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ABSTRACT
Large Transformer models achieved the state-of-the-art status for
Natural Language Understanding tasks and are increasingly be-
coming the baseline model architecture for modeling source code.
Transformers are usually pre-trained on large unsupervised cor-
pora, learning token representations and transformations relevant
to modeling generally available text, and are then fine-tuned on
a particular downstream task of interest. While fine-tuning is a
tried-and-true method for adapting a model to a new domain – for
example, question-answering on a given topic – generalization re-
mains an on-going challenge. In this paper, we explore and evaluate
transformer model fine-tuning for personalization. In the context
of generating unit tests for Java methods, we evaluate learning to
personalize to a specific software project using several personal-
ization techniques. We consider three key approaches: (i) custom
fine-tuning, which allows all the model parameters to be tuned; (ii)
lightweight fine-tuning, which freezes most of the model’s parame-
ters, allowing tuning of the token embeddings and softmax layer
only or the final layer alone; (iii) prefix tuning, which keeps model
parameters frozen, but optimizes a small project-specific prefix vec-
tor. Each of these techniques offers a trade-off in total compute
cost and predictive performance, which we evaluate by code and
task-specific metrics, training time, and total computational opera-
tions. We compare these fine-tuning strategies for code generation
and discuss the potential generalization and cost benefits of each
in various deployment scenarios.
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1 INTRODUCTION
It is well-known that even the best models can fail to generalize
properly to new domains, and even to new users of said models.
For example, a model trained to answer questions in general may
not answer StackOverflow questions as well as the questions in
the training domain, or a software developer in an Enterprise envi-
ronment with private code may have libraries and attribute name
which differ from public source code used to train a code synthesis
model.

The current dominant paradigm in Natural Language Processing
(NLP) modeling is to pre-train a large transformer model [30] on a
large corpus and then fine-tune it on a particular task of interest. For
example, a question-answering (Q&A) model is generally first pre-
trained on a large corpus of textual data for the specific language
(e.g.,Wikipedia, and news articles in English), then fine-tuned on
a task-specific dataset of paired questions and corresponding an-
swers. The pre-training process aims at learning semantic vector
representation of the language and words, while the fine-tuning
process specializes the model for a specific domain.

Transformer models are also increasingly the baseline archi-
tecture used for code generation tasks, such as writing methods
from natural language description [2, 5, 7], or generating test cases
from the focal method under test [29]. Similarly for NLP tasks
these models are pre-trained on a large corpus of natural text and
publicly available source code and then fine-tuned on a specific
code-related task. Further, these models also may not generalize to
new domains of interest, and can benefit from task or even user-
specific fine-tuning, here called customization or personalization.
Customization is particularly relevant for code generation models
since it provides several benefits:

• allows fine-tuning on source code data that may not be
available when training a base model (e.g., private repos-
itories or internal codebases), enabling improved overall
performances on codebases with proprietary dependencies
and code styles;

• the opportunity to improve data privacy by considering
private or sensitive data only during the customization
process on the client side;

• the opportunity to reduce deployment cost as customized
models can offer better user performance without increas-
ing model size.
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Custom models can provide clear benefits to users and model
providers. We envision serving tens or hundreds of thousands of
custom models, but doing so presents several logistical hurdles,
including the costs of training, storing, and loading these models
into GPU memory for inference. Worse, memory costs will only
be exacerbated when working with ever larger and more powerful
models.

For these reasons, we investigate several customization approaches,
some of which can dramatically reduce the memory footprint and
amortized computational cost introduced by custom models. Specif-
ically, we consider three fine-tuning approaches: (i) custom fine-
tuning, which allows all the model parameters to be tuned; (ii)
lightweight fine-tuning, which only optimizes the token embedding
representations or the final softmax layer; (iii) prefix tuning, which
keeps language model parameters frozen, but optimizes a small
project-specific vector prefix.

