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ABSTRACT
Deep neural networks (DNNs) are vulnerable to adversarial attacks.
A great effort has been directed to developing effective defenses
against adversarial attacks and finding vulnerabilities of proposed
defenses. A recently proposed defense called Trapdoor-enabled De-
tection (TeD) [51] deliberately injects trapdoors into DNN models
to trap and detect adversarial examples targeting categories pro-
tected by TeD. TeD can effectively detect existing state-of-the-art
adversarial attacks. In this paper, we propose a novel black-box
adversarial attack on TeD, called Feature-Indistinguishable Attack
(FIA). It circumvents TeD by crafting adversarial examples indistin-
guishable in the feature (i.e., neuron-activation) space from benign
examples in the target category. To achieve this goal, FIA jointly
minimizes the distance to the expectation of feature representa-
tions of benign samples in the target category and maximizes the
distances to positive adversarial examples generated to query TeD
in the preparation phase. A constraint is used to ensure that the
feature vector of a generated adversarial example is within the
distribution of feature vectors of benign examples in the target
category. Our extensive empirical evaluation with different config-
urations and variants of TeD indicates that our proposed FIA can
effectively circumvent TeD. FIA opens a door for developing much
more powerful adversarial attacks. The FIA code is available at:
https://github.com/CGCL-codes/FeatureIndistinguishableAttack.
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1 INTRODUCTION
Deep neural networks (DNNs) have been proved to be effective at
many difficult machine-learning tasks. However, they are found
to be vulnerable to adversarial attacks [56], wherein an example
correctly predicted by a deep learning model is intentionally modi-
fied slightly, usually undetectable by humans, to cause the model
to make an incorrect prediction. These slightly modified examples
are called adversarial examples. They are carefully crafted counter-
factual examples with the aim to deceive the model. Adversarial
examples can be classified into targeted or untargeted adversarial
examples. A targeted adversarial example causes the model to mis-
classify it into a specific (i.e., target) category different from the
original one, while an untargeted adversarial example causes the
model to misclassify it into any category different from the original
one. Targeted adversarial examples are generally harder to craft
than untargeted adversarial examples.

Adversarial attacks are proved effective in deceiving deep learn-
ing models of different deep neural networks for different tasks [3,
10, 12, 14, 16, 17, 62] including real-world application scenarios
[33, 34, 52]. Adversarial attacks have raised a serious concern on
the security and reliability of deploying a deep learning model in
real-world applications, esp. security-critical applications such as
traffic-sign identification, face recognition, malware detection, etc.

Existence of adversarial examples has inspired significant re-
search activities on both defenses against increasingly more power-
ful adversarial attacks and adversarial attacks to circumvent more
and more sophisticated defenses. Many adversarial attacks have
been developed since the first adversarial attack FGSM [20] was
introduced, such as state-of-the-art attacks PGD [33, 34], C&W [10],
and Elastic Net [11] that rely on computing gradients of the model
in crafting adversarial examples, and BPDA [1] and SPSA [58] that
bypass computing gradients of the model in crafting adversarial

https://doi.org/10.1145/3460120.3485378
https://doi.org/10.1145/3460120.3485378
https://doi.org/10.1145/3460120.3485378


examples. These adversarial attacks can be used to generate either
targeted or untargeted adversarial examples. At the same time, var-
ious defense methods have also been proposed. They aim to disrupt
computation of gradients, improve model’s robustness against ad-
versarial examples, or detect adversarial examples at inference time.
Most of them are proved later to be vulnerable to more powerful
adversarial attacks.

A new defense, called Trapdoor-enabled Detection (TeD) [51], was
proposed recently to detect targeted adversarial examples at infer-
ence time. TeD deliberately injects one or more defensive trapdoors
into a DNN model to protect one or more categories through back-
door attack techniques [23]. When crafting adversarial examples
targeting a protected category of a trapdoored model, the optimiza-
tion process of an adversarial attack gravitates towards trapdoors,
leading to generated adversarial examples similar to trapdoors in
the feature (i.e., neuron-activation) space. By comparing neuron
activation signatures of inputs with those of trapdoors at a latent
layer, referred to as the detection layer, adversarial examples can
be detected. TeD can effectively detect state-of-the-art adversarial
attacks such as PGD, C&W, Elastic Net, BPDA, and SPSA, with
negligible impact on the normal classification accuracy [51].

Two attacks [6, 51] have been proposed to evade TeD, one is a
white-box attack on TeD by assuming that adversaries know the
trapdoor signatures used in detection, while the other is a grey-box
attack by assuming that adversaries know some characteristics of
the trapdoored defense, such as the number of trapdoors and the
layer to detect. These methods craft adversarial examples by maxi-
mizing the distance to the known or estimated trapdoor signatures
while minimizing the cross-entropy to the target category. They
can evade TeD’s baseline detection but their success rates are signif-
icantly reduced when TeD reinforces its detection with randomly
sampled neurons and multiple trapdoors [51].

In this paper, we propose a novel targeted adversarial attack,
called Feature-Indistinguishable Attack (FIA), to circumvent TeD.
FIA is a black-box attack on TeD (and white-box on the model):
adversaries have no knowledge of TeD or its characteristics. It relies
only on the distribution of benign samples in the target category,
referred to as benign target samples. FIA exploits the facts that most
benign target samples should be undetected (i.e., negative) in a
practical deployment of TeD and that a useful model is desirably
well behaved (i.e., non-overfitting). Inspired by recently proposed
adversarial attacks [29–31] that aim to strengthen adversarial trans-
ferability by optimizing at a latent layer in the feature space instead
of the commonly used cross entropy, we minimize the distance
to the expectation of feature representations of benign target ex-
amples at a latent layer, referred to as the generation layer, and
ensure that generated adversarial examples are within a specific
thresholding distance to the expectation in the feature space. We
call this scheme the basic FIA scheme.

Adversarial examples generated with the basic scheme may still
be distinguishable from benign target samples at the detection
layer in the feature space due to mismatch between the generation
layer and the detection layer, irregular undetectable boundaries
of the trapdoored defense, etc. To improve indistinguishability of
generated adversarial examples, FIA contains a preparation phase
in which the basic scheme is used to generate a small number of
adversarial examples to query the trapdoored defense to determine

an appropriate generation layer and other generation parameters.
FIA also uses the detected (i.e. positive) adversarial examples in
this phase to generate adversarial examples by maximizing the
distances to these positive adversarial examples while minimizing
the distance to the expectation of benign target samples, both in
the feature space.

We conduct an extensive empirical evaluation of our proposed
attack on different configurations and variants of the trapdoored
defense, including an improved variant called Projection-based TeD
(P-TeD) that we propose in this paper, and compare it with exist-
ing state-of-the-art adversarial attacks. Our experimental study
indicates that, while TeD and P-TeD can effectively detect existing
state-of-the-art adversarial attacks, our proposed FIA can effectively
circumvent the trapdoored defense of both TeD and P-TeD.

This paper includes the following major contributions:
• We propose a novel adversarial attack on DNN models that
aims to generate adversarial examples indistinguishable in
the feature space from benign examples of the target cate-
gory. To the best of our knowledge, this is the first adversarial
attack to evade detection by pursuing indistinguishability
from benign samples.
• We propose a variant of TeD with an improved detection
performance.
• We present an extensive empirical evaluation of our pro-
posed adversarial attack on different configurations and vari-
ants of the trapdoored defense.
• Our proposed adversarial attack can effectively circumvent
TeD and its variants that existing stat-of-the-art adversarial
attacks cannot evade.

The remaining paper is organized as follows. We present the
background and related work in Section 2, describe briefly TeD
and its improved variant in Section 3, provide an overview of our
proposed FIA in Section 4, and describe the detail of FIA in Section 5.
Our empirical evaluation is presented in Section 6, and discussion
is provided in Section 7. We conclude this paper with Section 8.

The FIA code is available at: https://github.com/CGCL-codes/Fe
atureIndistinguishableAttack.

2 BACKGROUND AND RELATEDWORK
2.1 Adversarial Attacks against DNNs
A deep neural network (DNN) can be viewed as a function F𝜃 that
maps the input space X to the set of classification labels Y, where
𝜃 represents the parameters of the network. An adversarial attack
aims to craft a small perturbation 𝜖 for a normal input 𝑥 such that
the target model F𝜃 will misclassify adversarial example 𝑥 + 𝜖:
F𝜃 (𝑥 + 𝜖) ≠ F𝜃 (𝑥).

An adversarial attack can be either targeted attack or untargeted
attack. The former attack aims to craft an adversarial example
misclassified into a specific (i.e., target) category 𝐶𝑡 : F𝜃 (𝑥 + 𝜖) =
𝐶𝑡 , while the latter attack aims to craft an adversarial example
misclassified into any category different from the original category.
A targeted adversarial attack is generally harder to achieve than
an untargeted adversarial attack. Adversarial attacks can also be
classified into white-box, grey-box, and black-box attacks, according
to adversary’s level of accessibility to and knowledge of the model
to be attacked: full, partial, and none, respectively.
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Many white-box adversarial attacks have been proposed. Typical
adversarial attacks are briefly described here. Fast Gradient Sign
Method (FGSM) [20] is the first adversarial attack. To generate an
untargeted adversarial example 𝑥+𝜖 for input 𝑥 , it crafts adversarial
perturbation 𝜖 with a single step of value𝜂 along the direction of the
gradient of the model’s loss function to maximize the loss function
to the original category 𝐶𝑜 of 𝑥 :

𝜖 = 𝜂 · 𝑠𝑖𝑔𝑛(∇𝑥 ℓ (F𝜃 (𝑥),𝐶𝑜 )),

where ℓ (F𝜃 (𝑥),𝐶𝑜 ) is the loss function to category 𝐶𝑜 . It can also
be used to generate a targeted adversarial example by minimizing
the loss function to the target category 𝐶𝑡 :

𝜖 = −𝜂 · 𝑠𝑖𝑔𝑛(∇𝑥 ℓ (F𝜃 (𝑥),𝐶𝑡 )) .

Like FGSM, other adversarial attack methods can also be used to
generate both targeted and untargeted adversarial examples with
similar relationships. Since the trapdoored defense aims to detect
targeted adversarial examples, we describe adversarial attacks to
craft targeted adversarial examples in the following description.

Projected Gradient Descent (PGD) [33, 34] extends FGSM to mul-
tiple iterations with double clipping. In each iteration,

𝑥𝑛+1 = 𝐶𝑙𝑖𝑝𝛿 (𝑥𝑛 − 𝜂 · 𝑠𝑖𝑔𝑛(∇𝑥 ℓ (F𝜃 (𝑥𝑛),𝐶𝑡 )))

where 𝑥0 = 𝑥 , and 𝐶𝑙𝑖𝑝𝛿 operates on each pixel to clip its value
within ±𝛿 of its original value in 𝑥 and within the valid range. PGD
is a much more powerful adversarial attack than FGSM.

