
AutoTSG: Learning and Synthesis for Incident Troubleshooting
Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,

Arjun Radhakrishna, Anurag Gupta
{t-mamola,chetanb,saupa,arradha,anugup}@microsoft.com

Microsoft

ABSTRACT
Incident management is a key aspect of operating large-scale cloud
services. To aid with faster and efficient resolution of incidents,
engineering teams document frequent troubleshooting steps in
the form of Troubleshooting Guides (TSGs), to be used by on-call
engineers (OCEs). However, TSGs are siloed, unstructured, and
often incomplete, requiring developers to manually understand and
execute necessary steps. This results in a plethora of issues such
as on-call fatigue, reduced productivity, and human errors. In this
work, we conduct a large-scale empirical study of over 4K+ TSGs
mapped to 1000s of incidents and find that TSGs are widely used
and help significantly reduce mitigation efforts. We then analyze
feedback on TSGs provided by 400+ OCEs and propose a taxonomy
of issues that highlights significant gaps in TSG quality. To alleviate
these gaps, we investigate the automation of TSGs and propose
AutoTSG – a novel framework for automation of TSGs to executable
workflows by combining machine learning and program synthesis.
Our evaluation of AutoTSG on 50 TSGs shows the effectiveness in
both identifying TSG statements (accuracy 0.89) and parsing them
for execution (precision 0.94 and recall 0.91). Lastly, we survey ten
Microsoft engineers and show the importance of TSG automation
and the usefulness of AutoTSG.

1 INTRODUCTION
At Microsoft, we operate services at a massive scale with 1000+
internal and external services built and operated by tens of thou-
sands of engineers spread across the world and deployed in over
200 data centers worldwide. At such a large scale, we need effective
incident management processes to minimize the impact of service
incidents. Today, most software companies have on-call duty, which
requires engineers building services to be responsible for handling
(i.e., acknowledge, diagnose and mitigate) incidents 24x7 on a ro-
tating basis. To standardize these incident management workflows,
engineering teams document these steps as Troubleshooting Guides
(TSGs) which are then referred to and followed by the on-call engi-
neers while handling production incidents. These TSGs help with
knowledge sharing and avoid the challenges with tribal knowledge,
especially when new engineers join the team.

In Microsoft, we have more than 50,000 TSGs which are used reg-
ularly for incident resolution by over 60,000 engineers every month.
The TSGs are authored by the engineers and can contain various
components such as commands and scripts for troubleshooting,
big data queries for fetching diagnostics logs, natural language
instructions and even screenshots. At the time of incident han-
dling, the on-call engineer manually tries to follow the instructions
described in the TSGs. The manual execution can consume a signifi-
cant amount of effort since commands/queries must be copy-pasted
and executed, and instructions must be parsed and understood.
Further, similar to other kinds of software documentation [1], TSGs

are also prone to various issues such as lack of readability, frag-
mentation, etc. These issues have significant detrimental impact on
both engineering productivity and service health because it leads
to increased effort by the on-call engineers and, also, higher cus-
tomer impact due to increased incident resolution time. Further,
with manual TSGs, there is a significant risk of outages1 due to
human errors, on-call fatigue, and knowledge gaps. Hence, there is
a need to automate the TSGs into executable workflows, which can
help mitigate incidents with minimal human intervention.

In this work, we conducted a large-scale empirical study to un-
derstand the usage and challenges of TSGs better. We find that
incidents linked with TSGs have reduced mitigation time showing
the effectiveness of TSGs. At the same time, TSGs are also prone
to completeness, validation and maintenance issues. To mitigate
these problems and reduce the manual effort and human error in-
volved in executing TSGs, we investigate the problem of automating
TSGs by converting them to executable workflows such as Jupyter
notebooks. We propose AutoTSG, a novel framework for TSG au-
tomation at scale. Executable TSGs help minimize the manual effort
for the on-call engineer while also improving the maintainability
with automated testing and validation. With AutoTSG, our goal is
to assist developers with automation of 50,000+ TSGs at Microsoft.
To overcome the unique challenges in this task, such as lack of
labelled data and heterogeneity of information embedded in TSGs,
we combine meta-learning and program synthesis for extraction of
components (i.e., code, big data queries, natural language instruc-
tions, etc.) and parsing of components into constituents such as
variables, commands in code and conditional, action statements
in natural language. Our evaluation shows that AutoTSG has high
accuracy while also being useful based on the survey of on-call en-
gineers. To summarize, we make the following main contributions
in this work:

(1) We do a large-scale empirical study on the usage and effec-
tiveness of TSGs for incident resolution at Microsoft.

(2) We analyze feedback provided by 400+ on-call engineers
at Microsoft to propose the first taxonomy of TSG quality
issues.

(3) We design and build AutoTSG, a novel framework which
combines machine learning and program synthesis to aid
with the automation of TSGs at scale.

(4) We do a quantitative evaluation on 50 TSGs and survey 10
Microsoft engineers to show the effectiveness of AutoTSG.

The rest of the paper is organized as follows: In Section 2, we
present insights from the empirical study about the usage of TSGs
and motivate the need for automation. In Section 3, we provide an
overview and the implementation details for AutoTSG. In Section 4,

1https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-
1488490506

ar
X

iv
:2

20
5.

13
45

7v
1

 [
cs

.S
E

]
 2

6
M

ay
 2

02
2

https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506
https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-typo-1488490506

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

0 50 100 150 200
Incidents per TSG

0.00

0.25

0.50

0.75

1.00

Cu
m
ul
at
iv
e
D
en
si
ty

(a) Dist. of #incidents per TSG

1 2 3 4
Incident Severity

0

1000

2000

3000

Co
un

to
fT

SG
sl
in
ke
d
to

In
ci
de
nt
s

30

1893

3048

840

(b) #TSGs vs Incident Severity

1 2
Incident Severity

0

20

40

M
ea
n
TT

M
(h
rs
)

Incident has a TSG
False
True

(c) TTM vs Severity vs TSG Linkage

Figure 1: Analysis of TSG Usage

we describe the experimental evaluation and user study for AutoTSG.
In Section 5, we discuss the related work followed by conclusion.

2 EMPIRICAL STUDY
In this section, we empirically study two aspects of TSGs – usage
and quality. First, we characterize how TSGs are used for incident
mitigation, using factors like usage frequency, incident severity,
and time-to-mitigate (TTM). We analyze a large dataset of incidents
mapped to TSGs by actual click-throughs on links to the TSG. We
find new insights indicating that TSGs are widely used, and that
incidents linked to TSGs have significantly lower mitigation time.

Then, we perform a large-scale study of 400+ feedback items
provided by 100s of developers on TSGs at Microsoft. Our find-
ings indicate significant gaps in quality aspects like Completeness,
Correctness, and Up-to-dateness. Our results also uncover new and
granular issues, such as Broken Links and Empty TSGs. Lastly, we
discuss the implications of our findings and recommend actions to
tackle these quality challenges. Further, we propose a new direction
– TSG Automation – that guides our vision to improve the state of
incident troubleshooting.

2.1 TSG Usage
We first collect a large dataset of incidents that have TSGs linked
to them. Here, we use click-through data on links to TSGs to map
incidents to corresponding TSGs. Unlike prior work [24] that study
recommended TSGs and their effect on reducing effort, this ap-
proach captures the actual usage of TSGs by on-call engineers and
strengthens our findings. Consequently, our dataset of incidents
to TSG mapping is not static but rather represents actual click-
throughs performed on-call for incident mitigation. Our dataset
contains over 1000s of incidents2 mapped to ≈4800 TSGs, collected
over a 4 month period. We then analyze this dataset from various
perspectives to answer the RQ: How are TSGs used for incident
management?

Incidents per TSG. To understand how frequently TSGs are used
for mitigating incidents, we analyzed the distribution of the number
of incidents per TSG in our dataset. As shown in Figure 1a, in 4
months, ≈47%, 17%, and 8% of the TSGs had at least 2, 5, and 10
incidents linked to them, respectively. We also observed six TSGs

2We cannot disclose the number of incidents due to Microsoft Policy.

linked to 100+ incidents each, the highest being 184. These results
show that TSGs are frequently used to mitigate recurrent incidents.

