
Program Merge Conflict Resolution via Neural Transformers
Alexey Svyatkovskiy

Microsoft
Redmond, WA, USA

Sarah Fakhoury
Washington State University

Pullman, WA, USA

Negar Ghorbani
UC Irvine

Irvine, CA, USA

Todd Mytkowicz
Microsoft Research

Redmond, WA, USA

Elizabeth Dinella
University of Pennsylvania

Philadelphia, PA, USA

Christian Bird
Microsoft Research

Redmond, WA, USA

Jinu Jang
Microsoft

Redmond, WA, USA

Neel Sundaresan
Microsoft

Redmond, WA, USA

Shuvendu K. Lahiri
Microsoft Research

Redmond, WA, USA

ABSTRACT
Collaborative software development is an integral part of the modern
software development life cycle, essential to the success of large-
scale software projects. When multiple developers make concurrent
changes around the same lines of code, a merge conflict may occur.
Such conflicts stall pull requests and continuous integration pipelines
for hours to several days, seriously hurting developer productivity.
To address this problem, we introduce MergeBERT, a novel neural
program merge framework based on token-level three-way differenc-
ing and a transformer encoder model. By exploiting the restricted
nature of merge conflict resolutions, we reformulate the task of gen-
erating the resolution sequence as a classification task over a set of
primitive merge patterns extracted from real-world merge commit
data. Our model achieves 63–68% accuracy for merge resolution
synthesis, yielding nearly a 3× performance improvement over ex-
isting semi-structured, and 2× improvement over neural program
merge tools. Finally, we demonstrate that MergeBERT is sufficiently
flexible to work with source code files in Java, JavaScript, Type-
Script, and C# programming languages. To measure the practical
use of MergeBERT, we conduct a user study to evaluate Merge-
BERT suggestions with 25 developers from large OSS projects on
122 real-world conflicts they encountered. Results suggest that in
practice, MergeBERT resolutions would be accepted at a higher
rate than estimated by automatic metrics for precision and accuracy.
Additionally, we use participant feedback to identify future avenues
for improvement of MergeBERT.

CCS CONCEPTS
• Software and its engineering → Software version control; Au-
tomatic programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3549163

KEYWORDS
Software evolution, program merge, ml4code

ACM Reference Format:
Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz,
Elizabeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu
K. Lahiri. 2022. Program Merge Conflict Resolution via Neural Transform-
ers. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’22), November 14–18, 2022, Singapore, Singapore. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3540250.
3549163

1 INTRODUCTION
Collaborative software development relies on version control sys-
tems such as git to manage and track changes across a codebase.
In most projects, developers work primarily in a branch of a soft-
ware repository, periodically synchronizing their code changes with
the main branch via merges and pull requests [21]. When multiple
developers make concurrent changes to the same line of code, a
merge conflict may occur. Merge commits occur frequently, almost
12% of all commits are related to a merge [20], and up to 46% of
those commits result in conflicts. Resolving merge conflicts is a
time-consuming, complicated, and error-prone activity [6]. To re-
solve a conflict, developers must stop their workflow, understand
conflicting changes, and identify a correct resolution. The ideal way
to resolve a conflict is not always clear, and may require referring
to project specification documentation or communicating with their
peers about changes [6, 9, 13, 22, 33].

Modern version control systems such as git utilize the diff3
algorithm for performing unstructured line-based three-way merge
of input files [42]. Thus, it is the de facto tool for merging and
identifying merge conflicts in software development. This algorithm
aligns the two-way diffs of two versions of the code, A and B, with
the common base, O, into a sequence of diff “slots”. At each slot, a
change from either A or B is selected. In cases where both A and
B contain changes (relative to O) in the same slot (e.g., on the same
line), there is a merge conflict. Standard merge algorithms cannot
automatically determine the correct way to merge these conflicting
changes. In these cases, developers must manually intervene in order
to correctly resolve the conflicting code and complete the merge.

https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

Over the past decade, several approaches have been proposed
to improve the detection and automatic resolution of merge con-
flicts [4, 9, 10, 28, 30, 32, 45, 53]. Some approaches use the abstract
syntax trees (ASTs) or other representations of the source code to
improve conflict resolution [4, 49, 52]; others use a data-driven ap-
proach which uses deep learning to predict the correct merge [15].
Researchers have also developed tools to help developers visualize
and navigate the merge conflict resolution process [41, 43, 44], and
identified key needs of the developer community for effective tool
support [33]. The sheer body of research dedicated to this problem
represents a significant amount of time and effort. Despite these
advancements, none of these approaches have been widely adopted
into practice, and the git textual-based detection algorithm remains
one of the most commonly used merging approaches [33].