Calini and Wangner Attack (C&W ) [10] is considered one of the
most powerful adversarial attacks. It aims to generate adversarial
examples with minimized perturbations:

min
𝜖
∥𝜖 ∥𝑝 + 𝑐 · ℓ (F𝜃 (𝑥 + 𝜖),𝐶𝑡 ),

where 𝑐 is a parameter to weight the two objectives. Its optimal
value can be found with a binary search. Elastic Net [11] is a vari-
ant of C&W that minimizes both 𝐿1 and 𝐿2 norms of adversarial
perturbation 𝜖 together with minimizing the loss function to the
target category.

Jacobian-based Saliency Map Attack (JSMA) [46] uses a Jacobian-
based saliency map to model the impact of each pixel on the re-
sulting classification and applies a greedy algorithm to iteratively
modify the most influential pixel in crafting adversarial examples.

To deal with gradient obfuscation defenses (see Section 2.2),
Backward Pass Differentiable Approximation (BPDA) [1] computes
gradients using differentiable approximation, expectation, or repa-
rameterization to overcome different types of obfuscated gradi-
ents, while Simultaneous Perturbation Stochastic Approximation
(SPSA) [58] avoids computation of gradients by using stochastic
sampling to find the global minimum in solving the optimization
problem of deriving adversarial perturbations.

While most adversarial attacks are white-box attacks, black-box
adversarial attacks have also been proposed [4, 44, 45, 55]. A practi-
cal attack proposed in [45] trains a substitute model with a synthetic
dataset and uses the substitute model to craft adversarial examples.
Since both models have similar decision boundaries, adversarial
examples crafted with the substitute model are likely transferable
to the black-box target model. Adversarial perturbations can also be
crafted using differential evolution [55] or greedy local search [44].

When facing the trapdoor-enabled detection [51], commonly
used and state-of-the-art adversarial attacks like FGSM, PGD, C&W,
Elastic Net, BPDA, and SPSA are all ineffective [51].

2.2 Defenses against Adversarial Attacks
Along with the development of different adversarial attacks, many
defense methods have also been developed. Early attempts to secure
neural networks against adversarial attacks include removing adver-
sarial perturbations with denoising autoencoders [22], increasing
local stability [49] or robustness of DNNs via robustness metrics [2]
or adversarial training [28, 41, 57, 64, 65], and defensive distilla-
tion [47] that uses the distillation technique [27] to retrain the
same network with category probabilities predicted by the original
network. These defenses fail or are significantly weakened when
facing stronger adversarial attacks or high-confidence adversarial
examples [7–9, 26].

Since most adversarial attacks, such as FGSM [20], PGD [33, 34],
C&W [10], and Elastic Net [11], rely on computing gradients in craft-
ing adversarial examples, many defenses [5, 15, 24, 40, 48, 53, 61]
apply gradient masking (i.e., reducing useful gradients) to dis-
rupt computation of gradients to thwart adversarial attacks. These
gradient-masking defenses are proved vulnerable to black-box at-
tacks [45, 57], gradient-approximation attacks like BPDA [1], and
adversarial attacks without using gradients like SPSA [58].

Defenses focusing on detecting adversarial examples at inference
time are also proposed. Many utilize statistical tests to differentiate
adversarial examples from benign examples [19, 21, 38, 63]. These
defenses fail to detect more powerful adversarial attacks such as
C&W [10]. Magnet [42] uses one or more detection networks and
a reformer network. The detection networks learn to distinguish
between normal and adversarial examples, while the reformer net-
work is used to remove any remaining minor adversarial nature in
examples classified as benign by the detectors. However, Magnet is
found vulnerable to an attack that adversaries train their own copy
of the defense and generate transferable adversarial examples [9].
Latent Intrinsic Dimensionality (LID) [40] exploits the difference of
a model’s internal dimensionality characteristics between normal
and adversarial examples to detect adversarial examples. LID is
found [1] to be vulnerable to high confidence adversarial examples
of C&W. Neural-network Invariant Checking (NIC) [39] extends LID
by using one-class Support Vector Machines (SVM) to model the
benign distribution of latent activation within and across layers to
detect adversarial examples without using any prior knowledge of
adversarial attacks.

A recently proposed detection method, Trapdoor-enabled Detec-
tion (TeD) [51], deliberately injects one or more trapdoors into DNN
models through embedding defensive backdoors to trap and detect
adversarial examples. When an adversarial attack searches for mini-
mum perturbations to a target category protected by TeD in crafting
adversarial examples, it is likely trapped into a shortcut created by
the backdoored model, resulting in crafted adversarial examples
likely detected with signatures of backdoor samples extracted from
their latent representations. More details are provided in Section 3.
TeD can detect, with high accuracy, adversarial examples gener-
ated by state-of-the-art attacks such as PGD, C&W, Elastic Net, and
BPDA, with negligible impact on normal classification [51].



While the above defenses are all best-effort approaches, an emerg-
ing approach called randomized smoothing is proposed [13, 36, 37]
to transform the original classifier into a smoothed classifier, which
is used to return the category with the highest probability by query-
ing isotropic Gaussian 𝑁 (𝑥, 𝜎2𝐼 ) around an input 𝑥 . Randomized
smoothing provides certifiable robustness against adversarial exam-
ples within an 𝐿2 ball around any input 𝑥 , a desirable property that
best-effort approaches lack. However, current randomized smooth-
ing methods may not be practical for many applications due to
their reduced accuracy [43] and significant inference overhead [13].
Best-effort defenses are still needed before randomized smoothing
becomes more practical.

2.3 Related Work
2.3.1 Activation Attack and Its Variants. Our FIA is related to Ac-
tivation Attack (AA) [31], a transfer-based black-box targeted ad-
versarial attack. It uses a white-box model to generate adversarial
examples to attack a black-box model. To strengthen transferability
of adversarial examples, AA crafts adversarial examples by mini-
mizing the Euclidean distance to a target example at some latent
layer in the feature space. The target example is the one with the
largest Euclidean distance to the feature vector of the source exam-
ple of the current adversarial example among a small set of benign
examples randomly sampled from the target category.

The same team has developed several variants [29, 30] with
the same goal: strengthening transferability of adversarial exam-
ples. Feature Distribution Attack (FDA) [29] captures layer-wise
and category-wise feature distributions of the white-box model
with binary neural networks and generates adversarial examples
by maximizing the target category probability at a latent layer, op-
tionally minimizing the source category probability or maximizing
the distance of the perturbed features from the original features at
the same layer simultaneously. FDA is extended in [30] to multiple
layers by optimizing these layers simultaneously and also by adding
the cross-entropy loss function to optimize.

Our FIA differs from AA and its variants by pursuing a different
goal. We aim to generate adversarial examples indistinguishable
from benign examples of the target category while AA and its vari-
ants aim to strengthen transferability of adversarial examples from
the white-box model to the black-box model. The differences in the
goal to pursue result in the following major differences between our
FIA and AA and its variants. First, the target to drive adversarial
examples to is different. The target in AA is the example with the
furthest distance to the source example in the feature space among a
small set of benign examples randomly sampled from the target cat-
egory, while the target in FIA is the expectation of feature vectors of
benign examples in the target category to maximize the chance that
a generated adversarial example is indistinguishable from benign
examples in the target category. Second, our generated adversarial
examples are guaranteed, according to our indistinguishability met-
ric, to be within the distribution of and thus indistinguishable from
benign examples in the target category (otherwise the adversarial
example generation fails), while adversarial examples generated
by AA and its variants may not be indistinguishable from benign
examples of the target category since the focus is on strengthening
adversarial transferability. Third, FIA has an additional term to

optimize that AA and its variants lack: maximizing the distances to
positive examples in the feature space.

2.3.2 Existing Attacks on Trapdoor-enabled Detection. Carlini [6]
introduces two advanced attacks, Oracle Signature Attack (OSA) and
Trapdoor Vault Attack (TVA), that can partially break the strength-
ened trapdoor-enabled detection. Oracle Signature Attack [6, 51] is
a white-box attack for both the model and the trapdoored defense:
adversaries have the knowledge of precise values of the trapdoor
signature(s). It optimizes for both maximum cosine distance to the
known trapdoor signature and minimal cross-entropy to the target
category. It can evade the trapdoor-enabled detection with a success
rate nearly 90% on MNIST when randomized neuron sampling is
not used, but the attack success rate reduces to below 40% after 5%
of randomly sampled neurons and multiple trapdoors are used [51].

Trapdoor Vault Attack [6, 51] is a weaker attack than Oracle
Signature Attack. In this attack, adversaries know the basic setting
of the trapdoor-enabled detection, such as the number of trapdoors
used in the trapdoored defense, but have no knowledge of any
trapdoor signature. The attack estimates the trapdoor signature(s)
from adversarial examples generated with a conventional method
such as PGD. For the case that 𝑁 trapdoors are used in the trap-
doored defense, it uses a clustering approach to approximate neuron
signatures for each of the 𝑁 trapdoors. The attack then uses the
estimated trapdoor signature(s) with the same approach as Oracle
Signature Attack to generate adversarial examples. Its success rate
is lower than that of Oracle Signature Attack. When 5% of randomly
sampled neurons and multiple trapdoors are used, its success rate
is around 20% on MNIST [51].

Our FIA differs from both of Carlini’s attacks in several ways.
First, FIA is a black-box attack on the trapdoored defense (but white-
box on the model): adversaries have no knowledge of the charac-
teristics of the the trapdoored defense (e.g., how many trapdoors
or which layer’s signatures are used). FIA does not need in general
to know or estimate trapdoor signatures used in the trapdoored
defense. Second, the optimization goal is different. FIA minimizes
the distance to the expectation of benign examples in the target
category at some latent layer and ensures that the feature vector of
a generated adversary example at that latent layer is indistinguish-
able from those of benign samples in the target category, while
Carlini’s attacks minimize the conventional adversarial loss (i.e.,
the cross entropy to the target category). Third, Carlini’s attacks
maximize the distance to the known or estimated trapdoor signa-
tures (and thus adversaries need to know the detection layer and
the number of trapdoor signatures used in the trapdoored defense),
while FIA maximizes distances to positive adversarial examples it
queries the trapdoored defense at the preparation phase. According
to our ablation study presented in Section 6.7, maximizing distances
to positive adversarial examples plays a minor role in FIA. In many
cases, adversarial examples generated with the basic FIA scheme are
all negative (i.e. undetected) for TeD in the preparation phase, and
thus FIA actually uses the basic scheme (which does not have the
maximizing term) to generate adversarial examples (see Section 5.2
for details).

2.4 Notation
The notation used in this paper is summarized in Table 1.



Table 1: Notation.

Notation Definition
F𝜃 DNN model with parameters 𝜃 .
X, Y Input space and output space of model F𝜃 .
F𝐿 (𝑥) Feature representation of 𝑥 ∈ X at layer 𝐿 of F𝜃 .
𝐶𝑡 Target category 𝑡
D𝑡 Feature representation distribution of category 𝑡
𝜖 Adversarial perturbation
𝛿 Pixel-wise bound on adversarial perturbations

D(·) Distance function
E(·) Expectation function

cos(𝑥,𝑦) Cosine similarity between 𝑥 and 𝑦.