TSGs and Incident Severity. In Figure 1b, we look at the total
number of TSGs linked to incidents of each severity level. At Mi-
crosoft, incidents are classified into 4 severity levels: (1) Sev 1:
Outage, (2) Sev 2: High, (3) Sev 3: Medium, (4) Sev 4: Low. Here, Sev
1 and 2 are paging incidents; i.e., an on-call engineer is alerted as
soon as the incident occurs. Here, we find a small number of TSGs
linked to outages (30). This is expected considering they are less
frequent and may require deeper analysis and mitigation strategies.
Next, we find that 85% of TSGs are linked to either high (1893)
or medium (3048) severity incidents. Lastly, we find a relatively
lower 14% of TSGs linked to low severity (840) incidents that are
non-urgent and have no SLA impact. This shows that TSGs are
commonly linked to critical incidents that affect multiple services
and impact SLAs.

TSGs and Time-to-mitigate. Lastly, we analyze the effect of TSGs
on efficient incident mitigation. We study the relationship between
the time-to-mitigate (TTM) of incidents and whether the incident
had a TSG linked (TSG Linkage). Here, we make sure to analyze in-
cidents of Severity 1 and 2 only, since on-call engineers are notified
immediately after their occurrence, and hence, TTM, is a reliable
proxy for on-call effort. We find that the mean TTM of incidents
without TSGs (≈19 hrs) is significantly higher than that of incidents
linked to a TSG (≈13 hrs). Further, in Figure 1c, we analyze the cor-
relation of this finding with incident severity. Here, we observe that
severity 1 incidents linked with TSGs (≈36 hrs) had considerably
lesser TTM than those without TSGs (≈2 hrs). For severity 2, we
see a similar pattern where the mean TTM is reduced from ≈18hrs
to ≈13hrs on linking TSGs to incidents. Overall, our analysis indi-
cates that TSGs tend to significantly reduce effort during incident
mitigation.

2.2 TSG Quality
In Section 2.1, we show that TSGs are key to incident mitigation.
However, in an internal survey of on-call experience at Microsoft,
developers picked TSG Quality & Coverage as the top pain-point
out of 19 dimensions studied including volume of alerts, timing,
and tooling. Based on developer feedback, we find that TSGs are
prone to issues such as missing information, incorrect steps, and

AutoTSG: Learning and Synthesis for Incident Troubleshooting

Table 1: Taxonomy of intents for feedback on TSGs and their frequencies

Feedback Intent Description Examples Frequency

Completeness TSG is missing information like examples, links, etc. ‘unknown impact and mitigation’, ‘please provide examples’ 32.24%
Broken Link TSG has broken or invalid links. ‘use cases links are broken.’, ‘link leads to "404 - not found"’ 13.32%
Correctness TSG has incorrect or misleading information. ‘information is wrong’, ‘steps didn’t work’ 11.21%
Readability Feedback on TSG clarity, conciseness, grammar, etc. ‘too much info, not organized’, ‘confusing terminology’ 10.28%
User Exp. (UX) TSG accessibility, navigation, formatting, etc. ‘how to execute those code cells?’, ‘badly formatted query’ 10.05%
Empty TSG is empty or has dummy content. ‘this page is empty’, ‘fill in the TSG, currently just has TODO’ 7.24%
Up-to-dateness TSG content is outdated. ‘out of date: still using visualstudio instead of ado’, ‘deprecated’ 6.54%
Relevance Whether TSG is relevant to the user’s issue. ‘doesn’t tell me how to renew my cert’, ‘nothing useful here’ 3.97%
Other Unclear intent or outside the scope of TSG quality. ‘nice page’, ‘loved this page‘ 5.14%

Table 2: Taxonomies of documentation quality in priorwork

Study Taxonomy
Aghajani et
al. [1, 2]

Correctness, Completeness, Up-to-dateness, Maintainability,
Readability, Usability, Usefulness, Doc. process, Doc. tools

Plösch et al.
[54]

Accuracy, Clarity, Consistency, Readability, Structuredness, Un-
derstandability, Completeness, Conciseness, Concreteness, Mod-
ifiabiality, Objectivity, Writing Style, Retrievability, Task Orien-
tation, Traceability, Visual Effectiveness

Garousi et
al. [19]

Completeness, Organization, Including visual models, Rele-
vance, Preciseness, Readability, Accuracy, Consistency, Up-to-
date, Examples

outdated content. In this section, we thus aim to empirically answer
the RQ: How do developers perceive the quality of TSGs?

Setup. In this study, we analyze the quality aspects of TSGs through
feedback provided by developers and on-call engineers at Microsoft.
To this end, we first collect a dataset of feedback provided on TSGs
over 4 months. Each feedback item contains (1) Thumbs-up/down
rating and (2) a free text message to help improve the TSG. Our
dataset contains 428 feedback items (:61, :367), for 394 unique
TSGs. Using this, we first develop a taxonomy for the feedback
intent using the open coding approach. We then map each feedback
item to an intent category and analyze their distributions.

We start by splitting our dataset into 3 sets: (1) 87 items from
month 1, (2) 119 items frommonth 2, and (3) 222 items frommonths
3 & 4. Then, the first two authors of this work used the open coding
approach to label the first set. They assigned a label to each feedback
item based on what they perceived as the most prominent intent
behind it. Subsequently, they discussed the feedback categories and
agreed on a common taxonomy. Next, they independently labeled
the second set to make sure no new categories emerged. They
then had another discussion to settle disagreements and define a
common understanding of each category.

Lastly, they annotated the third set and computed the inter-
annotator agreement score using Cohen’s kappa [12]. The resulting
Cohen’s kappa score was 0.907 indicating near-perfect agreement.
Here, disagreements were mostly because multiple categories ap-
plied to certain feedback. Such disagreements were resolved by
picking (1) the intent that occurs first in the feedback and (2) the
most specific intent. With this approach, the annotators settled all
disagreements and created a conclusively labeled dataset, which
was used for all further analyses. In Table 1, we show the resulting
taxonomy with descriptions of the intent and examples.

Prior Work. While we focus on understanding TSG quality, there
has been prior work investigating different aspects of software
documentation. Particularly close to our work, are empirical studies
on generic software documentation quality that either (1) survey
software practitioners or (2) mine stackoverflow and github data, to
manually create a taxonomy of issues. In comparison, we perform
a large-scale study of 400+ feedback items provided by 100s of
developers, explicitly collected to improve the TSGs. Further, we
collect feedback directly where an on-call engineer would visit
to use the TSG for mitigation. As a result, we observe unfiltered
feedback, enabling an accurate study of developer issues.

Table 2 shows some taxonomies developed in prior empirical
studies [1, 2, 19, 54] of software documentation quality. Here, we
observe some overlap with all prior work, but we also introduce
new categories and rename a few others. Particularly, we share
significant overlap with the taxonomy defined by Aghajani et al.
[1, 2]. We retain 4 of their 9 categories – Correctness, Completeness,
Up-to-dateness, and Readability. Further, we rename Usability to
User Experience and Usefulness to Relevance, making them more
appropriate to the experience of using TSGs to mitigate incidents.
We also add specific categories essential to the quality of TSGs –
Empty and Broken Link. Lastly, we do not include the Documen-
tation process and tools categories, as our study focuses on TSG
content only.

Feedback Distribution. Table 1 shows the frequency of feedback
categories in our dataset. As shown, Completeness (32.24%) is the
most frequent, and includes issues pointing to missing information
such as steps, examples, links, and points of contact. The second
most frequent category is Broken Link (13.32%). Here, feedback
indicated errors while accessing links such as 404-not found, 403-
forbidden, page not found, etc. Thirdly, we haveCorrectness (11.21%),
where the feedback indicated misleading/incorrect information
such as conflicting steps, incorrect steps, erroneous queries/com-
mands, etc. We observe that these top-3 categories speak to the
actual content in the TSG, accounting for a noteworthy total of
56.77%.

Next, we have Readability (10.28%) and UX (10.05%), that account
for ≈20% of the feedback. This shows that a significant portion
of quality issues faced by users is associated with how TSGs are
presented and used, not just their content. Following that, we have
Empty (7.24%) and have Up-to-dateness (6.54%) issues that reveal
important maintainability issues with the current state of TSGs.

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

Table 3: Types of Components in TSGs

Component: Description Example

ADF [44]: Link to an Azure Data Factory, a data integration service. http://adf.azure.com/factory=resourceGroup/y/.../factories/z
Jarvis [45]: Link to a Jarvis dashboard, an internal telemetry platform. https://jarvis.msft.net/dashboard/share/xxx
Kusto [46]: Database query in Kusto Query Language (KQL). StormEvents | where State == "FLORIDA" | count

Powershell [48]: Statements from CLI scripts built on .NET Runtime. $tenant = "<your tenant id/name>"

Torus: Secure Powershell scripts to manage Azure resources and datacenters. $rules = Get-TransportRule -Organization $org

Merlin: Custom Powershell scripts to diagnose and fix Sharepoint issues. Update-GridTenantProvisioningStamp $TenantId

Natural Language: Other natural language instructions. If the status is green, the problem is self-resolved.

