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ABSTRACT
Ad relevance modeling plays a critical role in online advertising sys-
tems including Microsoft Bing. To leverage powerful transformers
like BERT in this low-latency setting, many existing approaches per-
form ad-side computations offline. While efficient, these approaches
are unable to serve cold start ads, resulting in poor relevance pre-
dictions for such ads. This work aims to design a new, low-latency
BERT via structured pruning to empower real-time online inference
for cold start ads relevance on a CPU platform. Our challenge is that
previous methods typically prune all layers of the transformer to
a high, uniform sparsity, thereby producing models which cannot
achieve satisfactory inference speed with an acceptable accuracy.

In this paper, we propose SwiftPruner - an efficient framework
that leverages evolution-based search to automatically find the
best-performing layer-wise sparse BERT model under the desired
latency constraint. Different from existing evolution algorithms that
conduct randommutations, we propose a reinforced mutator with a
latency-aware multi-objective reward to conduct better mutations
for efficiently searching the large space of layer-wise sparse models.
Extensive experiments demonstrate that our method consistently
achieves higher ROC AUC and lower latency than the uniform
sparse baseline and state-of-the-art search methods. Remarkably,
under our latency requirement of 1900us on CPU, SwiftPruner
achieves a 0.86% higher AUC than the state-of-the-art uniform
sparse baseline for BERT-Mini on a large scale real-world dataset.
Online A/B testing shows that our model also achieves a significant
11.7% cut in the ratio of defective cold start ads with satisfactory
real-time serving latency.
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1 INTRODUCTION
In sponsored search, ad relevance measures the semantic similarity
between a user’s search query and an ad. Given a user query, the
system calculates its relevance with hundreds of potential ads to
prevent irrelevant ads recommendation and to assist ranking and
pricing of the most relevant ads. As such, ad relevance directly
affects user and advertiser satisfaction with the product and serves
as one of the most important tasks in online advertising.

At Microsoft Bing, we previously released the TwinBERT [21]
and AutoADR [7] models which leverage the latest advances in
pre-trained language models (e.g., BERT) [8, 34] and neural archi-
tecture search (NAS) to effectively predict ad relevance. Due to the
expensive inference cost of BERT, we decoupled the inferences for
ad and query via a two-tower structure which consists of online
query-side and offline ad-side sub-models. While this design avoids
the time-infeasible online ad-side inference for hundreds of ads
per query, the offline ad-side inference presents its own challenges.
In particular, we encounter coverage issues due to cold start ads,
or cold ads for short 1: for a new ad, there is an inevitable delay
between the time when it is available for online serving and when
its offline-computed ad-side features are published online.

In this work, we aim to design a new semantic query-ad rel-
evance model for cold ads which can be computed fully online

1When the offline-computed ad-side data is not yet available during ad serving time
online, we call such ads as cold ads.
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on CPU under the real-time latency constraints. We therefore dis-
card the two-tower structure and instead focus on single-tower
BERT [8] models where the query and ad content are concatenated
as the model input. Considering the real-time inference constraints,
we select the state-of-the-art tiny transformer, BERT-Mini [33] as
our model structure for cold ads, which achieves comparable ac-
curacy with our previous models (i.e., TwinBERT and AutoADR)
via knowledge distillation. Although optimized with both knowl-
edge distillation [28, 33] and quantization [3, 15, 44], the inference
latency of BERT-Mini is still too high to be served online on our
CPU-based platform. To afford the real-time inference for cold ads
relevance, we call for new model compression methods to effec-
tively reduce the latency of tiny transformers.

Structured pruning methods have shown to be effective in re-
ducing inference latency on standard hardware while mitigating
accuracy loss. Previous works [16, 17, 23, 40, 42] have demonstrated
the large redundancy in transformers, but they focus on large trans-
formers (e.g., BERT-Base and BERT-Large) and simply set a uniform
sparsity ratio for all layers. However, we observe that individual
attention and feed-forward (FFN) layers have different redundancy
in tiny transformers (i.e. BERT-Mini). Pruning some critical encoder
layers can lead to a significant accuracy drop while pruning other
redundant layers can reduce latency without affecting the model
accuracy. Moreover, attention and FFN layers contribute differently
to the model latency. Therefore, we study layer-wise sparsity to
achieve better trade-offs between accuracy and latency.

Layer-wise sparsity leads to a large design space to compro-
mise between model accuracy and latency. While it is challenging
to determine the sparsity for each layer from such a large space,
NAS approaches such as reinforcement learning (RL) [26, 45] and
evolution search (EA) [11, 27] have demonstrated effectiveness in
automatically finding good architectures. Inspired by this, the ques-
tions naturally arise: Can we leverage NAS to search the space of
layer-wise sparse models to find the best performing model under a
given latency constraint? What kind of NAS algorithm is the most
effective for our ad relevance scenario?

To this end, we propose SwiftPruner, which automatically searches
the best-performing layer-wise sparsity for structured pruning un-
der a given latency constraint. Inspired by NAS, we formulate the
pruning problem as a multi-objective optimization problem that
considers both accuracy and inference latency of pruned trans-
formers. First, we design a large search space that factorizes the
BERT-Mini structure into layer-wise sparse configurations. Then,
an efficient search algorithm is employed to identify layer-wise
sparse settings that can achieve both low latency and high accuracy.
Finally, we select the pruned model with maximum validation Re-
ceiver Operating Characteristic (ROC) AUC under a certain latency
constraint as the final model, named SwiftBERT.

Despite the success of EA and RL in NAS, both of them face spe-
cific challenges in our scenario. EA-based search shows simplicity
and stability in many tasks [11, 27]. However, its evolution process
is highly reliant on the mutation actions, and the search efficiency
has no guarantee due to the uncontrollable random mutation. RL
is effective but more time consuming than EA. Additionally, the
stability of RL depends on careful hyper-parameter selection. Thus,
it’s difficult to tune for jointly optimizing accuracy and latency in
our scenario.