3 TRAPDOOR-ENABLED DETECTION
3.1 Backdoor Attacks
Trapdoor-enabled Detection (TeD) [51] exploits DNN’s vulnerabil-
ity to backdoor attacks to train defensive backdoored DNN models
to detect adversarial examples. Backdoor attacks [23] are another
well-known vulnerability of DNNs. While adversarial attacks are
passive attacks that don’t change the target model, backdoor attacks
are active attacks that require modification of the target model to
inject one or multiple backdoors into the target model. In a back-
door attack, the adversary selects a target category and a special
pattern, called backdoor trigger, and injects the backdoor into a
DNN model through poisoning training data. A backdoored model
behaves normally and has similar accuracy as a clean model when
the backdoor trigger is not applied. When the backdoor trigger
is applied on an arbitrary normal example of any category, the
backdoored model will misclassify it into the target category.

3.2 Trapdoor-enabled Detection (TeD)
TeD deliberately injects "trapdoors" into a DNN model through
embedding one or multiple defensive backdoors to trap and detect
adversarial examples. Since targeted adversarial attacks essentially
search for a minimum perturbation to the target category with an
optimization algorithm in crafting adversarial examples, generated
adversarial examples will be most likely trapped into a shortcut
created by the backdoor and thus can be detected with signatures
of backdoor samples extracted from their latent representations.

TeD selects a latent layer, called detection layer in this paper, to
detect adversarial examples. A detection layer should be a layer late
in the forward pipeline of a DNN model, usually the penultimate
layer (i.e., the last layer before the output softmax layer). After
training trapdoored model F𝜃 with a trapdoor trigger Δ for target
category 𝐶𝑡 , TeD calculates trapdoor signature 𝑆Δ as follows:

𝑆Δ = E𝑥∉𝐶𝑡
F𝐿 (𝑥 + Δ), (1)

where E(·) is the expectation function, F𝐿 (𝑥) is the feature repre-
sentation of input 𝑥 ∈ X at detection layer 𝐿 of model F𝜃 . To build
this signature in practice, the model owner computes and records
neuron activation vectors of many inputs containing trigger Δ.

To determine if input 𝑥 ∈ X is an adversarial example or not, TeD
calculates the cosine similarity between the feature representation
of 𝑥 at detection layer 𝐿, F𝐿 (𝑥), and trapdoor signature 𝑆Δ. If the

similarity exceeds a preset threshold 𝜙𝑡 , input 𝑥 is determined as
adversarial (i.e., positive). Otherwise it is determined as normal (i.e.,
negative). Threshold 𝜙𝑡 is chosen as the 𝑘-th percentile value of the
statistical distribution of cosine similarity between benign samples
and 𝑆Δ, with 1 − 𝑘

100 as the desired false positive rate.
To thwart the two attacks proposed by Carlini [6] to circumvent

TeD, TeD can be enhanced by injectingmultiple trapdoors to protect
a single category 𝐶𝑡 . Each trapdoor is associated with a trapdoor
signature at the detection layer. In this case, TeD calculates the
cosine similarity of input 𝑥 with each of the trapdoor signatures. If
any one exceeds the preset threshold, it determines that the input is
adversarial. In addition, TeD can detect adversarial examples using
the activation of a subset of neurons, for example, 5% or 10% of
randomly sampled neurons at detection layer 𝐿.

On a subset of randomly sampled neurons, it is possible that the
distribution of benign samples in target category𝐶𝑡 and trapdoored
samples are not well separated, resulting in a high false positive
rate if the subset is used in detection. The authors of TeD haven’t
provided details on selecting or using subsets of neurons in their pa-
per [51] or their released code [50]. In our experimental evaluation
(Section 6), we use the following way to select a subset of neurons
at the detection layer: given a number of neurons such as 5% to
select, we randomly sample neurons to form a subset of neurons.
Then we use the expectation of trapdoored samples on the subset,
say 𝑆1Δ, as the detection signature, calculate the cosine similarity
distributions of both trapdoored samples and benign samples in
target category 𝐶𝑡 with 𝑆1Δ, and determine 𝑘Δ-th percentile value
𝑣𝑘Δ of the trapdoored sample distribution and 𝑘𝐶𝑡

-th percentile
value 𝑣𝑘𝐶𝑡

of the benign sample distribution. In our evaluation,
we set 𝑘Δ = 25 and 𝑘𝐶𝑡

= 75. If 𝑣𝑘Δ − 𝑣𝑘𝐶𝑡
is larger than a preset

threshold, the subset can be used; otherwise it is not used. We select
𝑁 useful subsets in this way. The selected subsets are used in the
same way as in the case of multiple trapdoors: if any of the subsets
signals positive, the input sample is determined to be adversarial,
otherwise it is determined to be benign.

3.3 Projection-based TeD (P-TeD)
In our experimental evaluation of TeD, using the proposed signature
𝑆Δ may not lead to a good separation between trapdoored samples
and benign samples in the category protected by the trapdoor.
This is because they may have similar values on some neurons. To
increase the detection sensitivity, we have tried several ways to
increase the separation of trapdoored samples and benign target
samples: ordering neurons according to the separation and selecting
a subset of neurons with top separation values, projecting 𝑆Δ to the
expectation of benign samples in 𝐶𝑡 , etc. We have found that the
projection method produces the best detection results. We call this
TeD variant as Projection-based Trapdoor-enabled Detection (P-TeD).
The detail for using a single trapdoor will be described. The cases
using multiple trapdoors and sampling neurons can be done in a
similar manner.

When a single trapdoor is used to protect a target category 𝐶𝑡 ,
we calculate trapdoor signature 𝑆Δ with Eq. 1 and the expectation
of feature representations of benign samples in 𝐶𝑡 as the benign
signature:

𝑆𝐶𝑡
= E𝑥 ∈𝐶𝑡

F𝐿 (𝑥) . (2)



Then we remove the projection of 𝑆Δ on 𝑆𝐶𝑡
from 𝑆Δ to get its

component perpendicular to 𝑆𝐶𝑡
:

𝑆⊥Δ = 𝑆Δ −
𝑆Δ · 𝑆𝐶𝑡

∥𝑆𝐶𝑡
∥22

𝑆𝐶𝑡
, (3)

where 𝐴 · 𝐵 means the inner product of 𝐴 and 𝐵. 𝑆⊥Δ is used as the
signature to detect adversarial examples in the same way as 𝑆Δ is
used in TeD.

4 FIA OVERVIEW
4.1 Threat Model
We assume that the trapdoored DNN model is white-box while
the trapdoored defense is black-box. More specifically, we assume
that adversaries have full access to the trapdoored model, including
its architecture and internal parameter values, and are aware of
protection by the trapdoored defense but have no knowledge of its
characteristics (i.e., the number of trapdoors, trapdoor signatures,
detection layer, etc.). The trapdoored defense behaves like an ora-
cle to adversaries: when an example is received, it responds with
the detection result, either positive or negative, that the detector
has determined. No information on the distance to any trapdoor
signature is provided.

In addition, we assume that adversaries have no access to any
training data or backdoor triggers used to train a trapdoored model
and cannot apply any reverse-engineering technique such as Neural
Cleanse [59] to estimate the number of trapdoors, backdoor triggers,
or trapdoor signatures used in the defense, either due to unknown
characteristics of the trapdoored defense or other reasons. This
restriction of no access to any reverse-engineering technique en-
sures that the white-box access to the trapdoored model can only be
used to search for adversarial examples like conventional white-box
adversarial attacks. It cannot be used to derive the characteristics
of the trapdoored defense.

On the other hand, we assume that adversaries have access to a
small set of benign data independent of the training data used in
training a trapdoored model.

4.2 Intuition behind FIA
TeD relies on the following two key factors to work: one is that
searching for targeted adversarial examples is likely trapped into
shortcuts created by trapdoors of a trapdoored model, and the other
is that trapdoor signatures should be significantly different from
those of benign examples of the target category. The former en-
sures that adversarial examples are likely detected by the trapdoor
signatures, while the latter ensures a low false positive rate, which
is critical to deploying any defense in real-world applications. In
addition, along its forward path, a DNN such as CNN extracts fea-
tures from low-level to high-level, and distinguishability of different
categories in the feature space gradually improves. For good de-
tectability, the detection layer 𝐿 of TeD should be close to the end
of the forward pipeline, usually the penultimate layer.

To circumvent the trapdoored detection, we aim to make adver-
sarial examples indistinguishable from benign target examples in
the feature space. Once an adversarial example is indistinguishable
from benign target examples at an appropriate latent layer, it is un-
likely detectable by the trapdoored defense unless the trapdoored

defense is impractical with a high false positive rate for benign
target samples. To achieve this goal, we need to craft adversarial ex-
amples with a loss function that can drive adversarial examples into
the distribution of benign target samples in the feature space. The
conventional loss function used in crafting adversarial examples is
the cross entropy, which has no control on the feature vector of a
generated adversarial example at a given latent layer. Fortunately,
Inkawhich et al. [29–31] proposed recently to use a loss function in
the feature space to craft more transferable adversarial examples
so that adversarial examples generated on a white-box model can
be transferred to attack a black-box model. We can adopt their
approach to circumvent the trapdoored detection.

Another obstacle we need to overcome is to find a metric to
measure distinguishability of an example from a set of examples in
the feature space. If we assume that the trapdoored model and the
trapdoored detection are both stable, we expect that an example
with its feature vector located within a small dense region of benign
target examples at an appropriate latent layer is likely classified
and detected like its nearby benign target examples. This stability is
generally required for a practical DNN model with good behaviors.
With this assumption, we can simply find a target inside the dense
region, minimize the distance to the target in the feature space, and
check if such a distance is within an appropriate threshold at the
end of crafting. This fulfills the basic scheme of our proposed FIA.

Adversarial examples generated with the basic scheme may still
be detectable due to mismatch between the generation layer and
the the detection layer, irregular undetectable boundaries of the
trapdoored detection, over-simplified modeling of indistinguishabil-
ity, etc. FIA contains a preparation phase wherein the basic scheme
is used to generate a small number of adversarial examples to query
the trapdoored detection for determining an appropriate genera-
tion layer and other generation parameters. It also adds a loss term
to the basic scheme to maximize distances to detected adversarial
examples in the preparation phase to avoid regions where trapdoor
signatures may be located.

5 FEATURE-INDISTINGUISHABLE ATTACK
Our proposed Feature-Indistinguishable Attack (FIA) is described
in detail in this section. In addition to the basic scheme and the
complete scheme, we also present a variant of FIA.