Lastly, we find feedback pointing to TSGs lacking Relevance (3.97%)
to the user’s needs. This is a critical issue for troubleshooting, as
developers follow the steps in TSGs to mitigate incidents.

0 25 50 75 100
Count (%)

Empty
Correctness
Broken Link

Up-to-dateness
Readability

Completeness
UX

Relevance
Other

Fe
ed
ba
ck

Ca
te
go

ry

Thumbs Up
Thumbs Down

Figure 2: Distribution of Ratings for each Category

Rating Distribution. Each feedback item also contained a thumbs-
up (positive) or thumbs-down (negative) rating for the associated
TSG. Overall, we find that a majority 367 (85.7%) items had thumbs-
down, and 61 (14.3%) had thumbs-up ratings. Prior work has shown
that this is expected as people tend to give negative feedback far
more than positive [66]. In Figure 2, we look at the distribution of
these ratings within each feedback category. As shown, all major
categories (i.e., leaving the Other category) have a majority of neg-
ative ratings associated with feedback on TSGs. Further, we looked
at the negativity ratio for each category, i.e., the ratio of to
votes.

We find that feedback for Empty were (naturally) always associ-
ated with negative feedback, and hence had the highest negativity
ratio. Following that, we have Correctness (23:1), Broken Link (18:1),
and Up-to-dateness (13:1) with very high negativity. Next, we have
Readability (8:1) and Completeness (6:1) with high attributed nega-
tivity. Then, with relatively lower ratios are UX (4:1) and Relevance
(2:1). Lastly, the Other category had the lowest negativity ratio of
0.38:1; i.e., more positive feedback than negative, as shown by exam-
ples in Table 1. Overall, our results indicate that on-call engineers
and developers negatively perceive multiple aspects of TSG quality.

2.3 Implications & Recommendations
Our TSG usage analysis shows that TSGs are frequently linked
to recurring incidents: 14% TSGs with >5, and six TSGs with 100+
incidents in four months. Secondly, we find that TSGs are most com-
monly (>85%) linked to critical severity incidents and significantly

reduce mitigation time and effort (avg: 6hrs). Our findings indicate
that TSGs are essential and widely used documentation that aid
the mitigation of incidents, especially the ones which frequently
repeat.

However, our results on the quality of TSGs highlight important
issues. We find that the top-3 most frequent feedback categories
were Completeness, Broken Link, and Correctness, that account for
56% of all feedback. TSG users have to deal with missing steps, lack
of explanations, incomplete examples, invalid links, incorrect com-
mands, etc. Next, we find that presentation and UX also strongly
affect quality; i.e., 20% of feedback points to Readability orUX issues
stemming from verbose language, poor formatting, and organiza-
tion. In context, next, we provide recommendations to alleviate
these issues from our industry experiences (indicated by �).
� Maintenance & Testing: A common solution to mitigate the
Completeness, Broken Link, and Correctness issues can be to intro-
duce maintenance and testing for TSGs. This is challenging consid-
ering TSGs are mostly siloed text documents (Word, OneNote, etc.)
and the executables in them need to be parsed. Hence, software re-
search should invest in automated tools that can help parse, review,
test, and maintain software documentation, similar to source code.
� Centralization & Standardization: To solve issues with Read-
ability and User Experience, we make 2 recommendations that are
being enforced at Microsoft: (1) Converting all TSGs to a standard
format (e.g., Markdown) with clear formatting guidelines. (2) Adopt-
ing a unifying platform for organizing TSGs, with an accompanying
search engine. We find that these recommendations are consistent
with those provided by prior work like Aghajani et al. [2].
� User-in-the-loop Review: Additionally, assuming an enforced
TSG review pipeline, we believe that involving users of TSGs in
the review process is essential. This can solve readability issues
where TSG authors assume clarity, but the users find it difficult to
read and use the TSG. From our experience at Microsoft, teams can
adopt this since most TSG users are fellow developers in the team
who take up on-call rotation at a specified frequency (e.g., once a
month).
How do we get there?While we provide some insights and rec-
ommendations to improve TSG quality, we note significant research
challenges. For instance, as previously stated, it is non-trivial to
apply reviewing, testing, and maintenance techniques to semi-
structured and informal text documentation like TSGs. However,
we observe that the software engineering domain has effectively
dealt with improving quality issues in source code. That brings us

AutoTSG: Learning and Synthesis for Incident Troubleshooting

to the question: Can we automate TSGs and bring them closer to
source code? We observe that this change can in-turn introduce the
recommendations we make into the world of TSGs, such as code
review, regression testing, and version control. With this, we envi-
sion TSGs of the future to be verified semi-automated (like jupyter
notebooks) or fully-automated workflows, that can be executed
with minimal manual touches. Such automated TSGs would reduce
manual toil, minimize human errors, and also improve DRI health.

3 AutoTSG: TOWARDS TSG AUTOMATION
Towards this vision of automated TSGs, in this section, we introduce
AutoTSG, a tool to aid the automation of manual TSGs to executable
workflows. Particularly, AutoTSG’s design is guided by three unique
observations about TSGs:

(1) TSGs contain components that are distinct pieces of infor-
mation. As shown in Table 3, they are commands, database
queries for logs, dashboard links, instructions, etc.

(2) TSGs have control flow resembling a decision tree. For
e.g., if conditions mentioned in natural language.

(3) Components contain constituents that are parts of a com-
ponent expected to be parsed for execution. For e.g., com-
mand name and parameters for a Powershell command.

These observations guide us to design a two-phase framework
for automating troubleshooting guides that first identifies TSG
components (Component Identification) and then parses them to
extract constituents necessary for execution (Component Parsing).
There has been significant research on text/code identification and
parsing in prior work [32, 65]. However, applying them directly to
TSGs requires addressing some unique challenges:
(1) How do we identify components? While heuristic-based
methods lack coverage, most supervised learning methods need
1000s of labeled examples to train accurate classifiers. In the context
of TSGs, this means manually labeling 1000s of examples for 10s of
component types. This is laborious and limits the scalability of our
tool to new component types. Hence, we need appropriate models
that can learn from a limited set of labeled examples.
(2) How do we parse components? One approach is to hand-
craft parsers to extract each constituent of a component. But it
assumes significant domain expertise and manual effort. On the
other hand, ML based parsers require large training datasets and
are stochastic. Hence, we need to also automatically learn verifiable
parsing programs from a small set of examples.

In the rest of the section, we describe the design of the AutoTSG
framework, as shown in Fig. 3, that address these challenges.

3.1 Component Identification
Overview. Toward TSG automation, we need to first extract and
identify individual statements in TSGs that need to be automated
– Components – such as commands, database queries, dashboard
links, and also natural language instructions. Here, for automation,
it is not only important to extract these statements but also to
identify the component type. Table 3 shows examples of some
popular components used in TSGs at Microsoft.

Intuitively, we can view component identification as a supervised
classification problem – given a statement, classify it into a category.

However, most supervised learning techniques require thousands
of labeled examples for training. In the context of TSGs, this implies
manually labeling 1000s of examples for 10s of component types.
Further, this poses challenges to the scalability of AutoTSG to new
components types with very few examples. Hence, we solve this
using a few-shot learning setup, where we aim to learn models with
a minimal amount of training examples.

But, there are challenges with learning models from very few
examples, such as overfitting, robustness, and generalizability. We
alleviate this bymoving away from the classical learning framework
(learning to classify) to a meta-learning framework, where we learn
how to learn to classify. First, we train a Siamese neural network
on a meta-task – learning how similar or different components
are. Then, we use a nearest-neighbor search approach to identify
component types. In the following subsections, we describe our
approach to component identification in detail.

3.1.1 Preprocessing. Today TSGs are decentralized and can be in
various formats such as Word, Markdown, OneNote, etc. Therefore,
we first use the pandoc library [40] to convert all TSGs to a single
format that is parsable programmatically – Markdown. Next, we
clean the converted TSG using regexes by pruning information that
is non-trivial to parse, such as images and tables. Here, we plan
to extend AutoTSG to capture such multi-modal information with
tools such as optical character recognition (OCR). Then, we segment
the TSG into statements using newline characters. Here, we use
some simple heuristics to handle multi-line commands and queries.
For instance, we remove indentation around the ‘|’ character for
Kusto queries and around the ‘{’ and ‘}’ (braces) for command-line
scripts. Lastly, we tokenize TSG statements into tokens. Here, we
use a custom implemented tokenizer to handle camel-case, URLs,
command names, and multi-line database queries.