To address the above limitations, we propose a reinforced evolu-
tion algorithm to search for the optimal layer-wise sparsity with
a latency-aware multi-objective reward for transformers. Unlike
traditional EA methods that randomly select a layer for sparsity
mutation, our method introduces a reinforced mutator to learn
(i) which layer to mutate and (ii) what sparsity value to assign to
the mutated layer. Our search method leverages the advantages of
both EA and RL: we not only accelerate the search via reinforced
mutations but also maintain the stability of EA. Furthermore, to
reduce the search cost caused by latency measurement, we build a
latency predictor that can accurately predict the inference latency
for sparse transformers.

We conduct extensive experiments with a real-world dataset
for ad relevance under many latency constraints. For all latency
constraints, SwiftPruner consistently achieves higher AUC and
lower latency compared to the uniform sparsity baseline and state-
of-the-art layer-wise search methods. Remarkably, SwiftPruner
can achieve a maximum of 43.46% latency reduction on CPU for
the BERT-Mini with a minimal AUC loss of 0.32%. Compared to
other search methods, SwiftPruner demonstrates its superiority
through higher AUC (up to +0.48%) under all latency constraints,
better search efficiency, as well as robustness to hyper-parameter
selection. Finally, online A/B testing shows that SwiftBERT achieves
a significant 11.7% cut in the ratio of defective cold ads and 2.37%
increase in click-through-rate. This new model has been shipped
into the Microsoft Bing ad relevance production model.

We summarize the main contributions of our work as follows:

•We propose SwiftPruner, an efficient framework that leverages
NAS to search for the best-performing layer-wise sparse BERT
under a desired latency constraint.
•We introduce a reinforced evolutionary search algorithm which
efficiently predicts a layer and sparsity value for mutation. We
demonstrate its superiority over EA and RL-based search meth-
ods in our scenario.
•We apply SwiftPruner to ad relevance prediction and produce
SwiftBERT models with various latency levels. Compared to uni-
form sparsity and other layer-wise search methods, SwiftBERT
shows much higher AUC and lower inference latency.
• After adding SwiftBERT to the ad relevance production pipeline,
the ratio of defective cold ads is significantly reduced accord-
ing to A/B testing results. To the best of our knowledge, Swift-
BERT is the first single-tower, query-document crossing BERT
architecture at Microsoft Bing that serves fully online within a
real-time latency on CPU. Our method is also applicable to other
scenarios such as dynamically generated ads [13, 38] and search
relevance [43].

2 RELATEDWORKS
Knowledge distillation. Knowledge distillation [14, 28, 32] is a
powerful method which leverages scores, structures, or weights
from a large, teacher BERT model to train a smaller, student BERT
model. While students that are 2-3× smaller than the teacher can be
trained with minimal accuracy loss, Turc et al. [33] show that there
is a steep drop-off in accuracy when distilling to tiny transformer
students like those required in our scenario.
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Quantization. Quantization [15, 44] of transformer models from
FP32 to Int8 can produce models up to 4× as small with negligi-
ble accuracy loss regardless of the starting model size. While the
model compression ratio from quantization is impressive, infer-
ence speedup often relies on specialized hardware [5, 44]. On our
CPU deployment platform which is a standard Intel CPU, we find
the benefit from model quantization is limited due to the lack of
hardware support [3].
Pruning can be categorized into: 1) unstructured and 2) structured
pruning. Although unstructured methods [10, 29, 36] reach a rela-
tively high sparsity ratio without significant accuracy drop, they
yield very little actual latency benefits. Many common deployment
platforms on modern hardware, particularly on CPU, often keep the
original dense shapes of the uncompressed model as it is difficult
to leverage irregular sparse patterns for acceleration.

Structured pruning, on the other hand, allows for the removal
of coherent groups of weights and can reduce latency without
special hardware support. Early works [24, 35] showed that some
attention heads in BERT can be removed without significant accu-
racy loss. Later, structured pruning was also expanded to act on
both the attention and FFN layers of transformers [16, 22, 23, 42].
Recently, Lagunas et al. [17] introduced a hybrid pruning named
nn_pruning which prunes structured blocks in attention heads and
paired rows/columns in FFN intermediate layers. When combined
with movement pruning [29], which learns the importance score for
weights during fine-tuning, nn_pruning is able to achieve effective
compression of BERT models. However, these methods focus on
maximum parameter removal by ranking the importance scores.
They pre-define a target sparsity (compression ratio) and assign a
uniform sparsity for all layers. In our work, we find our produc-
tion BERT models have different redundancy per layer and hence
require layer-wise sparsity ratios.
Layer-wise sparsity. In computer vision tasks, it has been demon-
strated that different CNN layers have different redundancy, and
rule- or heuristic-based unstructured pruning [9, 18, 31] may be
used to find the appropriate layer-wise sparsities to reduce their
redundancy. AMC [12] is the first work that leveraged reinforce-
ment learning (RL) to automatically search the optimal layer-wise
sparsity for CNNs. To accelerate exploration, AMC conducts weight
magnitude pruning. However, this method is less effective for fine-
tuned BERT models on downstream tasks [29]. Unlike these previ-
ous works, we focus on pruning BERT models for NLP tasks. In our
work, we propose reinforced evolutionary search, which is more
efficient than RL. During the search, we conduct movement-based
structured pruning rather than magnitude pruning. Therefore, we
can efficiently find the optimal layer-wise sparsity for a target la-
tency constraint with minimal accuracy loss.
AutoML. Hyper-parameter optimization (HPO) and neural archi-
tecture search (NAS) are both prevalent approaches for conducting
efficient optimization within a large search space. The Tree Parzen
Estimator (TPE) [1] algorithm is one of the most popular methods
for hyper-parameter optimization which utilizes Bayesian optimiza-
tion to search high-dimensional conditional spaces. However, TPE
relies on the quality of initial samples and has limitations in ro-
bustness [30]. On the other hand, reinforcement learning (RL) and
evolution search (EA) have achieved state-of-the-art performance

in NAS tasks. Works focusing on RL-based search [26, 45] train
an RNN controller with reinforcement learning to determine a se-
quence of operators and connections that specify the architecture of
a neural network. One limitation of RL-based search is the need for
careful hyper-parameter selection to guarantee stability. In contrast,
EA is less sensitive to hyper-parameter selection. Real et al. [27]
introduces aging evolution, which samples a best parent candidate
at each iteration and then conducts random mutations to create
children candidates. While EA addresses RL’s shortcomings, EA’s
search efficiency cannot be guaranteed due to its heavy reliance on
random mutation.