In our extensive empirical evaluation we found that all the cus-
tomization strategies lead to significant model improvements on a
target project in terms of both intrinsic and task-specific metrics.
While there is no unambiguous winner among the customization
strategies, each approach can provide specific benefits in particu-
lar deployment scenarios. This paper provides insights on these
customization strategies, their benefits and drawbacks, as well as
providing guidelines and suggestions on which one to use based
on the training cost, memory and storage, number of users, and
deployment scenarios.

2 MOTIVATION
Software projects are often classified based on their architecture
(e.g., web, server, monolithic), domain (e.g., finance, healthcare),
topic or usages (e.g., games, editors). In this context, several tech-
niques have been proposed in the literature for the task of software
categorization, which aims at organizing projects into groups that
broadly describe the behavior or topic of the software. MUDABlue
[13], relies on Latent Semantic Indexing (LSI), an Information Re-
trieval (IR) technique, to automatically categorize software systems
in open source software repositories. For the same task, LACT [27]
uses Latent Dirichlet Allocation (LDA), and recently neural text clas-
sification with word embeddings has been used [14] to categorize
similar software projects.

While projects can be broadly categorized, each individual soft-
ware project, apart from trivial forks and clones, have peculiar
characteristics which make them unique. Codebases have different
user-defined types, API usages, specific coding styles, and identi-
fiers’ preferences chosen by developers. These idiosyncrasies rep-
resent an additional level of complexity for models that aim at
generating code for a variety of software projects.

This is exacerbated by the fact that transformer models only
receive a limited-size input during inference, often considering
only the current source code file. This confined window of tokens
(commonly set at 1024 tokens) cannot provide a complete view of
the project with its peculiarities. An accurate generation requires
information about packages, classes, APIs, and identifiers that are
external to the portion of code provided as input. Thus, we argue
for personalized models that can generate custom code for specific
projects.

Figure 1: Heat-map displaying the ratios of shared tokens
among software projects. Most projects share relatively few
identifiers with other codebases.

As an exploratory study, we begin by observing projects’ diver-
sity in terms of tokens used in their source code. Specifically, we’re
interested in understanding the amount of shared tokens among
different software projects. This could serve as an initial, rough,
proxy metric to measure project diversity and potentially motivate
the need for personalized models.

We select 930 Java software projects randomly sampled from
GitHub, declaring an open source license, which have been updated
within the last five years, and are not forks. These projects belong to
the validation set of the open dataset Methods2Test [29]. For each
project, we collect all the available .java files combining them into
a single-project corpus. Next, we remove licensing information and
comments using regex, then tokenize the corpus using gensim [22]
tokenizer (with lowercase setting). From the list of tokens, we com-
pute the set of unique tokens used within the project, and exclude
the Java keywords from this set (similar to stopwords).

For each pair of projects 𝑝𝑖 and 𝑝 𝑗 , with token sets 𝑇𝑖 and 𝑇𝑗 ,
we compute the shared token set 𝑇𝑖, 𝑗 = 𝑇𝑖 ∩𝑇𝑗 . Next, for both 𝑝𝑖
and 𝑝 𝑗 , we compute their corresponding ratios of shared tokens as
follows: 𝑅𝑖, 𝑗 = |𝑇𝑖, 𝑗 |/|𝑇𝑖 | and 𝑅 𝑗,𝑖 = |𝑇𝑖, 𝑗 |/|𝑇𝑗 |.

Figure 1 shows the ratio of shared tokens between each pair
of projects as a heat-map. Projects are sorted in ascending order
of the number of unique tokens used in their source code. Blue
values indicate a low ratio of shared tokens (the darker, the lower),
while red values indicate project pairs with substantial amount
of shared tokens. The heat-map appears mostly blue, indicating
that the majority of projects share relatively few tokens among
each others. The upper-right corner shows pairs with higher ratios
(white/red points), these are ratio computed for very small projects
whose tokens are contained in very large projects, hence the corner
position. Overall, the majority of project share relatively few iden-
tifiers with other projects. Specifically, if we consider all the values
in the matrix 𝑅 except for the diagonal (i.e., token shared with the
project itself), a project on median shares only 13% of its tokens
with another project, and the third quartile of the distribution is
below 23%.