In an effort to address this, we introduce MergeBERT: a neural
program merge framework based on token-level three-way differ-
encing and a multi-input variant of the bidirectional transformer
encoder (BERT) model [14]. We formulate the task of generating a
merge conflict resolution sequence as a classification task over a set
of primitive merge patterns extracted from real-world merge commit
data. MergeBERT encodes all inputs that a standard diff3 algo-
rithm takes (two two-way diffs of input programs) as well as the edit
sequence information, then aggregates them for learning. We train
and then evaluate MergeBERT on 220,000 and 54,000 (respectively)
real world historical merge conflicts and their associated manual res-
olutions from 100,000 GitHub repositories in JavaScript, TypeScript,
Java and C#, and find that it performs quite well, with precision and
accuracy always over 60% (over 70% if the top three suggestions
are considered). Further, we compare MergeBERT to existing state
of the art structured and semi-structured merge approaches (which
are necessarily language-specific) and show that MergeBERT is
able to provide resolution suggestions for more merge conflicts and
the suggestions are correct (i.e., match the historical user manual
resolution) more often.

To better evaluate the resolutions generated by MergeBERT from
users’ perspective in practice, we also conduct a user study with 25
developers from large OSS projects. We ask participants to evaluate
if MergeBERT resolution suggestions are acceptable on a set of 122
of their own real-world conflicts. Results show that MergeBERT
merge resolutions would be accepted in practice despite not always
being syntactically identical to the historical user resolutions, and
we identify potential ways to improve MergeBERT and the merge
conflict oracles used to evaluate neural program merge approaches.

We make the following contributions in this paper:

(1) We introduce MergeBERT, a novel transformer-based pro-
gram merge framework that leverages token-level three-way
differencing and formulates the task of generating the resolu-
tion sequence as a classification task.

(2) We evaluate MergeBERT against structured and semi-structured
program merge tools like JSFSTMERGE and JDIME, as well
as neural program merge models [15]. We demonstrate that
MergeBERT outperforms the state-of-the-art, achieving 2–3×
higher accuracy on merge resolution.

(3) We present an empirical evaluation of the perceptions of
MergeBERT resolutions with 25 developers from large OSS
projects, contributing the first user study in which developers

use and evaluate an automatic merge conflict resolution tool
on their own real-world conflicts.

We make available an online data package [19] containing the
test dataset of conflicts and user resolutions, as well as, the questions
and responses gathered from our user study. We also provide an
online Appendix with supplementary details and figures [18] (also
uploaded with this submission).

2 MOTIVATING EXAMPLE
We use a number of terms, concepts, and ideas throughout this
paper. To provide an intuition around how our approach works and
concretely define terms and concepts, we begin with a motivating
example of a small, but realistic merge conflict.

Fig. 1 provides an example merge conflict in JavaScript which
shows the result of merging two concurrent changes to the same
JavaScript file. Fig. 1(a) on the left shows the standard diff3 mark-
ers “<<<<<<< A.js”, “||||||| O.js”, “=======” and
“>>>>>>> B.js”, which demarcate the conflicting regions intro-
duced by programs A, base O, and B respectively. Here, O rep-
resents the lowest common ancestor of programs A and B in the
version control history. We denote the program text of diff3 con-
flicting regions as 𝐴, 𝐵, 𝑂 . The program text outside the conflict-
ing regions – prefix and suffix – is common to all three programs
versions. Normally conflicts files have the same name in different
branches, but to avoid confusion, we name the original file in our
example O.js, and the two concurrently edited versions of this file
A.js and B.js. A.js changes “var x” to “let x” and the 10
to 11, while B.js changes the 10 to 11 and also adds an argument
z.

MergeBERT attempts to automatically resolve merge conflicts
in two phases. First, MergeBERT represents each line-level merge
conflict instance at the token level which localizes conflicting re-
gions. Intuitively, MergeBERT converts the three line-structured
source texts into three sequences of tokens (including space and line
delimiters), applies the standard diff3 algorithm to these token
sequences, and then reconstructs the merged document at line level.
Fig. 1(b) shows the result of applying this token-level merge on
Fig. 1(a). As a result of token-level merge, the whole “let x =
max(y,” string is cleanly merged, becoming a part of the program
prefix, and “)” is prepended to the program suffix. Second, Merge-
BERT invokes an underlying neural model to suggest a resolution
via classification for each token-level conflicting region and replaces
the conflict region with the suggestion from the model (Fig. 1(c)).