3.1.2 Meta-Learning Framework. As previously stated, in this
setting, we need to learn a component classifier from a minimal
set of examples, i.e., a few-shot learning setup. To enable few-shot
learning, we use meta-learning [58] as a framework to simplify
the component identification task to a meta-task. Meta-learning
[58], commonly understood as learning to learn, refers to an outer
(meta) algorithm updating an inner learning algorithm such that
the model it learns improves an outer objective (meta-task).

Here, we choose our meta-task as "Given a pair of statements,
predict the probability that they belong to the same component type".
The intuition here is that one way to learn classification is to differ-
entiate between component types. For instance, to learn to classify
Powershell commands and SQL queries, we can learn what makes
Powershell and SQL similar or dissimilar. Then, based on learnt
properties, we can decide which component type is the closest
match.

In meta-learning literature, this translates to metric-based meta-
learning [28]. The core idea in metric-based meta-learning is similar
to nearest neighbors algorithms (e.g., k-NN classifier [4] and k-
means clustering [37]), where the predicted probability 𝑃 over a
set of labels 𝑦 is a weighted sum of labels of support set samples
𝑆 . The weight is generated by a kernel function 𝑘\ , measuring the
similarity between two data samples.

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

"Desc_1": {⇔},
"Step_1": {
 "type": "Torus",
 "command":
 "Get-ManagementEndpoint",
 "inputs":
 {"DomainName": "$tenant"}
},
"Step_2": {⇔},
"Desc_2": {⇔},
"Step_3": {⇔},
 ...

TSGs

Preprocess

Component Parsing

PROSE
DSL

C1: P1, P2, …, Pk

C2: P1, P2, …, Pk

Cn: P1, P2, …, Pk

...

C1: P1, P2, …, Pk

C2: P1, P2, …, Pk

Cn: P1, P2, …, Pk

...

C1: P1, P2, …, Pk

C2: P1, P2, …, Pk

Cn: P1, P2, …, Pk

...

Synthesized Parsers

Component Identification

SiameseNetSiameseNet
Nearest

Neighbor
Search

Labeled
Dataset

Schematized TSG

Synthesis
Specification

Jupyter Notebook

PowerAutomate Workflow,
Geneva Actions, etc.

Executable Workflow

Figure 3: Overview of AutoTSG pipeline

𝑃\ (𝒚 |𝒙, 𝑺) =
∑︁

(𝑥𝑖 ,𝑦𝑖) ∈𝑆
𝑘\ (𝑥, 𝑥𝑖)𝑦𝑖 (1)

Our aim here is to learn a kernel 𝑘\ that is aligned with learning
a similarity metric over component types. Hence, we learn to map
TSG components to a latent (embedding) space, where different
components are well separated and similar components are close.

3.1.3 Siamese Network. To learn our meta-learning task, we use
a Siamese Network (SiameseNet) architecture proposed by Koch
et al. [28]. The Siamese Network architecture contains two twin
networks and a distance metric, that are jointly trained to learn
the relationship between pairs of input data samples. The twin
networks are identical and share the same weights and parameters.
The SiameseNet accepts two inputs x𝑎 and x𝑏 , which are featurized
inputs of the same or different component types. For featurization,
we use the simple yet effective bag-of-words [22] approach which
creates one-hot features. Next, a convolutional neural network [33]
learns to encode the 2 resultant vectors via an embedding function
𝑓\ . Here, 𝑓\ contains a 100 dim. embedding layer, 2 convolutional
layers [33], 2 max pooling operations [7], and a 128 dim. dense
layer.

The𝐿1 distance between the two resultant embeddings is | |𝑓\ (x𝑎)−
𝑓\ (x𝑏) | |1. But, to decide whether the two inputs are drawn from the
same component type, we need to convert this unbounded distance
to a probability 𝑝 . We do that by computing the exponent of the
negative L1 norm (equation 2). Finally, as shown in equation 3, we
train our SiameseNet on a binary cross-entropy loss function as the
network label y is binary. Here y = 1 whenever x𝑎 and x𝑏 are of
the same component type and y = 0 otherwise.

𝑝 (x𝑎, x𝑏) = 𝑒𝑥𝑝 (−||𝑓\ (𝑥𝑎) − 𝑓\ (𝑥𝑏) | |1) (2)

L =
∑︁

∀(x𝑎,x𝑏 ,y)
y log 𝑝 (x𝑎, x𝑏) + (1 − y) log(1 − 𝑝 (x𝑎, x𝑏)) (3)

3.1.4 Nearest neighbour Search. With a trained SiameseNet
based meta-learner, we can now identify the probability of a pair
of statements belonging to the same component. In other words,

we can now use the SiameseNet as a comparator that returns the
similarity between a pair of TSG statements. With this, a naive
approach to performing component identification would be to com-
pare a given TSG statement against every training example. Then,
we can label the TSG statement with the component type of the
most similar training example – the nearest neighbor.

But, performing this comparison for each TSG statement with
every training example is quite inefficient (O(#training-examples
× #statements)), especially for longer TSGs. To mitigate this, for
each component type 𝑐 ∈ 𝐶 we pre-compute a prototype prot𝑐 as
the mean of the embedded training examples 𝑆𝑐 of that component
type:

prot𝑐 =
1
|𝑆𝑐 |

∑︁
(x𝑖 ,𝑦𝑖) ∈𝑆𝑐

𝑓\ (x𝑖) (4)

Now, for a TSG statement we only compare against each proto-
type and identify the label as the component type associated with
the nearest neighboring prototype. This improves the efficiency of
our nearest-neighbor search (O(#component-types× #statements)).

3.2 Component Parsing
From the techniques of Section 3.1, we obtain a list of components
in a TSG and their respective component types. In this section, we
learn component parsers for each component type to extract the
constituents of the component. For example, given a Powershell
command, the component parser will extract the command name
and the parameters.

The main challenge here is handling the wide variety of compo-
nents that commonly occur in TSGs. Further, large companies and
organizations often use components written in custom scripting
languages that are unique to only the organization. Hence, the di-
versity in component types and the presence of custom component
languages make hand-crafting a generic set of parsers infeasible.

Instead of hand-crafting a set of component parsers, AutoTSG
uses program synthesis techniques to learn parsers from examples.
Specifically, we use programming-by-example techniques to learn
parsers from a small number of user-provided examples. Here, for
each component type, the user provides example components along
with their expected constituents, and the program synthesis engine

AutoTSG: Learning and Synthesis for Incident Troubleshooting

produces a parser to extract these constituents in the form of a
python program. Programming-by-example techniques are specif-
ically suitable in this scenario as they are able to learn from few
(between 1 − 5) examples, and can produce efficient, deterministic,
and user-readable parsing programs. In comparison to machine
learning techniques, this both avoids the need for a large amount
of training data and further allows the user to edit the produced
parser program to fix any minor issues.
Programming-by-Example in AutoTSG. We do not describe the
full program synthesis procedure and instead provide a high-level
overview of the PROSE program synthesis library and how AutoTSG
uses PROSE. The reader is referred to [21] for a literature survey on
program synthesis. PROSE implements an extension of the Flash-
Fill [20] programming-by-example technique. Given a set of exam-
ples of the form in𝑖 ↦→ out𝑖 where in𝑖 and out𝑖 are strings, PROSE
produces a program 𝑃 (and its translation to Python) such that
𝑃 (in𝑖) = out𝑖 for all 𝑖 . The programs produced by PROSE are of two
kinds: (a) single-branch expressions that are concatenations of con-
stant strings and substrings of the input string, and (b) conditional
expressions over single-branch expressions. The conditions in the
conditional expressions and the substrings for single-branch ex-
pressions are built-up using standard string and regular expression
operators such as StartsWith, EndsWith, IndexOf, Regex.Find,
etc. The reader is referred to the documentation of PROSE for the
exact class of programs that can be synthesized [47].

Example 3.1 (Single-branch programs). Consider the Powershell
assignment statements below.

1 $mb = Get-Mailbox senderOrRecipientMailbox
2 $tenant = "<your tenant id/name>"
3 EOP: $rulePackage = Get-DlpSensitiveInformation -Org ...