We consider this study only as a preliminary analysis into the
diversity of software projects, which could motivate the need for

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Exploring and Evaluating Personalized Models
for Code Generation Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Custom (b) L-EO (c) L-LDB (d) Prefix

Figure 2: Overview of the Customization Approaches - Transformer models during fine-tuning, where the frozen parts of the
model (not trainable) are displayed in gray: (a) Custom fine-tuning modifies all parameters during training; (b) L-EO trains
only the embedding and output layers; (c) L-LDB allows to train only the parameters of the last decoder block; (d) Prefix tuning
adds a trainable prefix to the encoder and decoder blocks.

personalized models. We acknowledge the limitations of this study,
which could be extended considering different types of tokenizers,
preprocessing steps, and metrics. In Sec. 4 we design an experimen-
tal study that analyzes in details the impact of personalization on
the performances of transformer-based code generation models.

3 APPROACH
This section describes the proposed customization approach for
code generation models. We begin by formally defining the cus-
tomization process, then we provide details for each of the fine-
tuning strategies.

3.1 Customization Process
We use the term customization to refer to the process of fine-tuning
a model 𝑚, previously trained on a generic dataset for a task 𝑡 ,
with the goal of improving its performance on a specific dataset
𝑝 . The performance of a machine learning model𝑚 on a dataset 𝑝
is measured by one or more evaluation functions 𝑓 (𝑚, 𝑝), where
𝑓 can be either a maximization (e.g., BLEU, top-k accuracy) or
minimization (e.g., perplexity) function. The customization process
is designed to modify the trainable parameters of the model 𝑚,
obtaining the model𝑚′, such that the performance of𝑚′ on 𝑝 is
better thanwhat was attained by𝑚. Specifically, 𝑓 (𝑚′, 𝑝) > 𝑓 (𝑚, 𝑝)
for maximization functions, or 𝑓 (𝑚′, 𝑝) < 𝑓 (𝑚, 𝑝) for minimization
functions.

In this work,𝑚 is an encoder-decoder transformer model, 𝑡 is a
code generation task, and 𝑝 is a target software project to which
we intend to customize𝑚.

3.2 Custom fine-tuning
Custom fine-tuning is the most straightforward customization ap-
proach. The model to be customized is taken as is and trained on a
selected project. All parameters are trainable during this process.
Figure 2a shows the model during fine-tuning, where all the param-
eters from the encoder and decoder blocks, as well as embeddings
and output layers can be modified.

3.3 Lightweight fine-tuning - Embeddings and
Output Layer (L-EO)

Fully fine-tuning a model for every project or user may be prohibi-
tive in terms of storage and memory costs. As a result, we explore
ways to mitigate these costs by reducing the number of parameters
that vary from one custom model to another. In our lightweight
fine-tuning experiments, we achieve this by freezing most parame-
ters in the baseline model, and only keeping a small subset trainable.
Figure 2b shows the Lightweight fine-tuning - Embeddings and
Output Layer (L-EO) design, where most of the model parameters
are frozen (displayed in gray), and we allow only the embedding and
output layers parameters to be fine-tuned, following the approach
in [17].

3.4 Lightweight fine-tuning - Last Decoder
Block (L-LDB)

In this lightweight fine-tuning strategy, shown in Figure 2c (L-LDB),
most of the model’s parameters are kept frozen, while only the
parameters in the last decoder block are trainable, this includes: self-
attention, encoder-decoder attention, layernorm and feedforward

3
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layers. This design decision of training only the last decoder block is
motivated by experimental results analyzing the model’s parameter
changes during custom fine-tuning. Figure 3 reports the average
absolute changes, during fine-tuning, in the parameters belonging
to different Encoder and Decoder blocks for a BART model. We
observe that, as we go through the transformer model, the average
change in parameter values tends to increase, with the last decoder
block showing the highest changes in parameter values. As a result,
we hypothesize that it could be sufficient to tune the last decoder
block and obtain performance improvements similar to the fully
custom fine-tuned model.
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Figure 3: This figure shows the total average parameter
change after fine-tuning to a new project domain, showing
that the largest parameter changes occur in deeper parts of
the model. This motivates our choice to try only fine-tuning
the later layers of the model.