5.1 Basic Scheme
5.1.1 Optimization Problem. For input 𝑥 ∈ X that is not in target
category 𝐶𝑡 , 𝑥 ∉ 𝐶𝑡 , and a latent representation distribution D𝑡

of target category 𝐶𝑡 at a selected latent layer 𝐿, called generation
layer, the basic scheme of our proposed FIA minimizes the distance
of the latent representation F𝐿 (𝑥 + 𝜖) of 𝑥 + 𝜖 at layer 𝐿 to a target
representation F 𝑡𝑔𝑡

𝐿
∈ D𝑡 on the condition that F𝐿 (𝑥 +𝜖) is within

the latent representation distribution D𝑡 of target category 𝐶𝑡 :

min
𝜖

D(F𝐿 (𝑥 + 𝜖), F
𝑡𝑔𝑡

𝐿
),

s.t. F𝐿 (𝑥 + 𝜖) ∈ D𝑡

(4)

where D is a distance function. The constraint in Eq. 4 ensures that
a generated adversarial example is indistinguishable from benign
examples in target category 𝐶𝑡 .



FIA uses two distance loss functions in Eq. 4 to minimize both
distances simultaneously. One is an 𝐿2 distance like that in Acti-
vation Attack [31]. Its goal is to drive adversarial examples into
target category𝐶𝑡 . The other is the cosine similarity with the target
representation. Its goal is to ensure that an adversarial example
has a feature vector along a direction similar to that of the target
representation so that TeD, which relies on cosine similarity with
trapdoor signatures in the feature space, unlikely detects it. The
optimization problem becomes:

min
𝜖
{− cos(F𝐿 (𝑥 + 𝜖), F

𝑡𝑔𝑡

𝐿
) + 𝜆 · ∥F𝐿 (𝑥 + 𝜖) − F

𝑡𝑔𝑡

𝐿
∥2},

s.t. F𝐿 (𝑥 + 𝜖) ∈ D𝑡

(5)

where 𝜆 ≥ 0 is a weighting parameter. Note that there is a negative
sign before the cosine similarity since we want to maximize the
cosine similarity with the target representation.

5.1.2 Basic Scheme. To ensure the constraint in Eq. 5, we need
to estimate the feature-representation distribution D𝑡 of target
category𝐶𝑡 . Although it is possible to use neural networks to model
the feature-representation distribution of target category 𝐶𝑡 like
in [29], FIA adopts a less accurate but much simpler approach: we
assume that feature representations of benign examples in target
category 𝐶𝑡 can form a convex region1. With this assumption, we
can choose the expectation of feature representations of benign
examples in 𝐶𝑡 , F𝐶𝑡

𝐿
, as the target representation F 𝑡𝑔𝑡

𝐿
:

F 𝑡𝑔𝑡

𝐿
= F𝐶𝑡

𝐿
≡ E𝑥 ∈𝐶𝑡

F𝐿 (𝑥), (6)

where E(·) is the expectation function, and use the cosine similarity
distribution of benign examples in𝐶𝑡 withF𝐶𝑡

𝐿
as an approximation

of distribution D𝑡 .
Since expectation is sensitive to outliers, we determine and re-

move outliers with DBSCAN [18] before calculating the expectation
in Eq. 6: a certain percentage (10% in our evaluation) of benign tar-
get samples located in the lowest-density regions in the feature
space are considered as outliers and removed. We then calculate
a threshold 𝑐𝑝 to be the smallest cosine similarity between the ex-
pectation and survived benign target samples. We require that the
cosine similarity of an adversarial example with the expectation
F𝐶𝑡

𝐿
is within 𝑐𝑝 .

With the above assumption and simplification, Eq. 5 becomes:

min
𝜖
{− cos(F𝐿 (𝑥 + 𝜖), F𝐶𝑡

𝐿
) + 𝜆 · ∥F𝐿 (𝑥 + 𝜖) − F𝐶𝑡

𝐿
∥2},

s.t. cos(F𝐿 (𝑥 + 𝜖), F𝐶𝑡

𝐿
) ≥ 𝑐𝑝

(7)

5.1.3 Adaptive Iteration. Since the constraint in Eq. 7 is on the first
loss term in Eq. 7, we can apply the following adaptive iteration
to solve Eq. 7: We start to drive only the first loss term by setting
𝜆 = 0 until the constraint is met. We then activate 𝜆 by setting
it to a non-zero value (1 in our evaluation) to minimize both loss
terms simultaneously to drive 𝑥 + 𝜖 to target category 𝐶𝑡 while
maintaining satisfying the constraint. When 𝑥 + 𝜖 is classified into
𝐶𝑡 and its softmax probability is larger than the next maximum
softmax probability by a specific threshold, we return to drive only
the first loss term again by setting 𝜆 = 0 as long as the softmax
probability gap is maintained, otherwise we activate 𝜆 to drive both
1This assumption is generally over-simplified for a DNN model, esp. when a middle
latent layer is used as the generation layer. See Section 6.5 for more information.

loss terms. The softmax gap is used to ensure that a generated
adversarial example is robustly classified into target category 𝐶𝑡 .

If we place an 𝐿∞ bound 𝛿 on adversarial perturbation 𝜖 , Eq. 7
can be solved with a PGD-like iterative process with the above
adaptive method:

𝑥0 = 𝑥,

𝑥𝑛+1 = 𝐶𝑙𝑖𝑝𝛿 (𝑥𝑛 − 𝜂 · 𝑠𝑖𝑔𝑛(∇𝑥 ℓ (F𝐿 (𝑥𝑛), F𝐶𝑡

𝐿
)))

(8)

where ℓ (F𝐿 (𝑥𝑛), F𝐶𝑡

𝐿
)) is the loss function of the basic scheme:

ℓ (F𝐿 (𝑥), F𝐶𝑡

𝐿
)) = − cos(F𝐿 (𝑥), F𝐶𝑡

𝐿
) + 𝜆 · ∥F𝐿 (𝑥) − F𝐶𝑡

𝐿
∥2 (9)

The iterative process can stop early if 𝑥𝑛 is classified into target
category, 𝑥𝑛 ∈ 𝐶𝑡 , and cos(F𝐿 (𝑥𝑛), F𝐶𝑡

𝐿
) ≥ 𝑐𝑝 . Otherwise a pre-

set number of steps is executed before it stops. In our empirical
evaluation, stopping early is used for the basic scheme used in the
preparation phase (see Section 5.2.1), and a fixed number of steps is
executed for the complete scheme to generate adversarial examples.

By the end of the iterative process, the generation of an adversar-
ial example is said successful if the resulting example is classified
into target category 𝐶𝑡 by the model and the constraint in Eq. 7 is
satisfied. Otherwise the generation is a failure.

5.2 Complete Scheme
Adversarial examples generated with the basic scheme may still
fail to circumvent the trapdoored detection due to several reasons:
mismatch between the generation layer and the unknown detec-
tion layer of TeD, irregular undetectable boundaries of the trap-
doored defense, over-simplified convex-region assumption for the
feature-representation distribution of the target category and the
subsequent simplification from Eq. 5 to Eq. 7.

The second reason can be explained as follows. Suppose the gen-
eration layer and the detection layer are the same latent layer. Since
TeD uses cosine similarity with trapdoor signatures to detect ad-
versarial examples, examples with the same cosine similarity value
with the expectation vector may have different detectability: those
close to the trapdoor signatures have a higher chance to be detected
than those far away from the trapdoor signatures. Unfortunately,
the basic scheme treats these examples identically.

To address these issues, we enhance the basic scheme with two
additions. One addition is a preparation phase to use the basic
scheme to generate some adversarial examples to query the trap-
doored defense to determine an appropriate generation layer and
other generation parameters. The other addition is an additional
term in the loss function to direct adversarial examples away from
bad regions where detected adversarial examples in the prepara-
tion phase stay. These positive adversarial examples are a rough
estimate of trapdoor signatures2.

5.2.1 Preparation Phase. In this phase, we use the basic scheme
to generate a small number of adversarial examples to query the
trapdoored detector. The query result is used to determine first an
appropriate generation layer and then generation parameters.

2Conventional adversarial attacks such as PGD should produce a more accurate es-
timate of trapdoor signatures than detected adversarial examples in the preparation
phase (see Section 6.5 for more information). Since this driving-away loss term plays a
minor role in generating adversarial examples (see Section 6.7), this rough estimate
should be sufficient.



To determine an appropriate generation layer, we generate a
small number of adversarial examples with the basic scheme for
each of potential generation layers, starting with the penultimate
layer and moving backward, to query the trapdoored defense. If
the detection rate is below a threshold (i.e., when we consider an
appropriate generation layer is found), we stop and choose the
layer with the smallest detection rate as the generation layer. Since
the penultimate layer is generally used as the detection layer in
the trapdoored defense and the basic scheme works reasonably
well (see Section 6.7), an appropriate generation layer can be found
quickly without searching many layers.

Once the generation layer is determined, we use the query result
of the layer to adjust target F𝐶𝑡

𝐿
and constraint threshold 𝑐𝑝 in

Eq. 7 to be used in the generation phase. If the generated adversar-
ial examples are all negative, the basic scheme with the original
F𝐶𝑡

𝐿
and 𝑐𝑝 will be used to generate adversarial examples. If the

detection rate is high enough (above a preset threshold), which
occurs typically when TeD has a high false positive rate for benign
target samples (see Section A.3), we query the TeD detector with
benign target samples until we have collected enough negative sam-
ples (10 in our experimental evaluation). In this case, the benign
target samples that are negative and untested are used to calculate a
weighted average, with more weight (double in our evaluation) for
the negative benign examples. The detected benign target examples
(i.e. false positive samples) are excluded from the calculation. This
weighted average replaces F𝐶𝑡

𝐿
used in the basic scheme.

When some generated adversarial examples are detected, target
F𝐶𝑡

𝐿
is adjusted to move away from them as follows:

Ξ ≡ F𝐶𝑡

𝐿
− E𝑥 ∈𝑆𝑝𝑎𝑒F𝐿 (𝑥),

F𝐶𝑡

𝐿
← F𝐶𝑡

𝐿
+ 𝛾𝑑𝑟

Ξ

∥Ξ∥2
,

(10)

where 𝑆𝑝𝑎𝑒 is the set of positive adversarial examples, 𝑑𝑟 is the
detection rate of the generated adversarial examples, and 𝛾 is a
positive weighting parameter (0.1 in our evaluation). F𝐶𝑡

𝐿
on the

right side of Eq. 10 is the weighted average calculated above or the
original target used in the basic scheme if the weighted average is
not calculated. E𝑥 ∈𝑆𝑝𝑎𝑒F𝐿 (𝑥) in Eq. 10 is the average of detected
adversarial examples. Negative adversarial examples are not used
in Eq. 10 since their average may be on the same side as the average
of positive adversarial examples. This modified target will be used
in the generation phase. We can see from Eq. 10 that there is no
change to F𝐶𝑡

𝐿
if the detection rate is 0 (𝑑𝑟 = 0).