Observe that the resolution does not consist of any single line
from either 𝐴 or 𝐵 since both edits modify a common line in the base.
Hence, earlier neural approaches such as DeepMerge [15] that are
restricted to picking entire lines from the conflict region would not
be able to provide the resolution. On the other hand, structured
merge techniques (such as JSFSTMERGEby [50]) cannot resolve
the conflict soundly as the conflict appears on a program statement,
which leads to side effects (e.g. syntactically incorrect code).

A token-level merge can interleave edits within lines (i.e., tokens
in which one edit does not conflict with another are trivially merged).
Consider A’s edit of the var to let keyword. Such non-conflicting
edits suffice to demonstrate the above. Token-level diff3 is a syn-
tactic merge algorithm and therefore cannot guarantee semantic or

Program Merge Conflict Resolution via Neural Transformers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

y = 9
z = 0
<<<<<<< A.js

let x = max(y, 11)
||||||| O.js

var x = max(y, 10)
=======

var x = max(y, 12,
z)
>>>>>>> B.js
console.log(x)

Prefix

Suffix

(a) Line-level conflict

y = 9
z = 0
let x = max(y,
<<<<<<< A.js

11
||||||| O.js

10
=======

12, z
>>>>>>> B.js
)
console.log(x)

(b) Token-level conflict

y = 9
z = 0
let x = max(y, 12, z)
console.log(x)

(c) Resolved merge

Figure 1: Example merge conflict represented through standard diff3 (left) and token-level diff3 (center), and the user resolution
(right). The merge conflict resolution takes the token-level edit 𝑏.

even syntactic correctness of the merged program. However, we ob-
served that in practice, syntactic correctness is preserved the majority
of the time (over 97%).

Likewise, consider the token-level conflict for the max function’s
arguments: an appropriate model trained on JavaScript should eas-
ily deduce that taking the edit from B (i.e., "11, z") captures the
behavior of A’s edit as well. The suggested resolution gives an intu-
itive demonstration of how MergeBERT turns a complex line-level
resolution into a simpler token-level classification problem.

3 BACKGROUND: DATA-DRIVEN MERGE
Dinella et al. [15] introduced the data-driven program merge prob-
lem as a supervised machine learning problem. A program merge
consists of a 4-tuple of programs (A,B,O,M), where

(1) The base program O is the lowest common ancestor in the
version history for programs A and B,

(2) diff3 produces an unstructured line-level conflict when
applied to (A,B,O), and

(3) M is the merged program with the developer resolution, in-
corporating changes made in A and B.

A merge may have multiple unstructured conflicts, we define a merge
tuple (𝐴, 𝐵,𝑂,𝑀), where𝐴, 𝐵,𝑂 correspond to the conflicting regions
in (A,B, and O), respectively, and 𝑀 denotes the resolution region.

Given a set of merge tuples (𝐴𝑖 , 𝐵𝑖 ,𝑂𝑖 , 𝑀𝑖), i = 0...N, the goal of
a data-driven merge algorithm is to learn a function, merge, that
maximizes

∑𝑁
𝑖=0 merge(𝐴𝑖 , 𝐵𝑖 ,𝑂𝑖) = 𝑀𝑖 . Throughout the text, we

will use notations (𝑎, 𝑏, 𝑜,𝑚) to refer to the token-level merge tuples.
Dinella et al. [15] also provide an algorithm for extracting the

exact resolution regions for each merge tuple and define a dataset
that corresponds to non-trivial resolutions; resolutions where the
developer does not drop the changes from one side of the merge.
Further, they provide a sequence-to-sequence encoder-decoder based
architecture, where a bi-directional gated recurrent unit (GRU) is
used for encoding the merge inputs comprising of (𝐴, 𝐵,𝑂) segments
of a merge tuple, and a pointer mechanism is used to restrict the
output to only choose from line segments present in the input. Their

paper suffers from two limitations. First, given the restriction on
copying only lines from inputs, their dataset did not consider merges
where the resolution required token-level interleaving, such as the
conflict in Figure 1. Second, their dataset consists of merge conflicts
in a single language, namely JavaScript. Our approach addresses
both of these limitations.