In our work, we propose a reinforced RNN controller to conduct
predictable mutation which greatly accelerates EA’s search effi-
ciency. The idea of reinforced mutations on EA has been previously
investigated in RENAS [6], but they focus on architecture search
for CV tasks without considering inference latency. To the best of
our knowledge, our method is the first to propose and apply this
idea to prune NLP models to a desired latency.

3 AD RELEVANCE SCENARIO
3.1 Background
In sponsored search systems, the user submits a query to the search
engine, and the engine delivers ads along with the search results.
The ads shown to the user are chosen based on a number of param-
eters including relevance between the query and ad, pricing, and
user behavior. When ads are more relevant to the user’s query, the
user is more satisfied with the search product and the advertiser
receives increased value from their bid. Thus, ad relevance serves
as a cornerstone to a healthy sponsored search ecosystem.

The Microsoft Bing ad relevance system consists of a cascade of
models which feed into one another to make many ad relevance-
based decisions in the ad stack. These decisions include filtering
out the most irrelevant ads, placing relevant ads higher in the
search results, and pricing ads based on their relevance. One of the
primary goals of the ad relevance system is to minimize the number
of defective ad impressions. An ad is determined to be defective for
a query if their semantic similarity is low as determined by a set of
pre-determined guidelines. As such, some of the most important
models in the ad relevance system are the query-ad semantic
relevance models. These semantic models take the query and ad
text as input and produce a prediction of defectiveness, called the
semantic score, which is then used by other models.

Currently, our system contains a few semantic relevance models
with the most powerful being TwinBERT [21] and AutoADR [7]
which leverage the latest advances in transformers. These two mod-
els share a similar two-tower structure as shown in Fig. 1(a) which
decouples the query and ad inferences for efficient computation.
The query-side model serves online and is computed just once per
user query. On the other hand, the ad-side model is inferenced of-
fline for the billions of servable ads, and the embedding outputs are
then published to the online service. Given a candidate query-ad
pair, the semantic score is then computed online by running a small
crossing model on the query and ad tower outputs.

The two-tower structure allows us to use large, powerful models
in our production system; however, it also introduces a challenge.
When advertisers create new, servable ads, there is a delay between
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Figure 1: Comparison of the hybrid offline-online two-tower
structures of TwinBERT and AutoADR (a) vs the fully online
BERT structure of SwiftBERT (b).

Model Size AUC (%) Latency (us)
BERT Teacher Model 2B 88.98 -

BERT-Mini (4L-256H) [33] 11.3M 87.15 3274.24
2L-256H [33] 9.7M 85.16 1727.67
4L-128H [33] 4.8M 84.23 1841.29

Table 1: AUC and latency of distilled models from [33].

when the ad can be shown to users and when the ad-side tower
computation is published to the online system. This delay results
in ads that are missing their offline-computed ad-side data at the
online serving stage. We call such ads, cold ads. Conversely, we
call ads that have their ad-side data online, hot ads. For cold ads, our
ad relevance system currently relies on weak semantic relevance
models that do not leverage transformers. As a result, millions of
defective cold ads pollute the system daily and degrade the overall
quality of ads shown to users. To address these defective cold ads,
we call for a new, powerful transformer-based semantic relevance
model which can be used to specifically serve cold ads.

3.2 Serving Cold Ad Relevance
In order to compute a semantic score for cold ads, we cannot use
offline components in the model. We therefore discard the two-
tower structure and instead opt for a fully online, single-tower
BERT where the input is a concatenation of the query and ad text
as shown in Fig. 1(b). While this single-tower structure addresses
the coverage issue, a new challenge arises. For each query-hot ad
pair, the two-tower structure allows us to run just a small crossing
model online for each query-ad pair to get their semantic score.
This crossing model can be run on hundreds of ads per query with
minimal impact on system latency. On the other hand, for every
query-cold ad pair, we must now run an entire BERT model online.
Inferencing even a very small BERT model on tens of ads per query
has a measurable impact on overall system latency. Therefore, our
new cold ads model must be designed to run within a strict latency
budget. Specifically, we find that the new single tower model must
run in less than 1900us per query-cold ad pair on our platform.

To start, we distill some of the smallest, state-of-the-art tiny
transformers from Turc et al. [33] which meet our system latency
budget of 1900us. The chosen models are a 2-layer, 256-hidden
dimensional BERT (2L-256H) and a 4-layer, 128-hidden dimensional
BERT (4L-128H). After distilling the two models using our powerful

Layer Base config. Sparsity space Prune pattern
MSA (𝑎) 4 (0, 0.25, 0.5, 0.75) head
FFN (𝑓 ) 1024 (0, 0.01, 0.02, ...0.99) dimension

Table 2: Candidate sparsity for each encoder layer. The total
search space contains ∼2×1010 settings for pruning.

teacher model, we find there is a large gap in ROC AUC between
these two students and the teacher as shown in Table 1.

To strike a better balance between prediction performance and
latency, we examine the next largest model checkpoint from [33]:
BERT-Mini, which is a 4-layer, 256-hidden dimensional BERTmodel
with 4 attention heads and 1024 FFN dimensions. While BERT-
Mini achieves significantly better performance as shown in Table 1,
its inference time is over 70% above the latency limit. In order
to retain its good performance while decreasing the latency, we
explore different model compression methods. We first apply Int8
quantization [15, 44] on our CPU deployment platform, but the
inference latency is still too high beyond our requirement. We next
turn to pruning to close the remaining latency gap. In the following
sections, we study how our SwiftPruner method can be applied
to BERT-Mini to generate a new, low-latency semantic relevance
model for cold ads, which we call SwiftBERT.

4 METHODOLOGY
In this section, we present the SwiftPruner for layer-wise pruning
of tiny transformers (i.e., BERT-Mini) such that the pruned model
meets the given latency constraints.

