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ABSTRACT

Satellite data fusion involves images with different spatial,
temporal, and spectral resolution. These images are taken
under different illumination conditions, with different sensors
and atmospheric noise. We use classic super-resolution algo-
rithms to synthesize commercial satellite images (Pléiades)
from a public satellite source (Sentinel-2). Each super-
resolution method is then further improved by adaptive sharp-
ening to the location by use of matrix completion (regression
with missing pixels). Finally, we consider ensemble systems
and a residual channel attention dual network with stochastic
dropout. The resulting systems are visibly less blurry with
higher fidelity and yield improved performance.

Index Terms— Super-resolution, matrix completion,
cloud removal.

1. INTRODUCTION

The Sentinel-2 mission [1] from the European Space Agency
has been making planet-wide 13-band multispectral obser-
vations with 10m×10m pixel resolution and a 5-day revisit
time since it was launched in 2015. Our high-resolution im-
ages comes from the Pléiades HR 1A/B satellites [2] that pro-
vide 4-band multispectral observations at 2m×2m resolution
(panchromatic at 0.5m). These historic images are employed
for enhanced super-resolution and to give a steady stream of
synthetically generated Pléiades images using Sentinel-2 ob-
servations. Fusing public and commercial satellite data is
unique in that the commercial satellite data may only provide
a very small number (1-4) of historical images over a period
of several years, while in the public-public setting as in the
celebrated STAR-FM method [3] there is a steady stream of
images from both satellites.

2. CLOUD INPAINTING

We use the matrix completion from [4] for cloud inpainting
for Sentinel-2 and Pléiades. This is particularly important for
Sentinel-2 as more than 70% of the earth is covered in clouds.
The matrix completion decomposition derived on the high-

resolution historical data is then used to adaptively sharpen
the super-resolution estimate.
Terminology: The rank isNr, the image size isNh×Nw, and
the respective cardinality for time and spectrum are Nt and
Nc. Boldfaced variables are matrices with dimensionNcNt×
NhNw unless otherwise noted. Y is the satellite observation
matrix (stacked Sentinel-1 and Sentinel- 2 or Pléiades), M is a
mask of cloud-free pixels (1 for cloud-free, 0 for cloudy), and
X is the cloud-free reconstruction with a low-rank representa-
tion X = UV>, with U ∈ RNcNt×Nr , V ∈ RNhNw×Nr . Lt

and Ht are the respective low-resolution and high-resolution
images. The symbol ↑ represents bilinear upsampling, and ◦
represents element wise multiplication.
Matrix Completion: We minimize the following loss func-
tion over rank Nr matrices X = UV>

F (X) = ‖M ◦ (X−Y)‖2F + α

Nt−1∑
t=1

‖Xt+1 −Xt‖2F . (1)

Here V represents abstract land types (lakes, grass lands,
etc.), while U represents the spectro-temporal evolution of
each land type. The method in Algorithm 1 was designed
specifically to solve (1) efficiently on a GPU. It was used to
provide cloud-free images for Sentinel-2 and for Pléiades.
Matrix Completion Sharpening: Ht is approximated by
Xt = UtV

>, where Ut ∈ RNc×Nr is the spectro-temporal
evolution at time t. This becomes interesting when we
extrapolate to a time t where Ht is not known. In this
case we derive V from historical high-resolution data Y
and estimate Ut using a super-resolution approximation
Ĥt = Ĥt(Lt) ≈ Ht. Specifically Ut is found by solving1

minUt
‖UtV

> − Ĥt‖2F + β‖Ut‖2F . The analytic solution is
Ût = ĤtV(V>V+βI)−1 with a reconstruction ÛtV

>. The
reconstruction UtV

> yields sharper and less blurry images
than Ĥt, stemming from the high-resolution land types. This
can be seen visually in Figure 1. The estimation is done on
small patches (25×25 pixels) to balance fidelity against spec-
tral approximation errors. The full stitched image estimate
is denoted SL(Ĥt) where the dependence of the historical
Ht−1, Ht−2, . . . is not explicitly shown.

1β is set to 0.02 only to avoid problems with singularities



Algorithm 1: The Cloud Completion Algorithm.
Input: Satellite data: Y, cloud-free mask: M, rank

Nr, damping coefficient α
Output: Cloud-free data: X = UVT ,

U ∈ RNcNt×Nr , V ∈ RNhNw×Nr

1 D ∈ RNt×Nt ← 0 // forward difference
2 Dii ← −1, Di,i+1 ← 1,∀i ∈ {1, . . . , Nt − 1}
3 Z ∈ RNcNt×NhNw ← 0, ∆ = D⊗ INc

4 for iter← 1 to 300 do
5 YZ ← ((M ◦Y)− (1−M) ◦ Z)