3.5 Prefix Tuning
Prefix tuning was first introduced by Li and Liang [15], with the
goal of fine-tuning a general model for different tasks. The tech-
nique concatenates a sequence (prefix) of virtual tokens (trainable
parameters) to the front of the input of every encoder and decoder
block. In our context, the intuition behind this approach is that
the prefix embeds the properties of a specific project, which allows
the model to generate customized responses for that repository.
Practically, we set the prefix length to 200 tokens, and thus with an
embedding size of 1024, this gives a total of 1024×200×24×2 ≈ 10M
trainable parameters. The prefix is initialized to the most frequent
words in the repository for which the model is customized.

3.6 Trainable Parameters during fine-tuning
Table 1 provides an overview of the number of total and trainable
parameters involved in each customization process, in the case of
a BART Transformer model with 406M parameters. Custom fine-
tuning allows to train 100% of the 406M available parameters in the
model. During L-EO finetuning, instead, only 13% (53M) parameters
are trained. The L-LDB finetuning reduces the number of trainable
parameters to 4.2% (17M). Finally, Prefix tuning has the lowest

Customization Process Parameters
Total Trained

Custom 406M 406M (100%)
L-EO 406M 53M (13%)
L-LDB 406M 17M (4.2%)
Prefix 416M 10M (2.4%)

Table 1: Comparing the number of trainable parameters in
each fine-tuning method.

number of trainable parameters, only 2.4% (10M) of the total, but
these are additional parameters added to the model, which reaches
a total of 416M.

4 EXPERIMENTAL DESIGN
The goal of our experimental design is to investigate whether cus-
tom models outperform the baseline model, leading to performance
improvements in terms of intrinsic metrics (RQ1), as well as ex-
trinsic task-specific metrics (RQ2). Next, we analyze and compare
the different customization approaches in terms of training and
compute costs (RQ3) as well as model size and required storage for
deployment.

In our case study, we chose Unit Test Case generation as our
code generation task 𝑡 , and AthenaTest by Tufano et al. [29] as
our baseline model 𝑚, which is a BART transformer model pre-
trained on source code and English, and fine-tuned on Java unit test
generation. The task is modeled as a translation task, where the
input is a focal method (i.e., method under test), and the output is a
test case which tests the focal method’s correctness. We randomly
sample 20 projects from the test set, each of those representing
the dataset 𝑝 on which a custom model is fine-tuned. Specifically,
for each project 𝑝 , we start from the baseline model𝑚 and fine-
tune four different custom models according to the four proposed
fine-tuning strategies. For each project and fine-tuning strategy
(e.g., L-EO), we fine-tune and evaluate the models using 4-fold
cross-validation. The models are trained until the best validation
loss is reached, independently for every fold, every repository, and
every customization approach. In total, we fine-tune and evaluate
20(𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑠) × 4(𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠) × 4(𝑓 𝑜𝑙𝑑𝑠) = 320 models.

4.1 Dataset
Table 2 reports information about the 20 GitHub repositories sam-
pled from the test set, which will be used to customize our models.
The table shows (i) the Project ID, which will be used in the paper
to reference a specific project; (ii) the project name; (iii) the project
size in terms of disk usage; (iv) the popularity of the project in
terms of number of stars obtained on GitHub; (v) and the dataset
size, which corresponds to the number of data points for the unit
test generation task (i.e., pair of focal method and test case). The list
of projects represent a diverse set of repositories with different size,
domain, and popularity. They span from small personal projects
(e.g., Tutorials with 6 stars), to open source projects developed
by large organizations such as Apache and Google.