Note that the assignment statement (3) has a label associated with
it (“EOP”). For this component type, one constituent of interest is
the left-hand side of the assignment, i.e., the variable being as-
signed to. To synthesize the parser for this constituent, the user pro-
vides 3 examples of the form (1) ↦→ “$mb”, (2) ↦→ “$tenant”, and
(3) ↦→ “$rulePackage”, where (𝑖) represents the corresponding
assignment statement from above. Given these examples, AutoTSG
uses the program synthesis library PROSE [47] to synthesize the
following python program.

1 def prog0(self , s):
2 idx1 = s.index("$")
3 idx2 = re.search(r"[$][\p{L}0-9]+", s).end()
4 return s[idx1:idx2]

This program slices the input assignment statement between the
first occurrence of a dollar symbol up to the end of the first sequence
of alphanumeric characters preceded by a dollar symbol.

While the above example can be handled using simple regular ex-
pressions, the synthesizer is able to produce more complex parsers
that involve conditionals and other sophisticated operations.

Example 3.2. Consider the list of Kusto query components below.

1 TbaFilteringException | where time > ago(1d) | ...
2 cluster('Aznwautotriage ').database('autotriage ').

AutoTriageIcmNer | sort by IncidentId desc

From these components, we are interested in extracting the con-
stituent representing the table name, i.e., “TbaFilteringException”
and “AutoTriageIcmNer”, respectively. Given the examples (1) ↦→
“TbaFilteringException” and (2) ↦→ “AutoTriageIcmNew”, PROSE
generates a conditional program with two branches, each handling
one example.

1 def prog0(self , s):
2 if re.match("^cluster", s):
3 idx1 = s.rindex(".") + 1
4 idx2 = re.search(r"\p{Zs}+", _0).start()
5 else:
6 idx1 = re.search(r"[-.\p{L}0-9]+", _0).start()
7 idx2 = re.search(r"\p{Zs}+", _0).start()
8 return s[idx1:idx2]

This program handles both formats of Kusto query components
gracefully. In practice, there are several more variations of the Kusto
query component that occur in TSGs and the program generated
by PROSE has more branches to deal with them–we present this
two branch version here for simplicity.

Table 4 presents some input and output pairs for different com-
ponents and corresponding constituents, along with the description
of the parsing program produced by PROSE.
Special component types.While most component types and con-
stituents can be handled using the above techniques, we discuss 2
special cases which require additional procedures.
Handling natural language. Traditional program synthesis tech-
niques are not designed to handle the complexities of natural lan-
guage. For example, consider the component “If you need to force
the file sync, you can use ForceSync parameter". From this compo-
nent, we are interested in extracting the condition clause constituent
(“you need to force the file sync”) and the action clause constituent
(“can use ForceSync parameter”). Using PROSE directly will force
us to rely on fragile punctuation based parsers such as “extract
between the word If and the first comma” which would then fail
on differently punctuated statements like “If it is due to any other
error contact the reporting team".

To avoid learning such fragile rules, we first annotate the clauses
in the input component using a constituency tagger (see, for exam-
ple, [27, 53]) to annotate 3 kinds of constructs: simple declarative
clauses, subordinate clauses, and verb phrases. The tagged version
of the component is “If <CL1>you need to force the file sync</CL1>,
<CL2>you can use ForceSync parameter</CL2>”. With this tagged
component, the program synthesizer is able to synthesize a simple
parser that relies on searching for the anchor points <CL1>, </CL1>,
<CL2>, and </CL2>. This parser would also handle components with
missing punctuation correctly as the constituency tagger natively
understands natural language and does not rely on punctuation.
Iterative constituent extractions. In certain component types, some
constituents appear repeatedly. For example, in a Powershell com-
mand, parameter name and value constituents occur as many
times as there are parameters in the command. In the com-
mand Test-PolicyDistributionStatus -Org nybc.com -PolicyId

8dbdfce9 -Verbose True, there are 3 parameter names (“ − Org”,
“ − PolicyId”, and “Verbose”) and 3 parameter values (“nybc.com”,
“8dbdfce9”, and “True”).

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

Table 4: Description of some component parsers synthesized from example

Component Constituent E.g. input E.g. output Description of synthesized parsing program

PowerShell 1𝑠𝑡 Param Test-PolicyDistributionStatus -Org nybc ... -Org Extract between first two whitespace spans
ADF Subscription https://.../subsc/SUB1/resourceGroups/... SUB1 Extract alphanumeric span preceding /resourceGroups/

Kusto TableName
Tba | where ... Tba

Condition program with 3 branchescluster(...).db(...).AutoTriage | sort ... AutoTriage

let result = newUser | where ... newUser

NL Conditional Condition If it returns True, you can ... it ... True Extract between tags <CL1> & </CL1> after constituency tagging

One potential way of handling this scenario is to learn a
different parser for the 𝑖𝑡ℎ parameter for each 𝑖 . While sound,
this strategy would repeat work learning a similar parser for
each 𝑖 . Instead, we follow an iterative strategy in AutoTSG: we
only learn parsers for the 1𝑠𝑡 constituents. During extraction,
we (a) first extract the constituents for the first parameter from
the component obtaining “ − Org” and “nybc.com”, (b) delete the
extracted constituents from the component to obtain the new
component Test-PolicyDistributionStatus -PolicyId 8dbdfce9

-Verbose True, and (c) repeat the steps as long as there are more
constituents to be extracted obtaining in sequence “ − PolicyId”,
“8dbdfce9” and “ − Verbose”, “True”.

4 EVALUATION
4.1 Component Identification Evaluation

Setup. To evaluate AutoTSG’s component identification model, we
use a manually labeled dataset. We begin by first extracting 1902
statements from 50 TSGs from various services at Microsoft. We
then manually classify these sentences into their respective compo-
nent types, using a combination of domain expertise and existing
command databases. For evaluation, we choose 7 component types
(shown in Table 3), based on their frequency of occurrence in TSGs
as reported by domain experts at Microsoft.

To mitigate the explosion of data and class imbalance, caused
by a large number of natural language instructions in TSGs and
our pair-wise sampling approach during meta-learning, we limit
Natural Language to 200 random examples. With this, we create
a dataset of 661 labeled examples. We then compare AutoTSG’s few-
shot SiameseNet model (Section 3.1.3) against multiple baselines,
in a 5-fold cross-validation setting that ensures models do not over-
fit training data. In Table 5, we report the 5-fold cross-validation
precision, recall, and F1 scores, for each component type. We also
report overall aggregated metrics, including the accuracy of our
models.

Baselines. First we have KNN_BoW – a K-nearest-neighbor [4]model
using a Bag-of-words [22] as features. Next, with RF_BoW, we in-
troduce a Random Forest [8] model, while keeping Bag-of-words
as features. Here, we specifically choose these two models as they
are simpler, yet learn classification similar to our SiameseNet – by
separating classes from each other. Next, we have KNN_W2V and
RF_W2V, where we retain the models, but update the Bag-of-words
feature space to Word2Vec [49]. For Word2Vec models, we fine-
tuned pre-trained models to a corpus of 3000+ TSG sentences, using
sentencepiece [30] and gensim [55].

Baseline Results. From Table 5, we see that all baselines perform
quite well overall. RF_BoW is the best, with an overall F1 of 0.81 and
an accuracy of 0.78. However, we see that these models perform
well for certain components, but poorly for others. For instance,
in Table 5, we observe high F1 scores (0.71–0.93) for ADF, Jarvis,
and Kusto. Table 3 shows that these components have distinct
structure and syntax (e.g., ‘https://adf.’, ‘https://jarvis-’, ‘| where’),
making them easier to identify. However, we find poor F1 scores
(0.40–0.63) for components that are harder to distinguish, such as
Torus, Merlin, and Powershell. This can be attributed to these
components sharing syntax/structure, but having variations in vo-
cabulary/semantics (refer Table 3). This makes distinguishing these
components non-trivial and our baselines fail to capture these se-
mantic variations.

SiameseNet. Lastly, we evaluate our proposed SiameseNet ap-
proach, which incorporates meta-learning to first learn a meta-task
– distinguishing between components. We then utilize a nearest
neighbor search approach to classify sentences into components in
the embedding space. As shown in Table 5, our approach achieves
an average accuracy of 0.89, which is significantly better than our
baselines. We also observe that it reaches high F1 scores (0.72–0.98)
across all component types. Particularly, unlike the baselines, we
see strong results for components that are harder to distinguish
like Torus, Merlin, and Powershell. Hence, with AutoTSG’s meta-
learning approach capturing syntax and semantics of components,
we are able to outperform multiple strong baselines.