Once the new target F𝐶𝑡

𝐿
is determined with Eq. 10, we can

determine a new constraint boundary 𝑐𝑝 on the cosine similarity to
include negative examples and exclude positive examples as many
as possible. More specifically, we calculate the cosine similarity
distributions of both positive examples and negative examples (in-
cluding benign target samples) queried in this phasewith new target
F𝐶𝑡

𝐿
. We preset a range of percentiles, [𝑘𝑛𝑙 , 𝑘𝑛ℎ]-th ([10, 50]-th in

our evaluation) percentiles to specify a permissible range of per-
centages of negative samples outside the boundary, and a threshold
𝑘𝑝 -th (90th in our evaluation) percentile to specify the minimum
percentage of positive samples outside the boundary. We find the
corresponding values 𝑣𝑘𝑛𝑙 and 𝑣𝑘𝑛ℎ of 𝑘𝑛𝑙 -th and 𝑘𝑛ℎ-th percentiles

from the distribution of negative examples and 𝑣𝑘𝑝 corresponding
to 𝑘𝑝 -th percentile from the distribution of the positive examples.
The new constraint boundary 𝑐𝑝 is determined as follows,

𝑐𝑝 = min(𝑣𝑘𝑛ℎ ,max(𝑣𝑘𝑛𝑙 , 𝑣𝑘𝑝 )) . (11)

Eq. 11 determines a boundary 𝑐𝑝 inside the permissible range
[𝑣𝑘𝑛𝑙 , 𝑣𝑘𝑛ℎ ], aiming to exclude at least 𝑘𝑝 -th percentile of positive
examples. This new 𝑐𝑝 will be used to generate adversarial examples
in the generation phase.

5.2.2 Generation Phase. In generating adversarial examples, we
add the following drive-away loss, ℓ𝑎𝑤𝑎𝑦 , to the loss function of
the basic scheme (Eq. 9) to minimize the cosine similarity with the
positive adversarial examples in the preparation phase:

ℓ𝑎𝑤𝑎𝑦 (F𝐿 (𝑥)) =
∑

𝑎∈𝑆𝑝𝑎𝑒
cos(F𝐿 (𝑥), F𝐿 (𝑎)) (12)

Adding this drive-away loss to Eq. 9, the loss function becomes:

ℓ (F𝐿 (𝑥), F𝐶𝑡

𝐿
)) = − cos(F𝐿 (𝑥 + 𝜖), F𝐶𝑡

𝐿
) + 𝜆1 · ∥F𝐿 (𝑥) − F𝐶𝑡

𝐿
∥2

+ 𝜆2 ·
∑

𝑎∈𝑆𝑝𝑎𝑒
cos(F𝐿 (𝑥), F𝐿 (𝑎)),

(13)
where 𝜆1 and 𝜆2 are two non-negative weighting parameters. Target
F𝐶𝑡

𝐿
in Eq. 13 is the one calculated with Eq. 10. The same constraint

as in Eq. 7, except that 𝑐𝑝 now is calculated with Eq. 11, is used
with Eq. 13 in generating adversarial examples.

The iteration to crafting an adversarial example is similar to that
in the basic scheme. At the beginning, we drive only the first term
in Eq. 13 by setting 𝜆1 = 𝜆2 = 0 until the constraint is satisfied.
Then we activate 𝜆1 (set to 1 in our experimental evaluation) and 𝜆2
to drive 𝑥 into target category𝐶𝑡 and away from positive examples
in the feature space. When 𝑥 falls into target category 𝐶𝑡 , 𝜆1 is
deactivated (set to 0). When 𝜆2 is activated, its value is adapted
by multiplying a factor (1.2 in our evaluation) if the first term in
Eq. 13 decreases when compared with the last iteration or dividing
by another factor (1.3 in our evaluation) if the first increases.

5.3 FIA for Enhanced TeD
Both the basic and complete schemes can be modified slightly to
deal with the enhanced version of TeD with randomly sampled
neurons and multiple trapdoors. When multiple trapdoors are used,
we hope to activate all effective trapdoor signatures3 in querying the
trapdoored defense in the preparation phase. The query described
in Section 5.2.1 may not fulfill this goal since feature vectors of
generated adversarial examples may be close to each other and thus
can activate only a portion of effective trapdoor signatures.

To address this problem, we aim to activate all effective trapdoor
signatures during the preparation phase. This can be achieved by
applying FIA to query the trapdoored defense multiple rounds until
the detection rate is below a threshold or does not decrease, each
round with a small number of adversarial examples. More specifi-
cally, the first round is executed as before: we use the basic scheme
to generate a small number of adversarial examples to query the
trapdoored defense. If the detection rate is above the threshold, we
3Some trapdoor signatures may be redundant due to being too close to other trapdoor
signatures when multiple trapdoors are used.



apply the complete scheme to generate another round of adver-
sarial examples to query the trapdoored defense. Since they are
generated by maximizing distances to positive adversarial examples
in previous queries (i.e., they try to stay away from trapdoor signa-
tures activated in previous queries), newly generated adversarial
examples should activate remaining inactivated trapdoor signa-
tures. This process is repeated until all effective trapdoor signatures
have been activated. In each round, the drive-away loss ℓ𝑎𝑤𝑎𝑦 in
Eq. 12 includes all positive adversarial examples found in previous
queries. When all trapdoor signatures have been activated, most
generated adversarial examples should be undetectable.

To deal with randomly sampled neurons, the indistinguishability
constraint also checks cosine similarities in subsets of randomly
sampled neurons to ensure indistinguishability in these subsets too.
Since we have no idea which subsets of neurons are used in the
trapdoored detection, we just randomly select a group of subsets
of neurons at the generation layer and ensure that our generated
adversarial examples are indistinguishable in these selected subsets.
They are likely indistinguishable in the subsets used in the detection
too. For each selected subset, its threshold 𝑐𝑝 is determined in the
same way as the case using a single trapdoor signature with all
neurons.

In addition to the above passive subset checking to ensure in-
distinguishability on each of randomly selected subsets of neurons
at the generation layer, we can also actively drive adversarial ex-
amples to reach indistinguishability on each of these subsets. This
can be achieved by adding two loss terms for selected subsets. One
loss term is the sum of cosine similarity of the adversarial example
with the expectation of benign examples in 𝐶𝑡 on each selected
subset, which we want to maximize. The other loss term is the sum
of cosine similarity of the adversarial example with those examples
in 𝑆𝑝𝑎𝑒 (i.e., detected adversarial examples during the preparation
phase) on each selected subset, which we want to minimize.

6 EXPERIMENTAL EVALUATION
We empirically evaluate the performance of our proposed Feature-
Indistinguishable Attack (FIA) against different configurations and
variants of the trapdoored defense, including defending single cate-
gory and all categories, multiple trapdoors and random sampling of
neurons, and Projection-based Trapdoor-enabled Detection (P-TeD)
described in Section 3.3, etc. Several popular datasets are used in
our empirical evaluation. We report the empirical study and its
results in this section.

6.1 Experimental Setup
6.1.1 Datasets and DNN models. The same datasets and deep neu-
ral networks used in [51] are used in our empirical evaluation. These
datasets and neural networks are described in Appendix A.1. We
perform handwritten digit recognition with MNIST [35] and image
classification with CIFAR10 [32] as they are the most popularly
adopted benchmarks. We carry out traffic sign recognition with GT-
SRB [54] and face recognition with YouTube Face [60] as they stand
for two of the most security-critical scenarios (autonomous-driving
and biometrics identification) where deep learning applies broadly.
The YouTube Face dataset consists of 440K facial images of 224×224
pixels, belonging to 1,283 different people taken from YouTube

videos. We use it to evaluate our attack on large-scale datasets. Four
convolutional networks including ResNet20 and ResNet50 [25] are
used to evaluate our attack on both small and large scale networks.

In our empirical evaluation, training data is used to train a trap-
doored model and determine trapdoored defense parameters (e.g.,
trapdoor signatures), while test data is used in attacking the trap-
doored defense. This ensures that defenses and attacks use disjoint
data and adversaries have no access to the data used for training a
trapdoored model and determining the TeD characteristics.

6.1.2 Trapdoor Settings in Trapdoor-enabled Detection. We evalu-
ate our attack on TeD and P-TeD with different configurations of
trapdoors, including single-category (single-label in [51]), where a
single trapdoor is injected into amodel to protect a specific category,
and all categories (all-label in [51]) with both single and multiple
trapdoors per category, where multiple trapdoors are injected into
a model to protect all categories, with one or multiple trapdoors
per category.

Trapdoors are injected with the same parameter settings as in
[51]. The detail is presented in Appendix A.2. Under these settings,
effective trapdoors can be inserted (each injected trapdoor has a
success rate > 97%) with similar accuracy performance as a clean
model (accuracy degradation < 2%).

6.1.3 Configurations of Adversarial Attacks. - We evaluate the per-
formance of our proposed attack against TeD and P-TeD with sim-
ilar experiments as the authors of TeD to evaluate the detection
performance of TeD in their paper [51], and compare our attack
with existing state-of-the-art adversarial attacks. More specifically,
in evaluating our attack against TeD and P-TeD when a single or
all categories are protected, we choose two state-of-the-art white-
box adversarial attacks, PGD [33, 34] and C&W [10], as baseline
attacks. When evaluating our attack against Ted and P-TeD when
randomized neuron signatures and multiple trapdoors per category
are used, we choose Oracle Signature Attack (OSA) [6] as the base-
line attack. OSA is the white-box version of the two attacks [6]
specifically designed to circumvent TeD. OSA has a better attacking
performance than its grey-box counterpart. The configurations of
our proposed attack and the baseline adversarial attacks are sum-
marized in Table 2. Unless stated otherwise, these configurations
were used in our experimental evaluation, and the experimental
results were obtained by setting the penultimate layer as the detec-
tion layer (and the generation layer was also determined to be the
penultimate layer) and by setting the false positive rate (FPR) to 5%
for benign samples in the target category.

As shown in Table 2, our proposed FIA generally requires a
higher bound than that of PGD on a trapdoored model. This is
because a conventional adversarial attack like PGD is likely trapped
into a shortcut created by the trapdoored defense, and thus requires
a bound much lower than the same adversarial attack on a clean
model without injecting any trapdoor. For example, it requires
𝛿 = 64 in general for PGD to achieve a good attack success rate on a
clean MNIST model, but the bound reduces to 8 for PGD to achieve
a similar attack success rate on a trapdoored MNIST model. FIA
avoids falling into traps in a trapdoored model and thus requires a
higher bound, such as 64 on a trapdoored MNIST model. We note
that FIA’s bound is similar to that of PGD on a clean version (i.e.,
without the trapdoored defense) of the same DNN model.



Table 2: The configurations of our FIA and the baseline at-
tacks. FIA’s four bound values (𝛿) are for the four datasets
listed in Table 11 of Appendix A.1, respectively.

Attack Method Attack Configuration
PGD 𝛿=8, 𝑛𝑖𝑡𝑒𝑟=100, 𝜂=0.1

C&W binary step size=9, 𝜂=0.05,
max iteration=1000, confidence=10.0

Our FIA 𝛿=64/16/8/16, 𝑛𝑖𝑡𝑒𝑟=5000, 𝜂=0.05
OSA 𝛿=64, 𝑛𝑖𝑡𝑒𝑟=5000, 𝜂=0.05

The perceptual quality of adversarial examples crafted with FIA
on TeD-protected models is compared with those crafted with PGD
on clean models (i.e., without TeD protection) in Appendix A.5.
FIA’s perceptual quality is the same as or a little better than PGD
when the same bound is used.