4
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Project ID Name Project Size (MB) Stars Dataset Size

26644682 Talend Data Prep 68.8 56 651
40735368 GeoTools 62.4 8 653
107330274 Titus Control Plane 36.0 302 660
52972024 Smart Actors 57.8 22 704
9714608 Arakhnê Foundation Classes 17.9 13 753
60701247 Android Plugin for IntelliJ IDEA 1026.7 716 754
14550159 EverRest 5.3 24 761
9278888 Brave 18.8 2084 787
66940520 DHIS 2 118.1 211 862
33645537 Tutorials 34.4 6 878
62253355 Mobi 62.6 35 986
155883728 OakPAL 15.0 9 1005
4710920 Apache Dubbo 36.1 36231 1058
29603649 Wilma 6.7 40 1074
42949039 Herd 227.2 127 1249
1381673 Drools 176.7 3908 1394
1244027 ModeShape 131.1 212 1550
73948366 AthenZ 38.8 639 1920
660443 Chemistry Development Kit (CDK) 214.8 305 2591
87849739 Eclipse Ditto™ Project 52.5 311 2842

Table 2: Dataset - Projects used for customization

4.2 RQ1: Intrinsic Evaluation Metrics
RQ1: Do custommodels obtain better performances on intrin-
sic metrics, such as BLEU and perplexity, w.r.t. the baseline?
To begin, we investigate how the different model customization ap-
proaches described in Sec. 3 score on intrinsic metrics such as BLEU
and perplexity. All approaches entail fine-tuning the baseline model
to the dataset of a specific project, with the choice of parameters
being tuned depending on the approach taken. The four variants
are trained independently until the best validation loss is achieved.
We report the BLEU4 score and the mean perplexity per token on
the test fold, for all the 20 projects. Next, we perform statistical
tests to investigate whether the observed differences between the
baseline and custom models are significant, as well as differences
among the customization approaches. Specifically, we rely on the
Kruskal-Wallis test, a non-parametric statistical test.

4.3 RQ2: Task-specific performances
RQ2: Do custom models improve on performance metrics
specific to unit test generation?We want to investigate how the
different customization approaches compare with respect to the
downstream task of generating unit tests. Beyond BLEU score and
perplexity, we would like to see if custom models can produce the
correct target code, how closely their unit tests mimic the repository
style, or even if they can perfectly match the desired output.

• Perfect Matches: We compare the model’s output string with
the target developer-written unit test. If the two strings are
identical, this is considered a perfect match. We do not take
spacing and indentation into account as we are using a
Java dataset (where indentation is not required). We report

the proportion of perfect matches among the top 5 model
predictions.

• Abstracted Code Matches: We pass the model output and
target output through the src2abs tool [28], to obtain an
abstracted version, masking variable names, method names,
etc. We also do not distinguish between different objects of
the same type.

• Coding Style: For each project’s custom model, we would
like to determine how closely the model learns the devel-
oper’s personal programming style and preferences. To this
end, we extract the collection of all identifiers (i.e., variables
and functions’ names) from the unit tests written by the
developer as well as those generated by the models. We
then pass these text outputs through a tf-idf vectorizer and
compute the cosine similarity between them. This allows
us to compare the developer’s and the models’ word usage.
We examine the similarity between the developer’s unit
tests and the baseline and custom models generated tests.
This scores the vocabulary similarity of the unit tests with
the model generated code.

4.4 RQ3: Training cost comparison
RQ3: Given the same amount of compute, which custom
models achieve the biggest performance improvement? Since
our four training regimes tune a different number of parameters,
simply comparing the training time or number of optimization
steps to reach the best validation loss may not be appropriate. For a
model with 𝑁 parameters, we approximate the computation cost of
a forward pass to be 𝐶 ≈ 2𝑁 floating point operations per training

5
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(a) Exact (solid) and abstracted (dotted) match rate (b) Coding style as identifier similarity

Figure 4: Task-specific metrics (a) custom models outperform the baseline in terms of perfect matches (solid line) and abstract
matches (dotted line); (b) custom models generate code that uses identifiers (i.e., variable and function names) that are more
similar to the project codebase.

token, with an additional correction for embedding layers. The
backward pass takes roughly twice the amount of compute, but
it is unnecessary for layers that are frozen. For additional details,
we refer to Table 1 in [12]. We report the resulting compute in
petaFLOPS-seconds.