We formulate our problem as:

(𝑎1, 𝑓1, ...𝑎𝑙 , 𝑓𝑙 )∗ = argmin
𝑎1,𝑓1,...𝑎𝑙 ,𝑓𝑙

𝐿(𝐴(𝑎1, 𝑓1, ...𝑎𝑙 , 𝑓𝑙 ))

s.t. 𝐿𝐴𝑇 (𝐴(𝑎1, 𝑓1, ...𝑎𝑙 , 𝑓𝑙 )∗) <= 𝑇,
(1)

where𝐴(·) is the transformer model with a specific sparsity setting,
and 𝑎𝑖 and 𝑓𝑖 are the sparsity ratios for the attention and FFN
subnetworks in the 𝑖𝑡ℎ encoder layer, respectively. SwiftPruner
aims to find the optimal layer-wise sparsity (𝑎1, 𝑓1, ...𝑎𝑙 , 𝑓𝑙 )∗ from
the 1𝑠𝑡 to 𝑙𝑡ℎ encoder layer that has the minimum cross-entropy
loss, 𝐿, (corresponding to the maximum accuracy) while the latency
(denoted by 𝐿𝐴𝑇 ) also meets the constraint, 𝑇 .

To achieve this, we first design a fine-grained sparsity search
space which contains a large amount of models that can meet
various latency constraints after pruning. Then we introduce a
reinforced evolutionary search algorithm equipped with a latency
predictor. Instead of random mutation, the algorithm learns to
mutate a layer with predicted sparsity towards the best accuracy-
latency trade-off. Fig. 2 illustrates the overall pipeline.

4.1 Search Space Design
Unlike previous NAS works [6, 41] that search the optimal operator
for each layer, our goal is to search for the optimal sparsity setting
for each layer of the transformer model. Since our deployment plat-
form has no support for accelerating unstructured pruned models,
we design a large transformer search space for structured pruning,
as detailed in Table 2. Following previous works [17, 23, 24, 40]
which show that the majority of attention heads and FFN interme-
diate dimensions can be pruned with minimal accuracy loss, we
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Figure 2: Overview of SwiftPruner for searching the optimal layer-wise sparse transformers.

also prune the attention layers via head pruning and FFN layers
via dimension pruning. This hybrid pruning granularity setting has
demonstrated a better accuracy-efficiency trade-off [17, 40]. Con-
cretely, we use the entire head as the smallest pruning granularity
in attention. The FFN layer contains two paired linear layers, so we
prune the rows in the first layer (i.e., the intermediate layer output)
and the corresponding columns in the second linear layer (i.e., the
second layer input).
Head sparsity. For an attention layer with 𝐻 heads, we allow
pruning of {0,1..,H-1} heads (at least one head is retained to avoid
pruning the entire layer). Since our base model, BERT-Mini [33],
has 4 attention heads in one encoder layer, we have 4 candidate
settings of sparsity ratio: 0, 0.25, 0.5 and 0.75, which correspond to
the pruning of 0, 1, 2 and 3 heads, respectively.
FFN sparsity. The original FFN intermediate dimension size 𝐹 of
BERT-Mini is 1024. A full search space would contain all possible
dimension sizes, 𝐹 , but would also lead to search space explosion for
larger dimensions. Fortunately, we observe that there are negligible
latency differences between 𝐹 and 𝐹 + 1 on our platform. Therefore,
we reduce the search space of dimensions to 100 candidates, where
different sparsity leads to noticeable latency change. As shown in
Table 2, we allow FFN layer sparsity ratios to range from 0 to 0.99
with a step size of 0.01 (i.e., a step of ∼10 in dimension size ).

In total, for our 4 encoder-layer SwiftBERT model, the search
space contains∼2×1010 candidate settings, which is extremely large
and poses practical challenges for traditional NAS search algo-
rithms. If a candidate model could be evaluated in a few seconds
via weight sharing and performance prediction [4, 25, 37], a naive
evolution algorithm could quickly find good performing models by
evaluating thousands of candidates. However, evaluating the AUC
for layer-wise settings requires considerable training cost on our
large-scale real-world dataset. Unlike in NAS tasks, introducing
weight sharing in pruning poses difficulty in accurate AUC evalu-
ation. Therefore, we require a higher efficiency search algorithm
that can find the optimal layer-wise sparse setting in a few hun-
dred search trials. In the following sub-section, we introduce our
proposed search method to tackle this problem.

4.2 Reinforced Aging Evolution
To efficiently search the large space of candidates, we propose the re-
inforced aging evolution as shown in Fig. 2. Algorithm 1 formulates
the overall procedure of SwiftPruner. Following the original aging
evolution, we first randomly initialize a population of 𝑃 models
from the search space, where each model is encoded with a specific
layer-wise sparsity setting. After this, evolution improves the ini-
tial population in mutation iterations (line 3). At each iteration, we

Algorithm 1 Reinforced Aging Evolution Algorithm
Input: population size 𝑃 , total number of models to explore 𝑁 , sample
size 𝑆 , latency_auc tradeoff 𝛼 , target latency𝑇
1: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (0) ← initialize (𝑃 )
2: ℎ𝑖𝑠𝑡𝑜𝑟𝑦← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (0)

