 Effectiveness of Multi-way Search
	7.8 Overhead
	7.9 Discussion and Future Work

	8 Conclusion
	Acknowledgments
	References