4 MERGE CONFLICT RESOLUTION AS A
CLASSIFICATION TASK

In this work, we demonstrate how to exploit the restricted nature of
merge conflict resolutions – compared to an arbitrary program repair –
to leverage discriminative models to synthesize the merge resolution
sequence. We have empirically observed that the application of
diff3 at token granularity enjoys two useful properties over its
line-level counterpart: (i) it helps localize the merge conflicts to
small program segments, effectively reducing the size of conflicting
regions, and (ii) most resolutions of merge conflicts produced by
token diff3 consist entirely of changes from 𝑎 or 𝑏 or 𝑜 or a
sequential composition of 𝑎 followed by 𝑏 or vice versa. Here, and
throughout the paper we will use lower case notations to refer to
attributes of token-level differencing (e.g. 𝑎, 𝑏, and 𝑜 are conflict
regions produced by diff3 at token granularity). On the flip side,
a token-level merge can introduce many small conflicts. To balance
the trade-off, we start with the line-level conflicts as produced by
the standard diff3 and perform a token-level merge of only the
segments present in the line-level conflict. There are several potential
outcomes for such a two-level merge at the line-level:

• A conflict-free token-level merge: For example, the edit from
𝐴 about let is merged since 𝐵 does not edit that slot as
shown in Fig. 1(b).

• A single localized token-level merge conflict: For example,
the edit from both 𝐴 and 𝐵 for the arguments of max yields a
single conflict as shown in Fig. 1(b).

• Multiple token-level conflicts: Such a case (not illustrated
above) can result in several token-level conflicts.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

let x = max(y,
<<<<<<< branch A
 11
|||||||
 10
======= branch O
 11, z
>>>>>>> branch B
)

ClassificationEncoder

Aggregation

Embedding

Token

= == = ↔== =

x = max (, 11)y

=x max (10)y ,

=x max y 10),(

= = = == = ↔ + + =

x = max (y , 11 , z)

Resolution
Decoding

A

Edit

let x = max(y, 11, z)

O

B

Encoder

Encoder

Encoder

Position

Embedding

Token EditPosition

Embedding

Token EditPosition

Embedding

Token EditPosition

Figure 2: An overview of the MergeBERT architecture. From left to right: given conflicting programs A, B and O token-level
differencing is performed first, next, programs are tokenized and the corresponding sequences are aligned (𝑎 |𝑜 and 𝑜 |𝑎 , 𝑏 |𝑜 , and 𝑜 |𝑏).
We extract edit steps for each pair of token sequences (∆𝑎𝑜 and ∆𝑏𝑜). Four aligned token sequences are fed to the multi-input encoder
neural network, while edit sequences are consumed as edit type embeddings. Finally, encoded token sequences are aggregated into a
hidden state which serves as input to classification layer.

Token-level diff3 applied to a 4-tuple of programs (A,B,O,M),
would usually result in a set of localized merge tuples ⟨𝑎 𝑗 , 𝑏 𝑗 , 𝑜 𝑗 ,𝑚 𝑗 ⟩.
We empirically observe that 74% of such resolutions 𝑚 𝑗 are com-
prised of (𝑖) exactly the tokens in 𝑎 𝑗 or (𝑖𝑖) exactly the tokens in
𝑏 𝑗 . Another 0.4% of the resolutions are (𝑖𝑖𝑖) just the tokens in 𝑜 𝑗 .
In addition, 23% of the resolutions are the result of concatenating
(𝑖𝑣) 𝑎 𝑗 and 𝑏 𝑗 or (𝑣) 𝑏 𝑗 and 𝑎 𝑗 . Finally, 1.8% comprise another four
variants, obtained by taking 𝑖, 𝑖𝑖, 𝑖𝑣 and 𝑣 above and removing the
tokens that also occur in the base, 𝑜 𝑗 . In total, this provides nine
primitive merge resolution patterns (see online Appendix [18] for
more details about the primitive merge patterns).

We, therefore, treat the problem of constructing merge conflict
resolutions𝑚 𝑗 as a classification task to predict between these pos-
sibilities. It is important to note that although we are predicting
simple resolution strategies at the token-level, they may translate to
complex resolutions at the line-level. In addition, not all conflicts
are resolved by breaking that conflict into tokens and applying these
patterns—some resolutions such as those introducing new tokens or
reordering tokens are not expressible as a choice at the token-level.

5 MERGEBERT: NEURAL PROGRAM MERGE
FRAMEWORK

MergeBERT is a textual program merge model based on the bidirec-
tional transformer encoder (BERT) model [14]. We refer the reader
to CodeBERT [17] for a discussion on applying transformers to code.
A transformer, like a recurrent neural network, maps a sequence of
text into a high dimensional representation, which can later be de-
coded to solve downstream tasks. While not originally designed
for code, transformers have found many applications in software
engineering [11, 26, 47]

MergeBERT approaches merge conflict resolution as a sequence
classification task given conflicting regions extracted with token-
level differencing and surrounding code as context. The key technical

innovation in MergeBERT lies in how it breaks program text into an
input representation amenable to learning with a transformer encoder
and how it aggregates various input encodings for classification.