3: for 𝑖=1: (𝑁 -𝑃 ) do
4: 𝑝𝑎𝑟𝑒𝑛𝑡 ← sample_with_maximum_reward (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑖−1) ,𝑆)
5: 𝑐ℎ𝑖𝑙𝑑 ← reinforced-mutate (𝑝𝑎𝑟𝑒𝑛𝑡 )
6: 𝑟𝑒𝑤𝑎𝑟𝑑 ← get_reward (𝑐ℎ𝑖𝑙𝑑 ,𝑇 ,𝛼 ) (see Equation 2)
7: update mutator with maximizing 𝑟𝑒𝑤𝑎𝑟𝑑 by REINFORCE [39]
8: 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑖 )← add 𝑐ℎ𝑖𝑙𝑑 to right of 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑖−1) , remove

the oldest model from left of 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑖−1)
9: add 𝑐ℎ𝑖𝑙𝑑 to ℎ𝑖𝑠𝑡𝑜𝑟𝑦
10: end for
11: return maximum-AUC model under the𝑇 from the ℎ𝑖𝑠𝑡𝑜𝑟𝑦

sample 𝑆 random models from the population and select the model
with maximum reward as the 𝑝𝑎𝑟𝑒𝑛𝑡 . We then run the reinforced
mutator to mutate a layer sparsity on the 𝑝𝑎𝑟𝑒𝑛𝑡 and construct a
new model, called the 𝑐ℎ𝑖𝑙𝑑 . Once the 𝑐ℎ𝑖𝑙𝑑 is constructed, we com-
pute its reward by Equation 2, which considers both accuracy and
inference latency. We train the reinforced mutator by maximizing
the reward with REINFORCE [39]. At the end of each iteration,
we remove the oldest model in the current population and add the
𝑐ℎ𝑖𝑙𝑑 to the population for the next iteration. After the evolution
process finishes, we collect all the explored models that are under
the target latency constraint𝑇 and select the model with maximum
validation AUC as the final model.
Reinforced mutator. We now introduce the key component in
reinforced aging evolution, namely the reinforced mutator, which
conducts sparsity mutations on the sampled 𝑝𝑎𝑟𝑒𝑛𝑡 model. In the
original aging evolution algorithm, the mutator randomly samples
one layer and performs a random modification of the sparsity ratio
for this layer. However, as described in Section 2, uncontrollable
mutation cannot guarantee the efficiency of optimizing our reward.

Instead of random mutations, the reinforced mutator is designed
to 1) predict a layer to mutate, and 2) predict a sparsity ratio for
the selected layer, so that the mutated 𝑐ℎ𝑖𝑙𝑑 has a better chance to
achieve the optimal AUC-latency trade-off. Fig. 2 (right) illustrates
the architecture of our reinforced mutator. Guided by the two pre-
diction targets, we design an RNN controller which sequentially
selects a new layer to mutate and the corresponding new sparsity
ratio. The controller is implemented as a recurrent neural network
consisting of two sub-networks.

In the first sub-network, we take the layer-wise sparsity of the
𝑝𝑎𝑟𝑒𝑛𝑡 as input. The sub-network starts with an embedding layer
with a bidirectional LSTM to learn the effect of each layer-wise
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sparsity ratio of the 𝑝𝑎𝑟𝑒𝑛𝑡 . Based on the output of the LSTM, we
apply a fully connected layer with Softmax as the layer predictor.
The predictor estimates the mutation probability of each layer, and
we sample a layer 𝑙𝑖 for mutation according to the probability.

After determining the layer 𝑙𝑖 for mutation, we run the second
sub-network to predict a new sparsity ratio for this layer. We take
the predicted layer index 𝑙𝑖 and its current sparsity ratio 𝑓𝑖 of the
𝑝𝑎𝑟𝑒𝑛𝑡 as the input to this model. As shown in Fig. 2 (right), another
LSTM layer is leveraged to learn the effect of changing the sparsity
ratio. Since attention and FFN layers have different sparsity ratios
(shown in Table 2), we design two different fully-connected clas-
sification layers for attention and FFN layers, called the Attention
mutator and FFN mutator, respectively. The corresponding clas-
sification branch is selected according to the type of layer 𝑙𝑖 . For
instance, if layer 𝑙𝑖 is an attention layer, we forward the input to
the Attention mutator branch to predict a new sparsity ratio, 𝑓 ∗

𝑖
.

Latency-aware reward. The objective of our reinforced mutator
is to maximize the latency-aware reward as follows:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝐴𝑈𝐶 (𝑚) ×
[
𝐿𝐴𝑇 (𝑚)

𝑇

]𝑤
(2)

where 𝐴𝑈𝐶 (𝑚) denotes the AUC of model𝑚, 𝐿𝐴𝑇 (𝑚) denotes the
inference latency on the target platform, and𝑇 is the target latency.
𝑤 is the weight factor defined as:

𝑤 =

{
0, if 𝐿𝐴𝑇 (𝑚) ≤ 𝑇
𝛼, otherwise

(3)

In our scenario, we have a hard limit on the pruned model latency.
Therefore, we set𝑤 = 0 if the latency of the searchedmodel𝑚 is less
than 𝑇 to find the layer-wise sparsity with the highest AUC under
constraint, 𝑇 . Otherwise, we set 𝑤 = 𝛼 to penalize the objective
value and discourage mutations that violate the latency constraint.
𝛼 is a negative number, and in our experiment, we empirically set
𝛼 = −1.

The computation of AUC and latency in the reward function is
time-consuming. To eliminate the cost of latency measurement, we
build a latency predictor that can accurately predict the latency for
layer-wise sparse models. To reduce AUC computation cost, we
conduct fast structured pruning on a small training set. We detail
these optimizations below.
Latency prediction. Measuring the latency for a model requires
deploying the model on the target platform and then running the
model many times on the same input. As such, it would be time-
consuming to measure the candidate model latency at each iteration
of the reinforced aging evolution algorithm. In lieu of this, we build
a latency predictor which can accurately predict the latency for
each layer-wise sparse model on our deployment platform. First, we
randomly sample layer-wise sparse models from our search space
and measure the latency on the target platform. We then train a
random forest regression model [19] to predict the latency values
from the sampled models’ layer-wise sparsity ratios.
Structured pruning. We conduct structured pruning to obtain the
AUC in the reward function. It’s non-trivial to select a structured
pruning algorithm for our scenario. In our application, the base
model BERT-Mini is first initialized with pretraining weights [33]

and then fine-tuned on our real-world training set. Since move-
ment pruning [29] has demonstrated the advances in removing
unimportant neurons for fine-tuning pretrained models, we lever-
age Hugging Face’s nn_pruning library [17], which is an improved
version of movement pruning to support structured pruning.