4.2 Component Parsing Evaluation

Setup. Next, we evaluate AutoTSG’s effectiveness to parse and ex-
tract constituents of components using synthesized programs from
PROSE. As described in Section 3.2, AutoTSG uses programming-
by-examples to synthesizes parsers, for each constituent of a com-
ponent (e.g., parameters of a Powershell command).

We then test these synthesized programs on the 1902 sentence la-
beled dataset described in Section 4.1 and collect the parsed outputs.
Here, we ensure that there is no overlap between the specification
examples and the test dataset. Then, we manually validate the
precision (i.e., constituents parsed are correct) and recall (i.e., all
constituents of the input are parsed) of each parsed output.

Results. Table 6 shows the average precision and recall of pars-
ing, aggregated for each component. As shown, AutoTSG’s parser
synthesizer can generate accurate parsers that can be learned from
5-10 specification examples. For instance, with just 8 examples, we
can learn parsers for Powershell statements with a precision of 0.9

AutoTSG: Learning and Synthesis for Incident Troubleshooting

Table 5: Evaluation of Component Identification

Component KNN_BoW RF_BoW KNN_W2V RF_W2V SiameseNet

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Support

ADF 0.65 1.00 0.75 0.90 1.00 0.93 1.00 1.00 1.00 0.87 1.00 0.90 0.67 1.00 0.72 6
Jarvis 1.00 1.00 1.00 1.00 1.00 1.00 0.69 1.00 0.78 0.82 0.77 0.75 1.00 1.00 1.00 14
Kusto 1.00 0.60 0.72 0.87 0.87 0.85 0.62 0.87 0.72 0.92 0.53 0.62 0.97 0.87 0.91 29
Merlin 0.60 0.51 0.54 0.69 0.49 0.55 0.45 0.42 0.43 0.49 0.38 0.43 0.95 0.65 0.76 106
Torus 0.70 0.84 0.76 0.75 0.84 0.79 0.54 0.78 0.64 0.52 0.72 0.60 0.82 0.95 0.87 202
Powershell 0.48 0.57 0.51 0.64 0.72 0.67 0.88 0.29 0.41 0.54 0.38 0.42 0.97 0.82 0.87 104
Natural Language 0.94 0.69 0.79 0.95 0.90 0.92 0.95 0.82 0.88 0.83 0.80 0.81 1.00 0.97 0.99 200

Overall 0.77 0.74 0.72 0.83 0.83 0.82 0.73 0.74 0.69 0.71 0.65 0.65 0.91 0.90 0.87
Accuracy 0.69 0.78 0.62 0.65 0.89

Table 6: Evaluation of Component Parsing

Component {Constituents} Sup. Pre. Rec.

Torus {variable, command, parameters} 202 0.93 0.81
Merlin {variable, command, parameters} 106 0.92 0.86
Powershell {variable, command, parameters} 104 0.90 0.80
Kusto {cluster, database, table, query} 29 1.00 1.00
ADF {subscription, resourcegroup, factory} 6 1.00 1.00
Conditionals {condition, action} 127 0.87 0.97

Overall 0.94 0.91

and recall of 0.8. Also, with just 10 examples of conditional state-
ments, we can learn parsers to extract conditions () and actions
() accurately. More importantly, these parsers have high recall;
i.e., are robust to variations in conditional statements such as “If
command returns True, then create an incident”, “If the status is False
delete the resource”, “If average latency is > 300 ms”, etc. Overall,
we find that our parsers have a high average precision of 0.94 and
recall of 0.91.

Further, we looked at some common test examples that were
incorrectly extracted. For instance Torus parsers incorrectly
parsed the statement: $m = Get-Mailbox -Arbitrate -Identity $

identity and returned {variable: '$m', command: 'Get-Mailbox

', parameters: [('Arbitrate', '-Identity')]}. As shown, the
parsers incorrectly identified Arbitrate as a parameter whose value
is -Identity. This is due to the usage of flag parameters like -

Arbitrate in between commands, that were unseen in the synthesis
specification. We find that these kinds of errors can be fixed by
learning programs from a larger set of specification examples that
cover these variations. In another example of a Powershell state-
ment: $m | Format-List $db, we observed that the parsers returned
empty results. This is because of the usage of pipe: | in a conjunction
of statements, which was unseen in the specification. We find that
these kinds of errors can be fixed with some preprocessing, such as
splitting the command on pipes and iteratively calling the parsers.

Thus, our analysis shows that precise component parsers for
TSGs can be effectively learned from a small set of examples through
program synthesis – creating a scalable solution to expand AutoTSG
to other kinds of components with minimal manual effort.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

25

50

75

100

TSG Id

%
of

TS
G

Valid
Invalid
notAutomatable

Figure 4: Coverage for TSG Automation

4.3 TSG Coverage Evaluation

Setup. In this section, we look at the overall coverage of AutoTSG
for TSG automation. For this, we select the top 15 most frequently
used TSGs for incident mitigation. We then run AutoTSG on these
TSGs and validate the returned results for each line in a TSG –
both the component type and parsed output. First, we mark all
lines in the TSG that are notAutomatable; i.e., lines that cannot
be converted to an executable. Next, for every automatable line,
we verify if the result is Valid or Invalid for automation; i.e.,
whether the line was correctly identified and parsed by AutoTSG.
Finally, we report the coverage of AutoTSG as the percentage of
valid automatable lines.

Results. Figure 4 shows the results of this evaluation. First, we
observe that TSGs have majority of notAutomatable lines. This
is expected as much of a manual TSG is made up of statements
that are either not executable or not required for automation. For
example, in TSGs #1, #3, #4, and #5, we observe statements such
as section headers, dates, links to other TSGs, author name, step
descriptions, comments, and points of contact. While we accurately
identify these statements as Natural Language, we cannot parse
them into executables, hence, making them notAutomatable.

Next, we find that on average 21.24% of all lines in TSG is cor-
rectly automatable (Valid) using AutoTSG. Also, for 6 TSGs, more
than 25% of all lines are correctly automatable, with a maximum
coverage of 41.2% for TSG#8. Overall, we observe that for 12/15
TSGs, 100% of automatable lines in a TSG were correctly identified
and parsed by AutoTSG showing that AutoTSG is highly effective
at accurately identifying and parsing necessary information to au-
tomate a TSG into executable workflows.

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

4.4 AutoTSG User Study
So far, we have shown that AutoTSG has very high accuracy and cov-
erage. Next, we perform a user study to understand the importance
of TSG automation and the usefulness of AutoTSG.

Setup. In order to select the study participants, randomly sampled
30 on-call engineers at Microsoft who have mitigated or resolved
incidents in the last six months and invited them for interviews.
With a response rate of 33%, 10 out of the 30 invitees agreed for
an interview. These 10 participants (𝑃1-𝑃10) work across 8 teams at
Microsoft. They hadmitigated or resolved on average 1852 incidents,
with the minimum being 41 and maximum 5432. We conducted
≈15-minute semi-structured interviews with these 10 participants.

We began by asking how often the participant uses TSGs for
incident mitigation. Next, we recorded verbatim responses on the
issues they face with today’s TSGs. Then, we introduced a manual
TSG and asked if automating the TSG would help. If the response
was yes, we introduced the participant to the results of TSG au-
tomation using AutoTSG and a human-in-the-loop approach. First,
we showed a schematized TSG (JSON), returned by AutoTSG, with
components identified and parsed – as in Fig. 3. Then, we showed
the final automated TSG (Jupyter notebook) that would be pro-
grammatically generated from the schematized TSG. Given this, we
asked the participants to rate the usefulness of AutoTSG for TSG au-
tomation on a 5-point Likert scale [56]. However, if the participant
responded that automating the TSG would not help, we collected
responses on why they thought so. Next, we summarize the results
of the study.

Q1. How often do you use TSGs for mitigation? Here, a major-
ity of six participants said they use TSGs every other week, while
three others said they use them every month. Interestingly, one
participant said they use TSGs every day. When asked why they
use TSGs every day, they said:

𝑃2: “My usual on-call rotation is bi-weekly. But I end up helping
my peers use TSGs every day, because they are bad and confusing.”

Q2. What challenges do you face with TSGs? Here, we ob-
served that all participants responded with some type of challenge
they faced due to quality issues in TSGs. We find the majority of
them talked about completeness, readability, and usability issues.
Here are some representative verbatim responses:

𝑃4: “TSGs maybe maintained, but we don’t find them elaborative.
SME (subject matter expert) thinks this is well defined, but for us
or new members additional info should be added.”

𝑃6: “I work on a service with a lot of customization. So when
incidents arise, I have to manually verify which steps in a TSG
will work for that incident. There is no guaranteed solution.”