5 RESULTS
5.1 RQ1: Intrinsic Evaluation Metrics
Table 3 presents the results of custom models in terms of the in-
trinsic metrics: BLEU and perplexity. Specifically, for each project,
we report the average BLEU and perplexity over the four folds,
achieved on the test set by the different customization strategy,
as well as the baseline model. We observe notable improvements
in both metrics for every project w.r.t. the baseline, with BLEU
going from 16.1 achieved by the baseline model to 36-38 by custom
models.

The statistical tests reported in Table 4 confirm that the improve-
ment observed by the four customization techniques are statistically
significantw.r.t. the baseline (𝑝 < 1e-7). However, we do not observe
statistical significance in the differences among the customization
strategies, meaning that, in terms of intrinsic metrics performances,
the differences are within margin of error.

5.2 RQ2: Task-specific performances
The results in terms of task-specific performances are presented in
Figure 4. The plot 4a shows the top-k accuracy for perfect matches
(solid line) and abstracted matches (dotted line), aggregated over the
20 projects. The baseline model outputs the same code structure (ab-
stracted) in roughly 3% of all cases, and virtually never produces the
exact target output (<1%). Moreover, its performance does not im-
prove as we consider more predictions. All customization processes

show significant improvement compared to the baseline. Specif-
ically, these improvements are observed for every single project
(full results will be available on our online appendix). Customized
models produce the correct code structure as their top prediction in
∼13-14% of instances, and a perfect match in ∼4-6% of cases. They
also tend to improve as we consider their top 5 predictions. Be-
tween the different customization processes, Custom consistently
performs the best, closely followed by Prefix and L-LDB. When
considering abstracted code matches, these three approaches are
nearly identical. L-EO, however, performs slightly worse than the
others.

Plot 4b shows the distribution of tf-idf cosine similarity com-
puted between identifiers used in the developers’ written tests and
the models’ generated outputs. We observe that the distribution
for custom models is skewed towards the higher values of cosine
similarity. This result demonstrates that custom models tend to
use variable and function names that are more similar to what
developers used in their own tests.

5.3 RQ3: Training cost comparison
For each customization process, we plot validation loss as a function
of compute, as defined in section 4.4. The results are presented in
Figure 5, where the light lines represent the validation loss curve for
each individual project and fold, while the bold line represents the
average for each custom strategy. First note that Custom achieves
very large gains during the first epoch, as evidenced by the fact that
its validation loss starts much lower than L-EO and L-LDB. Custom
also outperforms other customization processes when given a lim-
ited amount of compute. However, we observe that beyond a certain
amount of compute, Custom and L-LDB tend to achieve similar
performances. In contrast, L-EO starts at the same validation loss
as L-LDB but converges much slower to the best loss, requiring 2-3
times as much compute.
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Project BLEU4 Perplexity
Base Cust. L-EO L-LDB Prefix Base Cust. L-EO L-LDB Prefix