The original nn_pruning conducts block pruning in the attention
layer. To determine which blocks are pruned, it divides weight
matrices𝑊𝑞 (Query 𝑄),𝑊𝑘 (Key 𝐾 ),𝑊𝑣 (Value 𝑉 ), and𝑊𝑜 (output
weight) into individual blocks. For instance, when the block size
equals the head size, the Key matrix𝑊𝑘 in the 4-head BERT-Mini
will be divided into𝑊𝑘1,𝑊𝑘2,𝑊𝑘3,𝑊𝑘4. Each block is assigned with
a score, which is used to measure the importance for block weights
to final model accuracy. However, since the importance scores for
each head’s𝑊𝑘𝑖 ,𝑊𝑞𝑖 ,𝑊𝑣𝑖 are learned independently, there is no
guarantee to prune an entire head. Therefore, we cannot directly
apply block pruning in our scenario. For example, when the sparsity
is set to prune 1 head, block pruning removes one block in each
𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 . Based on the importance scores, we might prune the
first head by𝑊𝑞1, the second head by𝑊𝑘2 and the third head by
𝑊𝑣3. In this case, no head would get removed and there would be
no latency reduction.

To solve this problem, we apply a simple but effective method.
For each head 𝑖 , we constrain its corresponding four matrices𝑊𝑞𝑖 ,
𝑊𝑘𝑖 ,𝑊𝑣𝑖 and𝑊𝑜𝑖 with one shared importance score, so that all
matrices in one head will be pruned at the same time. We evaluate
the two different implementations on pruning the same model (i.e.,
the output model with 80% sparsity using the original nn_pruning
in Fig. 3), and they achieve comparable AUC scores.

Additionally, to further reduce the search cost, we randomly
sample a small subset of the training data which is sufficiently
large enough to evaluate model performance. As a result, we can
quickly get the approximate AUC for ranking a candidate model in
4 minutes on a 4-V100 GPU node.

5 EVALUATION
5.1 Dataset and Setting
Dataset. The training set for our study is a large-scale sample of
real impressed query-ad pairs from Microsoft Bing’s search log.
Since it would be laborious to manually label each query-ad pair in
the training set as defective/non-defective, we follow the practice
in AutoADR [7] of generating the defective probability for each
sample using a powerful BERT teacher model. The teacher model
itself is trained on millions of human-classified query-ad pairs. All
of our pruned models are trained on the binary cross entropy loss
between the teacher score and model score. The test set in our
experiments contains 100k query-ad pairs which are classified as
defective/non-defective by human judges, and we report the ROC
AUC of the model scores on this set. The teacher has an AUC of
88.98% on the test set.
Latency measurement. To build the latency predictor, we ran-
domly sample 5000 models from our sparsity search space and mea-
sure their inference latency on a Intel(R) Core(TM) i7-7700 CPU
device. The inference framework is ONNX runtime 1.8.2. To make
full utilization of ONNX optimizations, we apply quantization [3]
from FP32 to Int8 as well as ONNX transformer optimizations [2]
for all models. We report the average latency of 1000 runs with an
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Model Size AUC (%) Latency
BERT-Mini [33] 11.3M 87.15 3274.24 us

uniform pruning [17] (85% sparsity) 8.86M 85.97 1876.44 us
SwiftBERT 8.99M 86.83 1851.16 us

Table 3: End-to-end performance under the required 1900us
latency constraint. SwiftBERT achieves +0.86% better AUC
than uniform pruned model with smaller latency.

input sequence length of 38 and batch size of 1. The sampled layer-
wise sparsity and measured latency pairs are split 8:2 between the
training and validation sets for the latency prediction model. The
RMSE is only 70us and RMSPE is 3.88% on the validation data. This
suggests that the latency prediction model can be used to replace
the expensive latency measurement with little error introduced.
Search algorithm details. In our experiment, we explore 𝑁=500
models in total. To set the population size 𝑃 and sample size 𝑆 , we
consider 20, 50 and 100 as in [6, 27]. The results show there is no
obvious difference after training to converge. We finally set the 𝑃
and 𝑆 to 50. The initial populations are randomly sampled from
our search space with a relaxed latency constraint (i.e., 1.15× of the
target constraint). For the mutation controller, the embedding size
is 104 (4 candidates in Attention and 100 candidates in FFN), and
the hidden state size of the 2-layer LSTM is 100. We use the Adam
optimizer with a learning rate of 0.001.

At each mutation step, the controller samples a model, and we
calculate the latency-aware multi-objective reward for this muta-
tion action. As introduced in Section 4.2, we predict the latency for
the sampled model using our latency predictor and conduct layer-
wise pruning to get the ROC AUC score. To reduce the search cost
incurred during pruning, we prune on a subset of 500 mini-batches,
which is randomly sampled from our full training set. The AUC is
evaluated on a small validation set for the search algorithm. When
the mutation process finishes, we collect all models that fulfill the
latency constraint, and select the model with maximum validation
AUC. In our experiment, the search process can finish within 24
hours on a 4-V100 GPU node.
Final layer-wise pruning and evaluation. For the final model
setting selected by our search algorithm, we conduct layer-wise
pruning using the full large-scale training set. Concretely, we run 3
epochs of pruning and 1 epoch of fine-tuning with a batch size of
8192 and initial learning rate of 3e-5. The other settings and hyper-
parameters are kept the same as nn_pruning2 [17]. We report the
final ROC AUC on our test set.

5.2 SwiftPruner Under Various Latency
Constraints

Setup. We now report our reinforced evolutionary pruning per-
formance and compare with the state-of-the-art uniform sparsity
method, nn_pruning [17] by Hugging Face. Since nn_pruning does
not support latency-aware pruning, we set multiple sparsity ratios
for comparison. Following the original paper, we apply hybrid-filled
pruning for the best AUC and efficiency trade-off and use square
block (32×32) pruning on the attention layer and dimension prun-
ing on the FFN layer. A fine-tuning is conducted after the pruning
2The code of nn_pruning is at: https://github.com/huggingface/nn_pruning

Figure 3: Compared to uniform sparsity pruning, SwiftPruner
consistently outputs the best model settings under various la-
tency constraints. Moreover, SwiftPruner is able to construct
models for a wide range of latency constraints whereas uni-
form sparsity model latencies are fragmented and difficult
to tune to a specific latency requirement.