The above baseline adversarial attacks are chosen in our empiri-
cal evaluation for an additional purpose: to verify correctness of
our implementation of TeD (and P-TeD) by comparing our attack
results with those reported in [51] since the released TeD code [50]
is incomplete for conducting our experiments. Our experimental
results confirm the effectiveness of the trapdoored defense against
existing state-of-the-art 𝐿∞ and 𝐿2 adversarial attacks.

6.2 TeD - Single and All Categories
We first evaluate the attack performances of our FIA and baseline
attacks PGD and C&W against TeD when it is used to defend a spe-
cific category𝐶𝑡 with a trapdoor (single category) and all categories
with one trapdoor per category (all categories). The detection rates
of both single category and all categories are reported in Table 3.
Their ROC curves are presented in Appendix A.4. For all datasets
except YouTube Face, each value in Table 3 is the average over
all categories by attacking each category. For YouTube Face, each
value in Table 3 is the average over 50 randomly selected categories
by attacking each of the selected category.

We can see from the table that the detection rates of FIA are low
(≤ 2.0%) except the all categories on the YouTube Face dataset, for
which the detection rate is 6.1%. On the other hand, the detection
rates of PGD and C&W are generally high: most are above 90%,
some are in the range between 70% and 90%, and only two have
low detection rates: the detection rate of C&W against the single
category is 34.3% on GTSRB, and that of PGD against the all cate-
gories is 30.7% on the same dataset. Both values are much higher
than the highest detection rate, 6.1%, of FIA reported in the table.

Many detection rates of PGD and C&W reported in Table 3 are
significantly lower than those reported in [51]. Our investigation
indicates that the results in [51] are likely obtained with FPR cal-
culated with benign samples of categories other than the target
category. We present the experimental results with this setting in
Appendix A.3, which agree well with those reported in [51].

6.3 P-TeD - Single and All Categories
6.3.1 Detection Rate. The same experiment presented in Section 6.2
is also conducted on P-TeD. The detection rates of the single cat-
egory and the all categories are reported in Table 4. Their ROC
curves are presented in Appendix A.4. From the table, we can see

Table 3: Detection rates at 5% FPR of benign target samples
when TeD defends single category and all categories.

Single Category All Categories
FIA PGD C&W FIA PGD C&W

MNIST 2.0% 100% 99.7% 1.0% 92.8% 98.2%
CIFAR10 0.2% 98.7% 72.7% 0.0% 85.1% 95.2%
GTSRB 0.5% 85.8% 34.3% 0.3% 30.7% 71.8%
YtbFace 1.6% 78.5% 95.1% 6.1% 100% 99.8%

Table 4: Detection rates at 5% FPR of benign target samples
when P-TeD defends single category and all categories.

Single Category All Categories
FIA PGD C&W FIA PGD C&W

MNIST 5.2% 100% 100% 2.5% 100% 99.8%
CIFAR10 0.0% 98.8% 92.2% 0.0% 100% 95.6%
GTSRB 3.1% 97.5% 98.5% 0.4% 96.9% 99.4%
YtbFace 5.9% 94.9% 99.6% 14.3% 100% 99.8%

Table 5: Adversarial generation success rates when P-TeD de-
fends single category and all categories at 5% FPR of benign
target samples.

Single Category All Categories
FIA PGD C&W FIA PGD C&W

MNIST 96.2% 94.9% 100% 99.5% 100% 99.6%
CIFAR10 100% 100% 100% 100% 100% 100%
GTSRB 97.1% 100% 100% 100% 100% 100%
YtbFace 81.6% 91.8% 100% 79.3% 98.9% 100%

that the detection rates of P-TeD are very high (above 94%) for
both PGD and C&W attacks on all datasets. These results confirm
that the trapdoored defense has a high chance to detect adversarial
examples generated with existing state-of-the-art white-box adver-
sarial attacks. On the other hard, the detection rates for FIA are
still low, below 5.9% except the all categories on the YouTube Face
dataset, for which the detection rate is 14.3%. The experimental
results indicate that FIA can effectively circumvent P-TeD too.

6.3.2 Adversarial Generation Success Rate. An adversarial attack
may fail in generating an adversarial example at the end of its
iterative crafting process. The success rate to generate adversarial
examples is also an important metric to measure the performance
of an adversarial attack. Table 5 reports the adversarial generation
success rates of FIA, PGD, and C&W on P-TeD protecting single
category and all categories at 5% FPR of benign target samples.

From Table 5, we can see that the generation success rates of both
PGD and C&W are very high on all the tested datasets, above 91%
for PGD and above 99% for C&W. FIA’s generation success rates are
similar to PGD and C&W except on the YouTube Face dataset. On
the YouTube Face dataset, FIA has reasonable generation success
rates (above 79%), but these rates are significantly lower than their
counterparts of both PGD and C&W. This is because the bound of
16 (i.e., 𝛿 = 16) used by FIA on the YouTube Face dataset in our



evaluation is a little tight for the dataset. If we relax the bound to
32, FIA has a higher generation success rate and a lower detection
rate on the YouTube Face dataset, with both rates similar to their
counterparts on the other three tested datasets. This is also true
for TeD protecting single category and all categories reported in
Table 3 and Section 6.2.

6.4 P-TeD Detection with Randomly Sampled
Neurons and Multiple Trapdoors
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Figure 1: Attack success rates of FIA and OSA when P-TeD
protects all categories with 1 to 13 trapdoors per category
and with randomly sampled neurons at 100%, 10%, and 5%.

The strongest protection is provided with randomly sampled
neurons and multiple trapdoors per category [51]. We conduct the
same experiments as reported in [51] to evaluate FIA’s performance
against this strongest protection and compare it with the white-
box attack, Oracle Signature Attack (OSA), the stronger version of
the two attacks developed by Carlini [6] to attack the trapdoored
defense. In our experiment, the number of trapdoors per category
ranged from 1 to 13, and 100%, 10%, and 5% of randomly sampled
neurons were used in detection. We set the same FPR for each
subset and tried to maintain the total FPR (i.e., the detector’s FPR of
benign target samples) at 5%. The number of subsets and the FPR
for each subset were adjusted to try to make OSA’s performance
curves similar to those reported in [51]. The same setting was used
to evaluate FIA and OSA.

The attack success rates for P-TeD to protect all categories with
different configurations are reported in Fig. 1. The resulting total
FPR is around 7.0% for each configuration. The results were obtained
by using one batchwith a size of 16 to generate adversarial examples
in each round of queries in the preparation phase. The resulting
number of queries used in the preparation phase was small. For
example, we used a total of 25.9 and 26.5 queries on average for
100% and 5% randomly sampled neurons, respectively, when 13
trapdoors were injected per category.

From Fig. 1, we can see that both FIA and OSA have high attack
success rates when all neurons are used in the trapdoored detection:
above 91% for OSA and nearly 100% for FIA. When 10% and 5%

randomly sampled neurons are used, FIA maintains high attack
success rates (≥ 79.5%), while OSA’s attack success rates reduce to
37.85% when the number of trapdoors per category increases to 13
and 5% randomly sampled neurons are used. This result indicates
that FIA can effective circumvent the strongest protection provided
by the trapdoored defense.

With this strongest trapdoored protection, the generation suc-
cess rate of FIA is around 40%, much lower than that reported in
Table 5 when weaker trapdoored defense is used. A higher bound is
needed if a higher generation success rate or a higher attack success
rate is required.

6.5 Different Generation Layers
Different latent layers except early layers in the forward pipeline
can be used as the generation layer. This is because an adversarial
example needs a sequence of layers to transition from the source cat-
egory to the target category in the feature space.We have conducted
experiments to study FIA using different layers as the generation
layer. In these experiments, the detection layer was set the same
as the generation layer. The second column in Table 6 shows the
adversarial attack success rate (ASR) and the adversarial generation
success rate (GSR) for P-TeD to protect a single category at 5%
FPR of benign target samples on MNIST. Table 12 in Appendix A.1
describes the detail of the network used for MNIST.

From the second column of Table 6, we can see that the ASR is
high (above 93%) and does not vary much, while GSR drops sig-
nificantly from 96.2% to 7.3% when the generation layer moves
backwards. The significant drop of ASR can be explained that it
becomes increasingly harder to drive to the target when the gen-
eration layer moves backwards. A higher bound should be used
to achieve a high ASR for an early generation layer, resulting in
more noisy adversarial examples. For example, the third column
(FIA×2) in Table 6 shows ASR and GSR when the bound is doubled
to 𝛿 = 128 for MNIST. We can see that the GSR is significantly
improved, and GSR drops much slower when the generation layer
moves backward. At the same time, ASR has also been improved,
to nearly 100% for all the tested layers.

There is an alternative way to improve GSR when the generation
layer is not close to the penultimate layer: we can use the basic
scheme to drive at the penultimate layer simultaneously with the
original driving at the generation layer. The penultimate-layer driv-
ing guides an adversarial example into the target category and thus
improves GSR. This revised scheme is denoted as FIA+G in Table 6,
and the fourth column of Table 6 shows the experimental results
on MNIST when the original bound (i.e., 𝛿 = 64) was used. We can
see that GSR is significantly improved, but ASR drops from 93.6%
at the penultimate layer (i.e., dense in Table 6) to 75.3% at conv_2
layer. This behavior is caused by the fact that positive adversarial
examples found in the preparation phase deviate from trapdoor
signatures much more at a middle layer than at a late layer. The
penultimate guidance helps increases GSR, but more generated ad-
versarial examples also spread more in the feature space. Since the
constraint is checked at a middle layer (and thus not very accurate)
in crafting adversarial examples, this spreading may increase the
chance to be detected, resulting in an increased detection rate. This



Table 6: ASR and GSR of FIA using different generation
layers and settings (see Section 6.5) on MNIST with single-
category P-TeD at 5% FPR of benign target samples.

ASR / GSR (%)
LGeneration FIA FIA×2 FIA+G FIA+GP
dense 94.8 / 96.2 100 / 100 93.6 / 96.3 98.6 / 96.1

max_pool_2 93.3 / 64.1 100 / 99.4 82.8 / 96.7 93.2 / 96.5
conv_2 93.9 / 36.3 100 / 90.5 75.3 / 96.7 94.0 / 96.6

max_pool_1 97.3 / 15.1 99.8 / 83.9 85.6 / 94.0 88.5 / 93.9
conv_1 95.3 / 7.3 99.5 / 62.8 83.9 / 91.5 85.5 / 91.7

Table 7: ASR and GSR of FIA with single-category P-TeD at
5% FPR when the generation layer (𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) mismatches
the detection layer (𝐿𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛).