𝑃7: “Mostly outdated TSGs or missing the information I need. So I
generally discuss with my team for many of the issues.”

Q3. Do you think automating TSGswould help?Here, notably,
all participants of the user study said that automating TSGs would
help. Apart from reducing on-call load, effort, and human error, the
participants identified other positive outcomes of automation:

𝑃2: “The team being able to review automated TSGs is very valu-
able. We can check for the safety of steps – which today is missing.”

Q3.a. If Yes, howuseful is AutoTSG for TSGAutomation?Here,
we look at the distribution of the 5-point Likert scale ratings pro-
vided by the participants. We find that the participants gave the
usefulness of AutoTSG an average rating of 4.2. A majority six par-
ticipants gave a rating of 4, three participants gave a rating of 5, and
one participant gave a neutral rating of 3. Overall, we find that our
participants strongly perceived AutoTSG to positively aid the au-
tomation of TSGs. Some even remarked at how AutoTSG motivates
an automated on-call experience of the future:
𝑃1: “This tool also motivates teams to better document their queries,
commands, etc., from the get-go in executable notebooks.”

𝑃3: “When will this be available? This is great! This can drive
future data analysis like which TSGs, commands, etc. were run
frequently, and help find major issues.”

Q3.b. If No, why is automation not useful? As stated, no par-
ticipant responded that automation of TSGs would not be useful.

5 RELATEDWORK
Incident Management. Troubleshooting guides are critical for in-
cident management, which has been a popular research direction in
software engineering. Recent work has focused on multiple aspects
of incident management like triaging [9, 10], mitigation [24], diag-
nosis [6, 39, 51], and more. Particularly close to our work, are efforts
that attempt to mine structured knowledge from various artifacts,
such as incident reports [26, 59, 60] and root cause documentation
[57]. However, we tackle an aspect of incident management, that
has received relatively lesser attention – TSGs. Jiang et al. [24],
analyzed the usage of troubleshooting guides and proposed a TSG
recommendation system to help developers find relevant TSGs.
Our empirical study also supports the findings of such prior work.
However, different from them, we also study the quality aspects of
TSGs, like completeness, correctness, etc., that make them difficult
to use. Lastly, our findings motivate the automation of TSGs, that
in-turn introduces properties of source code to TSGs. We introduce
AutoTSG – a novel framework to aid with the automation of TSGs.
Software Documentation. While studies on troubleshooting
guides are limited, there have been several efforts to study soft-
ware documentation in general. These can be classified into 2 cat-
egories: (1) tools to generate/recommend documentation and (2)
empirical investigation of documentation usage and quality. Regard-
ing automation for documentation, research has focused on either
summarization or recommendation for bug reports [38, 41], code
[13, 25, 42], user stories [29], API usage examples [23, 35, 50, 62],
etc. Different from these, our tool AutoTSG focuses on automation
that helps translate manual text documentation to executable work-
flows. Closer to our work in this space are the empirical studies on
documentation. These studies use user surveys to analyze the im-
portance and quality of software documentation [1, 2, 11, 14, 19, 54],
but focus on software maintenance in general, unlike our work on
the specific task of troubleshooting. Most analogous to our work
on TSG quality is the taxonomy of documentation quality proposed
by Aghajani et al. [2], to which we compare our work in detail in
Section 2.2.
Few-shot Learning & Meta-Learning. Few-Shot Learning (FSL)
[16, 17] is a type of machine learning problem, where we learn a

AutoTSG: Learning and Synthesis for Incident Troubleshooting

task from only a limited number of examples for the target. FSL
is particularly useful to help reduce the burden of collecting large
datasets of supervised information, such as in large-scale image
classification [28, 64, 69], language modeling [68], drug discovery
[3], robotics [15, 18], and more. Unlike these well studied scenarios,
in this work, we use FSL in the domain of TSGs, with varying kinds
of information – commands, queries, links, instructions, etc.

To enable FSL, we use meta-learning [58], commonly known
as learning to learn. It refers to learning related tasks, and using
this to learn new tasks much faster than otherwise possible [67].
Particularly, in our scenario, we use a flavour ofmeta-learning called
metric-learning. Here, the idea is to learn input representations
and a similarity metric during the meta-learning phase [28, 61, 63,
68]. In this work, we use a Siamese convolutional network [28]
to embed TSG statements and separate the final task, component
identification, from the neural net, and instead use a fast nearest
neighbor search approach for classification, like Snell et al. [61].

Program Synthesis. Program synthesis techniques, especially
programming-by-examples (PBE), have been applied to various
domains [31, 34, 43]. Gulwani [20] introduced FlashFill to synthe-
size string transformation scripts from examples. In the software
engineering domain, there have been efforts to apply program syn-
thesis techniques on code related tasks such as learning version
update patches [5], code edit scripts [43], and merge conflict reso-
lutions [52]. However, our work targets a new domain that has not
been explored using PBE: software documentation. Different from
prior work, TSGs contain a multitude of components (commands,
queries, natural language), each with a large number of input vari-
ations. Using PROSE [47] and its text transformation DSL (core to
the FlashFill system), we show that even under such conditions,
robust parsers can be learnt using a minimal set of input-output
specifications.

6 DISCUSSION AND CONCLUSION
In this work, we presented a large-scale empirical study of over 4K+
TSGsmapped to 1000s of incidents. Our analysis indicates that TSGs
are very frequently used for incident mitigation and notably help
reduce mitigation time and effort. However, on studying feedback
provided by 400+ on-call engineers at Microsoft, we uncover sig-
nificant gaps in TSG quality, such as completeness, maintainability,
readability, etc., characterized by our proposed taxonomy of issues.
These insights motivate us to investigate the automation of TSGs
and propose AutoTSG - a novel framework to aid with the automa-
tion of manual TSGs to executable workflows combining machine
learning and program synthesis. Our evaluation of AutoTSG on 50
TSGs shows the effectiveness of the tool to both identify TSG state-
ments (accuracy 0.89) and parse them for execution (precision 0.94
and recall 0.91). Lastly, with a survey of engineers at Microsoft, we
show the usefulness of TSG automation and AutoTSG for TSG users.
As next step, we are planning to deploy AutoTSG as a self-serve tool
at Microsoft with an accompanying user interface and a feedback
loop. We envision TSG authors uploading their current TSGs and
viewing the automated TSG returned by our tool. Here, the author
would edit/fix errors in the results, which we collect as feedback
for re-training and improvement. Further, prior research [36] has
shown that due to highly complex dependencies between services,
on-call engineers find it challenging to mitigate incidents. With

AutoTSG and automated TSGs, we plan to automatically infer of
a queue of TSGs to run, from various services, and help mitigate
such complex incidents.

7 ACKNOWLEDGEMENTS
Wewould like to acknowledge the invaluable contributions and sup-
port of Tarun Sharma, Abhilekh Malhotra, Sunil Singhal, Harinder
Pal, Gurpreet Singh, Shalki Aggarwal, Sakshum Sharma, Rahul
Mittal, Puneet Kapoor, Saravan Rajmohan, and B. Ashok.

REFERENCES
[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:
the practitioners’ perspective. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 590–601.

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1199–1210.

[3] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. 2017.
Low data drug discovery with one-shot learning. ACS central science 3, 4 (2017),
283–293.

[4] Naomi S Altman. 1992. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician 46, 3 (1992), 175–185.

[5] Jesper Andersen and Julia L Lawall. 2010. Generic patch inference. Automated
software engineering 17, 2 (2010), 119–148.

[6] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and
Mathru Janakiraman. 2020. DeCaf: Diagnosing and Triaging Performance Issues
in Large-Scale Cloud Services. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[7] Y-Lan Boureau, Jean Ponce, and Yann LeCun. 2010. A Theoretical Analysis of
Feature Pooling in Visual Recognition. In Proceedings of the 27th International Con-
ference on International Conference on Machine Learning (Haifa, Israel) (ICML’10).
Omnipress, Madison, WI, USA, 111–118.

[8] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[9] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and D.

Zhang. 2019. An Empirical Investigation of Incident Triage for Online Service
Systems. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 111–120.

[10] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and D. Zhang.
2019. Continuous Incident Triage for Large-Scale Online Service Systems. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 364–375.

[11] Jie-Cherng Chen and Sun-Jen Huang. 2009. An empirical analysis of the impact
of software development problem factors on software maintainability. Journal of
Systems and Software 82, 6 (2009), 981–992.

[12] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[13] Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating commit messages via sum-
marization of source code changes. In 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation. IEEE, 275–284.

[14] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. 68–75.