to re-fill the 0-valued neurons in the pruned model. For fair com-
parison, we run 3 epochs of pruning and 1 epoch of fine-tuning
under the same random seed. To demonstrate the effectiveness of
SwiftPruner, we set a wide range of latency constraints from 1600us
to 2400us.
Results and Analysis. Fig. 3 gives a full comparison of models
with different compression methods and latency constraints. Our
results show that by searching the optimal layer-wise sparsity,
SwiftPruner yields both significant latency and AUC improvement
compared to the uniform sparsity baseline. More specifically, we
observe the following: (i) layer-wise sparsity demonstrates the su-
periority in removing redundancy in tiny transformers compared
to uniform sparsity. Under the same-level latency, SwiftPruner
consistently outperforms uniform sparsity pruning. Specifically,
SwiftBERT (1851.16us) achieves +0.86% higher AUC than the 85%
uniform sparsity model (1876.44us). The advantages of layer-wise
sparsity becomes more competitive under extremely low latency
constraints. SwiftBERT (1590.00us) outperforms the 90% uniform
sparsity model (1581.05us) by a significant +1.65% higher AUC. (ii)
Our method demonstrates the effectiveness in pruning tiny trans-
former to various latency constraints, which is crucial in practical
deployment. In Fig. 3, we can see that the final latency is not linearly
reduced by the increase in uniform sparsity. In particular, it’s hard
to tune a sparsity to obtain a model with around 1700us latency
via nn_pruning. Meanwhile, SwiftPruner can prune a model while
retaining the maximum AUC under all latency constraints.

In our online system, the latency of SwiftBERT is constrained
to 1900us. Table 3 suggests that we can even achieve much lower
latency than the 1900us constraint with a satisfactory ROC AUC.
Remarkably, our searched layer-wise sparsity model (1851.16us)
can significantly reduce the original BERT-Mini’s latency by 43.46%
with an acceptable AUC loss of just 0.32%. The uniform pruned
model, on the other hand, has a 1.18% AUC drop under the 1900us
constraint, which demonstrates the efficiency of layer-wise sparsity
in this extremely low-latency regime.

https://github.com/huggingface/nn_pruning
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Figure 4: Comparison of search methods under different
latency constraints, 𝛼 = −1. The X-axis is reversed.

5.3 Comparison of Search Methods
The previous section demonstrated that our searched layer-wise
sparsity configuration consistently outperforms uniform sparsity.
In this section, we compare SwiftPruner with other methods that
are also applicable to search layer-wise sparse models.
Comparison baselines.We implement three other baselines, which
are representative of the state-of-the-art in model architecture and
hyper-parameter search.
• Tree Parzen Estimator (TPE). We apply the TPE algorithm [1] by
formulating the problem as a hyper-parameter search where the
hyper-parameters are the sparsity values for the attention heads
and FFN of the 4 encoder layers.
• Reinforcement Learning (RL). Our implementation follows the
well-known ENAS [26]. We design and train an RNN controller
to predict the sparsity for each layer. The controller consists
of 4 LSTM sub-networks, where each sub-network predicts the
attention and FFN sparsity for a corresponding encoder layer.
• Aging Evolution (EA). Our implementation follows the original
algorithm in [27]. EA is conducted with the same setting to
SwiftPruner, except that themutation action ismade by randomly
sampling a layer and its new sparsity setting.
For fair comparison, we use one training recipe and hyper-

parameter setting for all methods. Specifically, all three baselines
search for the same number of 500 models. For EA, the population
size 𝑃 and sample size 𝑆 are the same with ours (i.e., set to 50). All
search methods optimize the same reward function in Equation 2.
Search results comparison. We first compare the final AUC for
the searched models. Fig. 4 reports comparisons between Swift-
Pruner and the other search methods under five latency constraints
(1700us - 2100us). Compared to the three baselines, SwiftPruner
consistently reaches the highest AUC under all latency constraints.
Specifically, we improve the AUC by 0.1% (EA), 0.09% (TPE), and
0.05% (RL) under the maximum 2100us constraint. We also observe
that the AUC improvements by SwiftPruner are even higher under
lower latency constraints. Significantly, under the smallest 1700us
constraint, we outperform EA, TPE, and RL by 0.16%, 0.32%, and
0.48% higher AUC, respectively.
Search efficiency comparison. For a deeper understanding of
various search methods, we not only compare the AUC scores of the
best searched models, but also compare the search efficiency. Since

Figure 5: Search efficiency comparison under the same search
iteration (𝛼 = −1).

𝛼 TPE RL EA SwiftPruner
-0.3 86.71 86.65 86.75 86.82
-0.7 86.79 86.30 86.76 86.84
-1 86.69 86.66 86.77 86.83

Table 4: AUC (%) achieved by different latency-AUC tradeoff
𝛼 . We set the same 1900us constraint for all methods.

all the search methods optimize both latency and AUC, we compare
the achieved reward (computed by Equation 2) with trade-off ratio
𝛼 = −1. Fig. 5 compares the search efficiency of SwiftPruner to
EA, RL and TPE under the 1900us constraint. For each method, we
keep track of the searched models for every 50 iterations. Since EA
and SwiftPruner are evolution-based methods, we evaluate them
by the reward mean and variance of models in the population (i.e.,
50 models). For TPE and RL, we select the top 50 models with the
best reward over time.

As shown in Fig. 5, SwiftPruner achieves better efficiency than
EA, RL and TPE. Compared to TPE and RL, SwiftPruner consistently
achieves higher rewards all the time. Compared to EA, SwiftPruner
degrades a little over the first few iterations of reinforced mutation,
but it quickly surpasses EA after 150 iterations.
The impact of AUC-latency trade-off 𝛼 . 𝛼 controls the AUC-
latency trade-off during the search process. A smaller 𝛼 indicates a
larger penalty on the latency. To study the impact of different 𝛼 on
search methods, we set three 𝛼 : -0.3, -0.7 and -1. We run SwiftPruner
and our baselines with different 𝛼 under the same 1900us constraint.