Dataset LDetection LGeneration ASR GSR
MNIST dense max_pool_1 95.0% 83.1%
CIFAR10 flatten_1 activation_18 93.8% 87.7%

GTSRB dense_1 conv_5 99.1% 94.8%
dense_1 max_pool_2 97.0% 91.0%

max_pool_3 max_pool_2 88.1% 82.8%

issue can be alleviated by increasing the bound or using a more
accurate estimate of trapdoor signatures.

Since PGD can be readily detected by the trapdoored defense,
adversarial examples generated with PGD should have a more
accurate estimate of trapdoor signatures than adversarial examples
with FIA. We can replace the positive adversarial examples used
in FIA+G with those generated by PGD (without querying the
trapdoored defense since the detection rate is very high for PGD).
This FIA variant is denoted as FIA+GP (FIA+Gwith PGD to generate
positive adversarial examples) in Table 6. The rightmost column
in Table 6 reports the experimental result for FIA+GP. We can
see that ASR improves significantly over FIA+G for the last two
layers tested but very small for the two early layers tested. This
is because adversarial examples generated with PGD deviate from
trapdoor signatures more and more when the generation layer
(i.e., the detection layer) moves backward, eventually there is no
difference between adversarial examples generated with PGD and
FIA in estimating trapdoor signatures.

We note that the trapdoored defense becomes less effective in
detecting adversarial examples when the detection layer is signifi-
cantly away from the penultimate layer.

6.6 Layer Mismatch
In previous experiments, the generation layer and the detection
layer are actually the same layer. We have conducted experiments
to study FIA’s performance when the generate layer mismatches
the detection layer. In these experiments, we deliberately let the
generation layer before the detection layer. Table 7 shows the ex-
perimental results on MNIST, CIFAR10, and GTSRB when P-TeD is
used to protect a single category at 5% FPR. We can see from the
table that FIA maintains a high ASR (above 88%) and a reasonably
high GSR (above 82%) when mismatch occurs.

Table 8: ASR and GSR of FIA on MNIST with P-TeD protect-
ing single category and all categories at 5% FPR when a sin-
gle batchwith different batch sizes is used in the preparation
phase. The resulting average number of queries conducted
in the preparation phase is reported in the bottom row.

Single Category All Categories
Batch Size 16 32 64 16 32 64

ASR 94.0% 94.8% 95.6% 98.3% 97.5% 97.7%
GSR 96.2% 96.2% 96.3% 99.5% 99.5% 99.5%

# Queries 15.7 30.9 61.7 16.0 31.9 63.6

Table 9: FIA’s ASR with and without the drive-away loss
when P-TeD protects single category and all categories at 5%
FPR.

With / Without Drive-away Loss (%)
Single Category All Categories

MNIST 94.8% / 92.4% 97.5% / 96.8%
GTSRB 96.9% / 82.3% 99.6% / 93.7%
CIFAR10 100% / 100% 100% / 100%

6.7 Ablation Study
We have also conducted an “ablation study” of the impact of hyper-
parameters and the drive-away loss on FIA’s performance. The
parameters that are determined by experimental data, such as target
F𝐶𝑡

𝐿
, constraint boundary 𝑐𝑝 , etc. are excluded from this study

since they cannot be manually set. Only the hyper-parameters that
might have a significant impact are reported in the paper. Hyper-
parameters not reported can deviate from the empirical values we
used in our experimental evaluation with a minor or negligible
impact on FIA’s performance.

Table 8 shows FIA’s performance on MNIST with P-TeD pro-
tecting single category and all categories at 5% FPR when a single
batch with different batch sizes is used in the preparation phase.
The resulting average number of queries in this phase is also re-
ported in the table. From the table, we can see that the batch size
has negligible impact on FIA’s performance. Similar results are also
observed with other datasets. This result indicate that a small batch
size can be used in the preparation to reduce the number of queries.

We have also studied the performance when the drive-away
loss term is removed. Table 9 reports FIA’s ASR with and without
the drive-away loss when P-TeD protects single category and all
categories at 5% FPR. We can see from the table that the drive-away
loss has a small or negligible impact for MNIST and CIFAR10 (at or
below +2.4%), but a reasonably significant impact for GTSRB (up
to +14.6%). Nevertheless, the ASR without the drive-away loss is at
least reasonably high for all the tested datasets.

7 DISCUSSION
7.1 Fortifying TeD?
A question naturally arises: is it possible to fortify TeD to thwart
FIA? For the FIA described in Section 5, we can fortify TeD with
random trapdoor signatures and detection layers: to protect a target



category, we inject multiple trapdoors and detect at multiple layers,
each time using a trapdoor and a detection layer; and we change
them from time to time. If a single trapdoor or a single layer is
used when FIA queries TeD in the preparation phase, only the
activated trapdoor signature or detection layer is explored by FIA.
Adversarial examples crafted by FIA may be detected when an
unexplored trapdoor or detection layer is used.

The above fortified TeD can be evadedwith a fortified FIA scheme
by querying TeD repeatedly using the complete FIA scheme until all
trapdoor signatures and detection layers are explored, and then FIA
applies all positive adversarial examples to drive simultaneously at
all layers determined to be potentially used as the detection layer.
This is similar to the FIA scheme to attack TeD with randomly
sampled neurons and multiple trapdoor signatures per category
that is described in Section 5.3.

We have conducted experiments to study the performance with
fortified TeD and fortified FIA. Table 10 reports the experimental re-
sults on GTSRB when the fortified TeD uses two trapdoors at layer
max_pool_3 or two detection layers (dense_1 and max_pool_2) to
protect all categories at 5% FPR, with one used in FIA’s preparation
phase and the other used at detecting crafted adversarial exam-
ples. The results with the original TeD and FIA are also reported
in Table 10. We can see from the table that the detection rate of
the original TeD on the original FIA is 3.8%. The detection rate is
boosted to 75.41% when two trapdoors at layer max_pool_3 are
used in the fortified TeD: one trapdoor is used at FIA’s preparation
phase and the other is used at evaluating the detection rate on
crafted adversarial examples. The detection rates of the original
TeD at layer dense_1 and layer max_pool_2 are 0.44% and 6.11%,
respectively. The detection rate is boosted to 99.98% when the forti-
fied TeD uses layer dense_1 at FIA’s preparation phase and layer
max_pool_2 to evaluate the detection rate with crafted adversarial
examples. When the fortified FIA is used to attack the fortified TeD,
the detection rate reduces to 6.83% and 8.09% when the fortified
TeD uses the two trapdoors or the two detection layers. From the ex-
perimental results, we believe that it is almost impossible to fortify
the trapdoored defense to effectively detect FIA-like attacks.

Table 10: Detection rates of FIA and fortified FIA on GTSRB
with P-TeD and fortified P-TeD (with two trapdoors or two
detection layers) protecting all categories at 5% FPR.

Attack FIA Fortified-FIA
Defense TeD Fortified-TeD Fortified-TeD

2 Trapdoors 3.80% 75.41% 6.83%
2 Layers 0.44% / 6.11% 99.98% 8.09%

7.2 FIA for Untargeted Adversarial Examples
and Future Work

FIA is described under the context of crafting targeted adversarial
examples. With minor modifications, it can also be used to craft
untargeted adversarial examples. For example, to generate an untar-
geted adversarial example, we can compare the input with benign
samples in different categories in the feature space to find a closest

category to drive into. In general, untargeted adversarial exam-
ples are easier to craft than targeted adversarial examples. One
can always use the aforementioned approach to convert a targeted
adversarial attack into an untargeted adversarial attack.

The current FIA relies on an over-simplified assumption of con-
vex region to simplify the FIA scheme. This assumption can be
relaxed if we adopt the approach proposed in [30], which uses
neural networks to model layer-wise and category-wise feature
distributions. This approach should be much more general and
powerful than the current FIA version, resulting in more powerful
adversarial attacks with better indistinguishability from benign
target samples. This will be our future work.

Unlike existing adversarial attacks, our proposed adversarial at-
tack aims to make generated adversarial examples indistinguishable
in the feature space from benign samples in the target category. We
argue that this is a more powerful approach than existing adver-
sarial attacks. This indistinguishability makes crafted adversarial
examples likely much harder to detect than existing adversarial
attacks. Our study proves the feasibility of this approach. We expect
that FIA should be able to circumvent other powerful methods to
detect adversarial examples. This will also be our future work.

With more powerful adversarial attacks like FIA, we need to find
an effective defense to thwart them. Developing effective defense
against FIA-like attacks will be our future work too.

8 CONCLUSION
The recently proposed Trapdoor-enabled Detection (TeD) [51] can
effectively detect existing state-of-the-art adversarial attacks. To
circumvent TeD, we present a novel black-box adversarial attack,
called Feature-Indistinguishable Attack (FIA), which aims to gen-
erate adversarial examples indistinguishable in the feature space
from benign examples in the target category. It jointly minimizes
the distance to the expectation of feature vectors of benign exam-
ples in the target category and maximizes distances to positive
adversarial examples generated to query TeD in the preparation
phase. A constraint is used to ensure that the feature vector of a
generated adversarial example is within the distribution of feature
vectors of benign examples in the target category. Our extensive
empirical evaluation indicates that our proposed FIA can effectively
circumvent the strongest defense provided by TeD and its improved
variant, Projection-based Trapdoor-enabled Detection (P-TeD), which
is also proposed in this paper. To the best of our knowledge, FIA is
the first adversarial attack that aims to craft adversarial examples
indistinguishable from benign target examples in the feature space.
Adversarial examples crafted with this approach should be much
harder to detect. It opens a door for developing much more power-
ful adversarial attacks. It will also inspire researchers to develop
more effective defense against FIA-like attacks.
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A APPENDIX
A.1 Datasets and Networks
The datasets and neural networks used in our experimental evalua-
tion are listed in Table 11. The detail of the networks used forMNIST,
GTSRB, and CIFAR10 are listed in Tables 12, 13, and 14, respectively.
The network for YouTube Face is the standard ResNet50 [25]. It is
too long to list here.

A.2 Trapdoor Settings in TeD
In our experimental evaluation, trapdoors are injected with the
same parameter settings as in [51]. For all datasets except YouTube
Face, when only one trapdoor is injected into a DNN model, the
trapdoor trigger is a 6× 6 pattern placed at the right bottom corner

Table 11: Datasets and networks used in our evaluation.

Task Dataset Model Arch.
Handwritten digit recognition MNIST 2 Conv, 2 Dense

Traffic sign recognition GTSRB 6 Conv, 2 Dense
Image classification CIFAR10 ResNet20
Face Recognition YouTube Face ResNet50

Table 12: The model architecture for MNIST. Size stands for
filter size (kernel size × # of filters) for Conv2D, downsam-
pling size for MaxPooling2D, or # of hidden neurons for
Dense layer.

Layer (type) Size Activation
conv_1 (Conv2D) 5 × 5 × 16 ReLU

max_pool_1 (MaxPooling2D) 2 × 2 -
conv_2(Conv2D) 5 × 5 × 32 ReLU

max_pool_2 (MaxPooling2D) 2 × 2 -
dense (Dense) 512 ReLU
dense_1 (Dense) 10 Softmax

Table 13: The model architecture for GTSRB. Size stands for
filter size (kernel size × # of filters) for Conv2D, downsam-
pling size for MaxPooling2D, or # of hidden neurons for
Dense layer.