6 U← (I + α∆>∆)−1YZV(V>V)−1

7 V← Y>ZU(UU> + αU>∆>∆U)−1

8 Z← (1−M) ◦ (UV>).

// U: evolution, V: land types
9 X← UV>

3. SUPER-RESOLUTION ALGORITHMS

In this section we briefly survey five super-resolution al-
gorithms used in this paper starting from the first neural
network based method to state-of-the-art methods. The
super-resolution convolutional neural network (SRCNN) [5]
is a 2-4 layer deep convolutional neural network that maps
pre-upsampled images Lt↑ to a super-resolution estimate
SSRCNN(Lt↑). The residual dense network (RDN) [6, 7] is
made up of several residual-in-residual dense blocks (RRDB)
each consisting of several residual dense blocks. RDN is
deep, compact and also used for image transformation, mak-
ing it a great fit for satellite fusion. The RDN super-resolution
system is denoted SRDN(Lt). Next, the super-resolution gen-
erative adversarial network (SRGAN) [8] uses a GAN archi-
tecture where the generator transforms low-resolution images
to high-resolution images while the discriminator measures
similarity between the target and generated images using a
perceptual loss. The batch normalization layers of SRGAN
tend to introduce unpleasant artifacts and limit generaliza-
tion that the Enhanced Super-Resolution Generative Adver-
sarial Network (ESRGAN) [9] solved by replacing batch
normalization layers with residual-in-residual dense blocks
(RRDB).The Residual Channel Attention Network (RCAN)
[10] proposed a multiplicative channel attention mechanism
that adaptively weights the channel feature, and they use short
and long skip connections to train very deep networks.

Table 1 shows results for five baseline super-resolution
systems for the satellite fusion task. The matrix completion
sharpening improves the performance across the board. Al-
though the improvements look modest from the metrics, the
results are less blurry and the fidelity is significantly improved
as seen in Figure 1. The simplest super-resolution SRCNN
performs the best. We ascribe this to the difficulty of training
deep models in the presence of the atmospheric and illumina-
tion noise and the sensor mismatch. We discuss methods to

reverse the situation next.

Pléiades: Ht Sentinel-2: Lt SRCAN(Lt) SL(SRCAN(Lt))
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Fig. 1: RCAN with and without matrix completion sharpen-
ing: The dotted lines highlights features that are significantly
sharper and less blurry after matrix completion sharpening.

Super-resolution system Matrix compl. sharpened

System MAE PSNR SSIM MAE PSNR SSIM

LinReg 0.0556 23.454 0.768 0.0532 23.852 0.784
SRCNN 0.0467 25.354 0.810 0.0455 25.618 0.814
RDN 0.0481 25.081 0.816 0.0478 25.263 0.818
RCAN 0.0483 25.067 0.810 0.0464 25.440 0.819
SRGAN 0.0732 21.011 0.738 0.0533 24.122 0.802
ESRGAN 0.0617 23.171 0.771 0.0522 24.578 0.796

Table 1: Baselines with Matrix Completion Sharpening. Lin-
Reg is bilinear upsampling followed by linear regression.

4. TRAINING IMPROVEMENTS

To improve the performance of RDN and RCAN we em-
ployed both the layer-wise adaptive large batch optimization
technique called LAMB [11] training as well as stochastic
depth [12]. LAMB is an improved optimization technique
that gives stable convergence for larger learning rates and
deeper networks, thus enabling RDN and RCAN to surpass
the performance of SRCNN as seen in Table 2. For SRCNN
LAMB yields no gains. The combination of these two al-
lowed us to train deeper systems. For the stochastic depth we
used a survival probability of 1 for the first block and a linear
descent down to 1/2 for the last block. For RDN we applied
stochastic depth to the residual-in-residual blocks (RRDB)
while for RCAN stochastic depth was applied to the residual
channel attention blocks (RCAB) layers inside each Residual
Group (RG) as shown in Figure 2d.
Residual Channel Attention dual network with Stochas-
tic Dropout: We propose a new network that takes high di-
mensional input Ĥt from the matrix completion sharpening



and low-resolution input Lt as shown in Figure 3. The low-
resolution branch connects to the high-resolution branch at
3 intermediate points. The communication is made possible
by the connector network in Figure 2c which is similar to the
RCAB Figure 2a, but with a reduction of the number of filters.
As seen in Table 2 the system outperforms all the others. We
also show that the performance can be improved by using SR-
CNN as an ensemble mechanism that takes a stack of the best
SRCNN, RDN and RCAN systems as input. We used SR-
CNN as it takes high-resolution input images. Table 2 shows
the improved results.

5. CONCLUSION

We introduced matrix completion sharpening and showed that
it can be applied to improve existing super-resolution meth-
ods and we also showed the importance of the LAMB opti-
mization and stochastic depth for improving accuracy on the
task. Finally, we introduced the RCAN-dual-SD network that
further improves on the matrix completion sharpening. While
these enhancements yield visible improvements, the methods
still suffer from propagation of errors from the cloud-detector
and the improvements diminish with the number of bands and
historical images.

Super-resolution system Matrix compl. sharpened

System MAE PSNR SSIM MAE PSNR SSIM

RDN+LAMB 0.0456 25.566 0.826 0.0444 25.863 0.825
+SD 0.0448 25.718 0.826 0.0503 24.941 0.806
RCAN+LAMB 0.0473 25.267 0.816 0.0423 26.110 0.827
+SD 0.0461 25.630 0.817 0.0437 25.995 0.825
RCAN-dual-SD 0.0420 26.454 0.843
ensemble 0.0425 26.248 0.830 0.0400 26.765 0.846

Table 2: LAMB training and stochastic depth.
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Fig. 2: Full architecture of residual channel attention dual network with stochastic dropout.

Pléiades: Ht Sentinel-2: Lt SRCNN RDN RCAN Ensemble SL(SRCNN) SL(RDN-LAMB) RCAN-DUAL-SD Ensemble
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Fig. 3: Example of several super-resolution methods from 6 locations. The standard super-resolution methods are notably
blurrier compared to the ground truth in column 1. The ensembles combines the 3 preceding columns using SRCNN.