Table 4 summarizes the searched AUC under different 𝛼 . From
the results, we observe that: (i) for each 𝛼 , SwiftPruner reaches the
highest AUC; (ii) while TPE and RL AUC vary significantly across
the three 𝛼 settings, SwiftPruner and EA have stable performance
with little variance. This suggests that evolution-based algorithms
are more robust to hyper-parameter selection.

In summary, we demonstrate that SwiftPruner outperforms other
search methods with higher AUC models, better search efficiency
and greater robustness to hyper-parameter selection.

5.4 Pruned Model Visualization
We now visualize the SwiftBERT structures and identify some
heuristics for designing more efficient pruned BERT architectures.
By doing so, we hope to motivate and inspire further study of
layer-wise pruning and architecture design of transformer models.
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Figure 6: Visualization of pruned model structure. Insights
for ad relevance: first two encoders prefer larger attention
head count; FFN has more redundancy than attention.

Metric Cold ads Cold+Hot ads
Defect Rate -11.7% -3.3%

RPM +7.94% +0.27%
CTR +2.37% +0.65%
QBR -4.43% -0.16%

Avg. Latency - +0.10%
99.9th % Latency - +1.50%

Table 5: Online KPI impact of adding SwiftBERT 1900 to serve
as a new cold ads semantic relevance model. The online test
shows significant positive KPI’s in both cold ads segment and
on all (cold+hot) ads with minimal latency impact.

Fig. 6 shows the pruned structures of both nn_pruning and Swift-
Pruner. We observe that deeper layers have more redundancy than
lower layers in BERT-Mini, which is consistent with the obser-
vations in CNN models [20]. Compared to uniform sparsity, our
layer-wise sparsity method prunes less in crucial layers and prunes
more in less-crucial layers. For instance, while nn_pruning prunes
2 heads in each encoder layer, our method automatically learns
to keep all attention heads in the 2nd encoder layer and prunes 3
heads in the 3rd and 4th layers. As a result, SwiftBERT (1851us)
has a comparable latency with nn_pruning but a much higher AUC
(+0.67%). Moreover, we observe that SwiftPruner learns to keep
more attention heads and prune more FFN intermediate layers un-
der tighter latency constraints. For example, SwiftBERT (1695us)
retains the same attention structure as SwiftBERT (1851us), but
keeps only 0.03%-0.1% of the original FFN intermediate dimensions.

5.5 Impact on Ad Production
In this section, we study the impact of our offline AUC gain by
integrating the SwiftBERT model with latency constraint 1900us
(SwiftBERT 1900) into the Microsoft Bing ad relevance system. To
do so, we add SwiftBERT 1900 as a new query-ad semantic relevance
model for cold ads whose semantic score is then used to inform
decisions later in the ad stack as described in Section 3.

For the task of filtering defective cold ads, we find SwiftBERT
1900’s semantic score can lift the relevance system’s defective cold
ad classifier performance by a significant +0.96% in ROC AUC.

To measure the other effects of adding SwiftBERT 1900 to the
relevance system, we conduct an online A/B test and study the
impact on both the cold ads and overall (i.e., hot+cold ads) segments.
The KPI results from our online A/B test is outlined in Table 5 and
a description of each metric is provided below.

Defect Rate: Ratio of defective ads which are shown to users. One
major goal of the ad relevance system is to minimize this rate.
Revenue per Mille (RPM): This metric is the revenue per 1000
queries. Increasing this value while maintaining or improving qual-
ity of ads represents an improvement in the overall ad system.
Click-through-rate (CTR): This is the average number of clicks
per ad impression. CTR tends to be correlated with the defect rate
and positive trends signal an improvement in the quality of ads
shown to users.
Quick back rate (QBR): This is the percent of clicks that result
in users “quickly” returning to the search page, indicating they are
unsatisfied with the clicked ads. QBR tends to correlate with the
defect rate and reduced QBR suggests ad quality improvements.
Avg. Latency: Average latency of the system to process all ads per
query. We would like our models to not impact the system latency
significantly.
99.9th% Latency: Latency of the system to process all ads for the
slowest 0.1-percentile of queries. We would like to keep this number
small such that even the slowest queries with the largest ad loads
do not time out.

In Table 5, we see a strict improvement in every KPI in both
the cold and overall segments. In particular, we observe a great
11.7% cut in cold ad Defect Rate which translates to a 3.3% cut in
overall ad Defect Rate. Furthermore, we see strong positive metrics
in user behavior with a 2.37% increase in CTR and a substantial
4.43% cut in QBR for cold ads delivered. Finally, the online A/B
test shows a greater revenue after adding SwiftBERT 1900 with
a 7.94% RPM increase among cold ads and a 0.27% RPM increase
among hot+cold ads. Since we add a new semantic model which
runs at real time for all cold ads at online serving stage, the latency
of the system increases, as expected. However, due to our efficient
pruning methodology, the latency impact of running SwiftBERT
1900 for all cold ads is reasonably small with just a 1.50% increase
in 99.9th% latency. This means even after adding SwiftBERT 1900,
our system can continue to serve user queries with high ad load
without timing out.

In summary, our SwiftBERT 1900 model delivers significant per-
formance improvements in ads relevance, user behavior metrics,
and revenue while adding minimal latency to the system.

6 CONCLUSION AND FUTUREWORKS
In this paper, we introduced SwiftPruner, a novel end-to-end frame-
work that searches the best-performing layer-wise sparse BERT
models under a desired latency constraint. SwiftPruner provides
an efficient reinforced evolutionary search algorithm, which learns
to conduct effective mutations rather than random ones. Extensive
experiments demonstrate its effectiveness and efficiency compared
to other search methods. Real-world online testing shows that our
pruned model, SwiftBERT achieves a significant defective cold ads
reduction and enables real-time, transformer-based online serving
for cold ads on CPU at Microsoft Bing.

Finally, SwiftPruner’s fast online inference provides benefits be-
yond just the cold ads scenario. We have also successfully deployed
SwiftPruner to serve relevance in dynamic ads [13, 38] where offline
ad-side computation is infeasible because ad text is dynamically
generated online. Additionally, we plan to apply SwiftPruner to
search relevance [43] and vertical ads in the future.
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