26644682 14.1 32.9 31.6 31.9 34.0 1.275 1.212 1.208 1.238 1.197
40735368 18.5 30.7 29.0 29.4 29.1 1.276 1.186 1.197 1.186 1.194
107330274 14.8 38.0 35.0 35.9 35.7 1.273 1.160 1.168 1.164 1.175
52972024 10.2 31.8 33.2 32.2 30.1 1.271 1.142 1.146 1.135 1.135
9714608 14.7 41.0 38.1 40.4 40.2 1.263 1.155 1.145 1.150 1.138
60701247 10.8 28.9 24.4 25.9 26.6 1.267 1.187 1.190 1.172 1.176
14550159 20.0 49.5 47.2 46.6 46.4 1.245 1.121 1.122 1.116 1.124
9278888 17.3 46.8 44.5 47.2 47.8 1.272 1.137 1.152 1.138 1.140
66940520 17.4 37.9 33.9 35.5 37.7 1.264 1.154 1.163 1.154 1.150
33645537 17.0 30.4 31.2 32.0 31.0 1.264 1.231 1.200 1.192 1.211
62253355 14.7 48.0 45.7 47.3 48.0 1.292 1.113 1.114 1.114 1.116
155883728 13.7 41.3 37.5 39.3 39.5 1.238 1.132 1.148 1.146 1.140
4710920 28.2 39.1 38.1 38.8 38.6 1.218 1.161 1.162 1.167 1.160
29603649 19.1 58.4 54.9 56.6 56.8 1.266 1.096 1.110 1.099 1.098
42949039 17.0 38.2 37.7 37.5 37.3 1.238 1.154 1.152 1.154 1.148
1381673 14.3 33.3 29.3 30.9 30.8 1.261 1.133 1.152 1.138 1.138
1244027 19.6 30.1 29.7 30.0 30.0 1.244 1.142 1.160 1.142 1.150
73948366 12.0 33.1 31.8 34.0 33.6 1.267 1.161 1.157 1.159 1.164
660443 15.0 34.0 37.2 36.5 34.3 1.281 1.180 1.170 1.169 1.177
87849739 13.4 45.1 47.0 48.9 46.8 1.259 1.138 1.136 1.124 1.144

Average 16.1 38.4 36.9 37.8 37.7 1.262 1.153 1.158 1.153 1.154

Table 3: The BLEU score and perplexity for the customization methods evaluated on the 20 projects in our test set.

BLEU4 Perplexity
Base Cust. L-EO L-LDB Prefix Base Cust. L-EO L-LDB Prefix

Base - 3e-08 3e-08 3e-08 3e-08 - 3e-08 3e-08 3e-08 3e-08
Cust. 3e-08 - 0.4 0.7 0.7 3e-08 - 0.5 0.9 0.9
EO 3e-08 0.4 - 0.5 0.7 3e-08 0.5 - 0.5 0.5
LDB 3e-08 0.7 0.5 - 0.9 3e-08 0.9 0.5 - 0.8
Prefix 3e-08 0.7 0.7 0.9 - 3e-08 0.9 0.5 0.8 -

Table 4: Kruskal-Wallis Test p-values testing the significance of the pairwise hypothesis that one customization method is
superior than another. Custom strategies are significantly better than baseline.

Since the prefix parameters suffer from poor initialization, Prefix
is the most expensive customization process. To overcome this
problem, it is possible to first train the prefix on a large generic
dataset. Then, given proper hyperparameter tuning, it is possible
to substantially cut down compute cost for customizing the prefix.

6 DISCUSSION & LESSONS LEARNED
The four customization strategies considered in this work are ef-
fective in improving a code generation model’s performances on a
given software project. Specifically, all custom models significantly
outperform the baseline in terms of intrinsic metrics (i.e., BLEU
and perplexity) as well as task-specific metrics (i.e., abstract and
raw matches). While the differences among the customization ap-
proaches are not significant (no clear winner), each strategy offers
specific advantages in different circumstances and deployment sce-
narios.

Custom fine-tuning achieves the overall best performances and
the customization process is relatively fast and efficient. This is
somewhat expected, since this customization strategy allows all

the model’s parameters to be tuned on the specific project. This
characteristic also leads to the major disadvantage of this approach:
each custom model is an entire copy of the original model. Storage
and inference costs could become prohibitive when serving many
users with personalized custom models.

Lightweight fine-tuning achieves good results while training
fewer parameters. This allows to serve potentially many users
with custom models which can be stored and loaded efficiently.
Specifically, L-LDB trains fewer parameters than L-EO, however
the latter could allow to deploy the embedding and output layers
on the user side, with a privacy-preserving focus.