Layer (type) Size Activation
conv_1 (Conv2D) 3 × 3 × 32 ReLU
conv_2 (Conv2D) 3 × 3 × 32 ReLU

max_pool_1 (MaxPooling2D) 2 × 2 ReLU
conv_3 (Conv2D) 3 × 3 × 64 ReLU
conv_4 (Conv2D) 3 × 3 × 64 ReLU

max_pool_2 (MaxPooling2D) 2 × 2 ReLU
conv_5 (Conv2D) 3 × 3 × 128 ReLU
conv_6 (Conv2D) 3 × 3 × 128 ReLU

max_pool_3 (MaxPooling2D) 2 × 2 ReLU
dense_1 (Dense) 512 ReLU
dense_2 (Dense) 43 Softmax

of an image, and the trapdoor is injected with the injection ratio set
to 0.1, i.e., the trapdoored model is trained with the contaminated
data taking 10% of the total training data. When multiple trapdoors
are injected into a DNN model, a trapdoor trigger consists of five
3 × 3 small pieces placed randomly across the whole image, and
trapdoors are injected with the injection ratio set to 0.5. In both
cases, the merge transparency is set to 0.1, which means that the
pixel value ratio is 0.1 : 0.9 for a trapdoor trigger and an input image
when we merge the trapdoor with the input image to generate a
contaminated image. These trapdooor settings are summarized in
Table 15.

The YouTube Face dataset has a much larger image size and
many more categories than other datasets. The above trapdoor
parameters are slightly adjusted to fit the characteristics of the
YouTube Face dataset: a trapdoor is a single 42 × 42 pattern placed
at the right bottom corner or five 21 × 21 patterns placed randomly

https://github.com/Shawn-Shan/trapdoor
https://doi.org/10.1145/3372297.3417231
http://proceedings.mlr.press/v80/uesato18a.html
https://doi.org/10.1109/SP.2019.00031
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-4_Xu_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_03A-4_Xu_paper.pdf
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Figure 2: ROC curves for TeD and P-TeD to defend single category. Top row: TeD. Bottom row: P-TeD. Columns from left to
right: MNIST, CIFAR10, GTSRB, YouTube Face.

across the whole image, with the injection ratio set to 0.01 or 0.5
when a single trapdoor or multiple trapdoors are injected into a
DNN model. In both cases, the merge transparency is set to 0.2.

A.3 TeD - Single & All Categories (5% FPR of
Others)

In evaluating the attack performance of baseline attacks PGD and
C&W against the trapdoored defense when TeD is used to defend
a specific category 𝐶𝑡 with a trapdoor (single category) and all
categories with one trapdoor per category (all categories), some
of obtained detection rates for PGD and C&W are significantly
lower than those reported in [51] (see Section 6.2). The authors of
TeD don’t describe clearly how their false positive rate is calcu-
lated in paper [51] when detection threshold 𝜙𝑡 is determined. By
examining their released code [50], we find out that the released
code uses benign samples of categories other than the target cate-
gory, referred to as benign non-target samples, to calculate FPR to
determine detection threshold 𝜙𝑡 at 5% FPR, which may lead to a
high false positive rate for benign target samples, as explained next
and conformed by our experimental results to be reported in this
subsection. After changing to using benign non-target samples to
calculate FPR, we can duplicate the attack performance of PGD and
C&W reported in [51].

We believe it is a bug to use benign non-target examples to cal-
culate FPR in their released code [50]. When a trapdoored model
is used to protect a specific category 𝐶𝑡 , TeD should be used to
determine if an input is benign or adversarial only when the input
is classified into 𝐶𝑡 . It cannot be used to detect an input when it is
classified into a category other than 𝐶𝑡 . In other words, only sam-
ples classified into the category protected by the trapdoored model
matters. Since trapdoored samples and benign target samples are
all classified into𝐶𝑡 , while benign non-target samples are classified

into categories other than 𝐶𝑡 , benign non-target samples should
have lower cosine similarity values with the trapdoor signature,
which is the average of feature vectors of trapdoored samples, than
those of benign target samples with the trapdoor signature. This
means that detection threshold 𝜙𝑡 determined by 5% FPR of be-
nign non-target samples would have a lower value than it should
be, leading to many benign target samples falsely detected. As we
will see from our experimental results reported in this subsection,
all benign target samples are classified as adversarial for GTSRB,
resulting in 100% FPR for benign target samples. In this case, FIA
cannot craft any adversarial example since it cannot find any nega-
tive example in the preparation phase to determine proper target
F𝐶𝑡

𝐿
and boundary 𝑐𝑝 to craft adversarial examples.

For completeness, we report the attack performance of our FIA,
PGD, and C&W for this setting in this subsection, although such
detection setting is useless practically due to its high FPR for benign
target samples. In our experimental evaluation for this setting, when
the FPR for benign target samples is too high that we cannot find
the required number of negative target samples as described in
Section 5.2, we select a negative sample as the target in the feature
space for FIA to drive to.

Table 16 shows the detection rates of TeD protecting single
category and all categories on the four datasets when detection
threshold 𝜙𝑡 is determined to be 5% FPR of benign non-target sam-
ples. We also report the corresponding false positive rates of benign
target samples. We note that the detection rate for FIA on GTSRB
is marked as N/A (not available) since all benign target samples are
detected (i.e. 100% false positive rate), we cannot find any negative
sample for FIA to drive to.

From Table 16, we can see that the trapdoored defense has a very
high detection rate for both PGD and C&W, which agrees with the
results reported in [51], but a very low detection rate for adversarial



Table 14: The model architecture of ResNet20 for CIFAR10.
ResNet20 consists of residual blocks, where Conv2D layers
are skip-connected with Add-layer.

Layer (type) Activation Connected to
conv_1 (Conv2D) ReLU -
conv_2 (Conv2D) ReLU conv_1
conv_3 (Conv2D) - conv_2

add_1 (Add) ReLU conv_3, conv_1
conv_4 (Conv2D) ReLU add_1
conv_5 (Conv2D) - conv_4

add_2 (Add) ReLU conv_5, add_1
conv_6 (Conv2D) ReLU add_2
conv_7 (Conv2D) - conv_6

add_3 (Add) ReLU conv_7, add_2
conv_8 (Conv2D) ReLU add_3
conv_9 (Conv2D) - conv_8
conv_10 (Conv2D) - add_3

add_4 (Add) ReLU conv_9, conv_10
conv_11 (Conv2D) ReLU add_4
conv_12 (Conv2D) - conv_11

add_5 (Add) ReLU conv_12, add_4
conv_13 (Conv2D) ReLU add_5
conv_14 (Conv2D) - conv_13

add_6 (Add) ReLU conv_14, add_5
conv_15 (Conv2D) ReLU add_6
conv_16 (Conv2D) - conv_15
conv_17 (Conv2D) - add_6

add_7 (Add) ReLU conv_16, conv_17
conv_18 (Conv2D) ReLU add_7
conv_19 (Conv2D) - conv_18

add_8 (Add) ReLU conv_19, add_7
conv_20 (Conv2D) ReLU add_8
conv_21 (Conv2D) - conv_20

add_9 (Add) ReLU conv_21, add_8
avg_pool (AveragePooling2D) - add_9

dense_1 (Dense) Softmax avg_pooling

Table 15: Trapdoor settings in TeD. Trans. and I.R. stand for
merge transparency and injection ratio of a trapdoor, respec-
tively. A trapdoor trigger is expressed as 𝑛 ×𝑤 × ℎ, standing
for the number of pieces, and the weight and height of each
piece.

Defense Settings Trigger Trans. I.R.
Single category single trapdoor 1 × 6 × 6 0.1 0.1
All categories single trapdoor 5 × 3 × 3 0.1 0.5

All categories multiple trapdoors 5 × 3 × 3 0.1 0.5

examples crafted with our proposed FIA. At the same time, the FPR
of benign target samples is generally high. For GTSRB, this FPR is
100%, making FIA unable to craft any adversarial example since it
cannot find a target to drive to.

origin PGD FIA

MNIST
δ=64/255

GTSRB
δ=16/255

CIFAR10
δ=8/255

YouTube Face
δ=16/255

Figure 3: Comparison of perceptual quality of adversarial ex-
amples crafted with FIA on TeD-protected models and PGD
on clean models using the same bound.

Table 16: Detection rates of TeD protecting both single cat-
egory and all categories with 5% FPR of benign non-target
samples and the corresponding FPR of benign samples in
the target category (target FPR).

Single Category / All Categories (%)
FIA PGD C&W Target FPR

MNIST 2.8 / 3.0 100 / 98.9 100 / 99.4 51.7 / 27.5
CIFAR10 0.0 / 0.0 100 / 100 99.5 / 99.8 82.9 / 70.7
GTSRB N/A 100 / 100 100 / 100 100 / 100
YtbFace 6.0 / 11.2 96.4 / 100 99.9 / 99.7 70.5 / 32.2

A.4 ROC Curves of TeD and P-TeD
To further compare detection performance of TeD and P-TeD on
FIA, PGD and C&W, we report the ROC curves and AUC scores for
TeD and P-TeD to defend single category in Fig. 2. From this figure,
we can see that P-TeD has very high AUC scores for both PGD
and C&W, at or above 0.97, on all the tested datasets, while TeD
has very high AUC scores for both PGD and C&W on MNIST and
CIFAR10, at or above 0.93. The AUC score of TeD for C&W is 0.43 on
GTSRB, much lower than its AUC scores on other datasets. Further
investigation reveals the cause: the cosine similarity distribution of
adversarial examples with the trapdoor signature and that of benign
target samples with the trapdoor signature in this case overlaps
much more than other datasets. The detection performance of C&W



on GTSRB is significantly boosted when the projected signature is
used: the AUC score of C&W on GTSRB increases to 0.98 for P-TeD.

On the other hand, Fig. 2 shows that the AUC scores of both TeD
and P-TeD are low for FIA, all at or below 0.37. FIA’s AUC scores on
MNIST and YouTube Face are significantly higher than the other
two datasets, indicating that it is more difficult for FIA to craft
adversarial examples on MNIST and YouTube Face than the other
two datasets. If we relax their bounds, FIA’s attack performance
on these two datasets can be significantly improved, at the cost
of more noisy adversarial examples. For example, if the bound is

increased from 16 to 32 for YouTube Face, the AUC scores reduce
to 0.01 for TeD and 0.02 for P-TeD.

A.5 Perceptual Qualify of Adversarial
Examples Crafted with FIA

Fig. 3 shows adversarial examples craftedwith FIA on TeD-protected
models and with PGD on clean models (i.e., without TeD protection)
for different datasets. The same bound is used for FIA and PGD
on a dataset. We can see from the figure that adversarial examples
crafted with FIA look a little better than those crafted with PGD.
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