[15] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas
Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. 2017. One-shot
imitation learning. Advances in neural information processing systems 30 (2017).

[16] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2006. One-shot learning of object
categories. IEEE transactions on pattern analysis and machine intelligence 28, 4
(2006), 594–611.

[17] Michael Fink. 2004. Object classification from a single example utilizing class
relevance metrics. Advances in neural information processing systems 17 (2004).

[18] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning. PMLR, 1126–1135.

[19] Golara Garousi, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian
Smith. 2013. Evaluating usage and quality of technical software documentation:
an empirical study. In Proceedings of the 17th international conference on evaluation
and assessment in software engineering. 24–35.

[20] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.

Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula,
Arjun Radhakrishna, Anurag Gupta

[21] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1–119.

[22] Zellig S Harris. 1954. Distributional structure. Word 10, 2-3 (1954), 146–162.
[23] Reid Holmes and Gail C Murphy. 2005. Using structural context to recommend

source code examples. In Proceedings of the 27th international conference on
Software engineering. 117–125.

[24] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[25] Siyuan Jiang and Collin McMillan. 2017. Towards automatic generation of
short summaries of commits. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). IEEE, 320–323.

[26] Shinji Kikuchi. 2015. Prediction of workloads in incident management based on
incident ticket updating history. In 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing (UCC). IEEE, 333–340.

[27] Nikita Kitaev, Steven Cao, andDan Klein. 2019. Multilingual Constituency Parsing
with Self-Attention and Pre-Training. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, Florence, Italy, 3499–3505. https://doi.org/10.18653/v1/P19-1340

[28] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. 2015. Siamese neural
networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.
Lille, 0.

[29] Rrezarta Krasniqi, Siyuan Jiang, and Collin McMillan. 2017. Tracelab components
for generating extractive summaries of user stories. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 658–658.

[30] Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226 (2018).

[31] Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 542–553.

[32] Alexander LeClair, Zachary Eberhart, and Collin McMillan. 2018. Adapting
Neural Text Classification for Improved Software Categorization. In 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 461–472.
https://doi.org/10.1109/ICSME.2018.00056

[33] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.
Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation 1, 4 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.
541

[34] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing precision and
performance in structured merge. Automated Software Engineering 22, 3 (2015),
367–397.

[35] Jing Li, Aixin Sun, and Zhenchang Xing. 2018. Learning to answer program-
ming questions with software documentation through social context embedding.
Information Sciences 448 (2018), 36–52.

[36] Liqun Li, Xu Zhang, Xin Zhao, Hongyu Zhang, Yu Kang, Pu Zhao, Bo Qiao, Shilin
He, Pochian Lee, Jeffrey Sun, et al. 2021. Fighting the Fog of War: Automated In-
cident Detection for Cloud Systems. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). 131–146.

[37] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[38] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. 2015. Modelling the
‘hurried’bug report reading process to summarize bug reports. Empirical Software
Engineering 20, 2 (2015), 516–548.

[39] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang,
and Zhe Wang. 2014. Correlating events with time series for incident diagnosis.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1583–1592.

[40] John MacFarlane. [n.d.]. Pandoc. https://pandoc.org/index.html.
[41] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava Dubey. 2012.

Ausum: approach for unsupervised bug report summarization. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 1–11.

[42] Paul W McBurney and Collin McMillan. 2015. Automatic source code summa-
rization of context for java methods. IEEE Transactions on Software Engineering
42, 2 (2015), 103–119.

[43] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Systematic editing:
generating program transformations from an example. ACM SIGPLAN Notices
46, 6 (2011), 329–342.

[44] Microsoft. [n.d.]. “Azure Data Factory”. https://azure.microsoft.com/en-in/
services/data-factory/.

[45] Microsoft. [n.d.]. “AzureMonitor”. https://docs.microsoft.com/en-us/azure/azure-
monitor/overview.

[46] Microsoft. [n.d.]. “Kusto Query Language (KQL)”. https://docs.microsoft.com/en-
us/connectors/kusto/.

[47] Microsoft. [n.d.]. “Microsoft program synthesis using examples (prose) sdk.”.
https://www.microsoft.com/en-us/research/group/prose/. Accessed: 2022-05-19.

[48] Microsoft. [n.d.]. “Powershell”. https://docs.microsoft.com/en-us/powershell/.
[49] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[50] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How can I use this method?. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. IEEE, 880–890.

[51] Vinod Nair, Ameya Raul, Shwetabh Khanduja, Vikas Bahirwani, Qihong Shao,
Sundararajan Sellamanickam, Sathiya Keerthi, Steve Herbert, and Sudheer Dhuli-
palla. 2015. Learning a hierarchical monitoring system for detecting and di-
agnosing service issues. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2029–2038.

[52] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu Lahiri,
and Mike Kaufman. 2021. Can program synthesis be used to learn merge conflict
resolutions? an empirical analysis. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 785–796.

[53] Constituency Parsing. 2009. Speech and language processing. (2009).
[54] Reinhold Plösch, Andreas Dautovic, andMatthias Saft. 2014. The value of software

documentation quality. In 2014 14th International Conference on Quality Software.
IEEE, 333–342.

[55] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50. http://is.muni.cz/publication/
884893/en.

[56] John Robinson. 2014. Likert Scale. Springer Netherlands, Dordrecht, 3620–3621.
https://doi.org/10.1007/978-94-007-0753-5_1654

[57] Amrita Saha and Steven CH Hoi. 2022. Mining Root Cause Knowledge from
Cloud Service Incident Investigations for AIOps. arXiv preprint arXiv:2204.11598
(2022).

[58] Jürgen Schmidhuber. 1987. Evolutionary principles in self-referential learning, or
on learning how to learn: the meta-meta-... hook. Ph.D. Dissertation. Technische
Universität München.

[59] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, and Nachiappan
Nagappan. 2021. SoftNER: Mining Knowledge Graphs From Cloud Incidents.
https://doi.org/10.48550/ARXIV.2101.05961

[60] Manish Shetty, Chetan Bansal, Sumit Kumar, Nikitha Rao, Nachiappan Nagappan,
and Thomas Zimmermann. 2021. Neural knowledge extraction from cloud service
incidents. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 218–227.

[61] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in neural information processing systems 30 (2017).

[62] Jeffrey Stylos and Brad A Myers. 2006. Mica: A web-search tool for finding api
components and examples. In Visual Languages and Human-Centric Computing
(VL/HCC’06). IEEE, 195–202.

[63] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1199–1208.

[64] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip
Isola. 2020. Rethinking few-shot image classification: a good embedding is all
you need?. In European Conference on Computer Vision. Springer, 266–282.

[65] Secil Ugurel, Robert Krovetz, and C. Lee Giles. 2002. What’s the Code? Automatic
Classification of Source Code Archives. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Edmonton,
Alberta, Canada) (KDD ’02). Association for Computing Machinery, New York,
NY, USA, 632–638. https://doi.org/10.1145/775047.775141

[66] Amrisha Vaish, Tobias Grossmann, and Amanda L Woodward. 2008. Not all
emotions are created equal: the negativity bias in social-emotional development.
Psychological bulletin 134 3 (2008), 383–403.

[67] Joaquin Vanschoren. 2018. Meta-learning: A survey. arXiv preprint
arXiv:1810.03548 (2018).

[68] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. Advances in neural information pro-
cessing systems 29 (2016).

[69] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2020. Deepemd: Few-
shot image classification with differentiable earthmover’s distance and structured
classifiers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 12203–12213.

https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.1109/ICSME.2018.00056
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://pandoc.org/index.html
https://azure.microsoft.com/en-in/services/data-factory/
https://azure.microsoft.com/en-in/services/data-factory/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://docs.microsoft.com/en-us/connectors/kusto/
https://docs.microsoft.com/en-us/connectors/kusto/
http://approjects.co.za/?big=en-us/research/group/prose/
https://docs.microsoft.com/en-us/powershell/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.48550/ARXIV.2101.05961
https://doi.org/10.1145/775047.775141

	Abstract
	1 Introduction
	2 Empirical Study
	2.1 TSG Usage
	2.2 TSG Quality
	2.3 Implications & Recommendations

	3 AutoTSG: Towards TSG Automation
	3.1 Component Identification
	3.2 Component Parsing

	4 Evaluation
	4.1 Component Identification Evaluation
	4.2 Component Parsing Evaluation
	4.3 TSG Coverage Evaluation
	4.4 AutoTSG User Study

	5 Related Work
	6 Discussion and Conclusion
	7 Acknowledgements
	References