Prefix fine-tuning trains the lowest number of parameters (only
2.4% for a BART model), while improving over the baseline. How-
ever, it increases the total number of parameters of the model (pre-
fixes are additional virtual tokens) and requires more compute time
to achieve good performances, mostly due to the prefix initialization
problem. On the bright side, this strategy allows to batch together
requests from different users (with different prefixes), which can
be processed by a single model, generating personalized outputs.
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Figure 5: Validation Loss vs Compute (PF-seconds) - Light lines represent the validation loss curve for each individual project and
fold, while the bold line represents the average for each custom strategy. Custom is the most efficient, lightweight approaches
require slightly more compute to reach a comparable validation loss, while prefix is the least efficient, suffering from poor
initialization.

7 THREATS TO VALIDITY
The major threats to our study relate to external validity, which
concerns the generalization of our findings. Our study is performed
on a specific coding task (i.e., test case generation) and for a single
programming language (i.e., Java). The findings could not gener-
alize to all the coding tasks and different programming languages.
However, our extensive empirical analysis investigating different
personalization strategies in terms of several performance metrics,
can provide guidelines for applying these techniques on different
coding tasks, languages, and datasets. It is important to note that,
while each coding task has its peculiarities, test case generation task
involves the generation of complete methods, variable assignments,
method calls, and different types of statements, thus could serve
as a good generic coding task. Java language is among the most
popular and similar to other programming languages such as C#
and Ruby.

As part of our future works we intend to apply these personal-
ization techniques to different coding tasks and languages.

8 RELATEDWORK
This work is related to two areas of the existing literature: neural
source code generation and model personalization. Neural code

generation has generated an intense recent interest in NLP, using
Transformer models [31] in particular for code completion [3, 4, 7,
21, 25, 26], code synthesis from examples [6], natural language to
code [2, 6, 7], code feature summarization [1, 16, 18, 19, 23, 32], code
search [9, 10], unit test generation [29] and even bug fixing [8] and
detection [33]. This paper naturally is an extension and evaluation
of personalized unit test generations as studied by Tufano et al. [29],
and an important contribution to the understanding optimization
in a deployment scenario.

Much of the previous literature on personalized models focuses
on client-side training to keep data on device [20, 24], and most
work is in the domain of search query completion [11], natural lan-
guage completion [20], or even automated speech recognition [24].
Naturally this work extends the domain of evaluation beyond natu-
ral language tasks and into the software engineering domain. This
paper does not evaluate methods for client side training with re-
stricted resources, however, as the most powerful large language
models which enable state of the art code synthesis have 10-100
million parameters. At the time of writing such large models can-
not be executed in a reasonable amount of time on most consumer
laptops. We leave to future work extending these studies to models

8
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which have been pruned, quantized, distilled, and optimized to be
ran in limited resource environments.

9 CONCLUSION
In this paper we explored different ways to customize a code gen-
eration model for a given codebase, with the goal of improving its
performances on a target project. We described and analyzed four
customization strategies and applied them on 20 different software
projects for the task of generating unit test cases. Specifically, we
considered the following strategies: (i) custom fine-tuning, which
allows all the model parameters to be tuned on the target project;
(ii) L-EO fine-tuning, a lightweight training which freezes most of
the model’s parameters, tuning only embedding and output layers;
(iii) L-LDB fine-tuning, a lightweight training which only tunes the
last decoder block; (iv) prefix tuning, which keeps language model
parameters frozen, but optimizes a small project-specific vector
(prefix).

In our extensive empirical evaluation we found that all the cus-
tomization strategies lead to significant model’s improvements on
a target project, in terms of both intrinsic and task-specific metrics,
with the custom models adapting to the coding style of the target
project. While there is no clear winner among the customization
strategies, each approach can provide specific benefits in particular
deployment scenarios.
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