In the standard sequence learning setting there is a single input
and single output sequence. In the merge conflict resolution task,
there are multiple conflicting input programs and one resolution.
To facilitate learning in this setting, we construct MergeBERT as
a multi-input encoder neural network, which first encodes token
sequences of conflicting programs, then aggregates them into a
single hidden summarization state.

An overview of the MergeBERT model architecture is shown in
Fig. 2. Given conflicting programs A, B and O we first perform
tokenization and then repeat the three-way differencing at token
granularity. If a conflict still exists in this token-level three-way
differencing, we collect the token sequences corresponding to con-
flicting regions 𝑎, 𝑏, and 𝑜, and compute pair-wise alignments of 𝑎
and 𝑏 with respect to the base 𝑜. Finally, for each pair of aligned
token sequences we extract an “edit sequence” that represents how
to turn the second sequence into the first. The resulting aligned token
sequences are fed to the multi-input encoder neural network, while
the corresponding edit sequences are consumed as type embeddings.
Finally, the encoded token sequences are summarized into a hidden
state which serves as input to the classification layer.

Given a 4-tuple of programs (A,B,O,M) which contains token-
level merge tuples (𝑎 𝑗 , 𝑏 𝑗 , 𝑜 𝑗 ,𝑚 𝑗), j=0...N, MergeBERT models the
following conditional probability distribution:

𝑝(𝑚 𝑗 |𝑎 𝑗 , 𝑏 𝑗 , 𝑜 𝑗), (1)

and consequently, for entire programs:

𝑝(M|A,B,O) =
𝑁∏
𝑗=1

𝑝(𝑚 𝑗 |𝑎 𝑗 , 𝑏 𝑗 , 𝑜 𝑗) (2)

Program Merge Conflict Resolution via Neural Transformers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

= = = = = = ßà +

x = max (y , 11 ,

x = max (y , 10 [PAD]

z)

+ =

[PAD])

Figure 3: An example edit sequence extracted between a pair of
token sequences. Top row is 𝑜 |𝑏 , bottom is 𝑏 |𝑜 , and middle is ∆𝑏𝑜 .
Padding symbols [PAD] are introduced for alignment. In this
case, the target token sequence is obtained by swapping a token
and inserting two tokens.

Independence of token-level conflicts is a simplifying assumption.
However, we observe that in our data set only 5% of merge conflicts
result in more than 1 token-level conflict per line-level conflict.

5.1 Context Encoding
For a merge tuple (𝑎, 𝑏, 𝑜,𝑚) MergeBERT calculates two pair-wise
alignments between the sequences of tokens of conflicting regions
𝑎 (respectively 𝑏) with respect to that of the original program 𝑜:
𝑎 |𝑜 , 𝑜 |𝑎 , 𝑏 |𝑜 , and 𝑜 |𝑏 . For each pair of aligned token sequences we
compute an edit sequence. These edit sequences – ∆𝑎𝑜 and ∆𝑏𝑜 –
are comprised of the following editing actions (kinds of edits): =
represents equivalent tokens, + represents insertions, - represents
deletions, ↔ represents a replacement, and ∅ is used as a padding
token. Overall, this produces four token sequences and two edit se-
quences: (𝑎 |𝑜 , 𝑜 |𝑎 , and ∆𝑎𝑜) and (𝑏 |𝑜 , 𝑜 |𝑏 , and ∆𝑏𝑜). Fig. 3 provides
an example of an edit sequence. Each token sequence covers the
corresponding conflicting region and, potentially, surrounding code
tokens. We make use of Byte-Pair Encoding (BPE) unsupervised to-
kenization to avoid a blowup in the vocabulary size given the sparse
nature of code identifiers [27]. To help the model learn to recognize
editing steps we introduce an edit type embedding. We combine it
with the standard token and position embeddings utilized in BERT
model architecture via addition.

5.2 Merge Tuple Aggregation
We utilize transformer encoder model E to independently encode
each of the four token sequences of token-level conflicting regions
𝑎 |𝑜 , 𝑜 |𝑎 , 𝑏 |𝑜 , and 𝑜 |𝑏 , passing corresponding edit sequences ∆𝑎𝑜

and ∆𝑏𝑜 as type embeddings. Finally, MergeBERT aggregates the
resulting encodings into a single hidden summarization state ℎ:

(3)ℎ =
∑︁

𝑥 ∈(𝑎 |𝑜 ,𝑜 |𝑎,𝑏 |𝑜 ,𝑜 |𝑏)
\𝑥 · E(𝑥,∆𝑥)

where E(𝑥,∆𝑥) are the encoded tensors for each of the sequences 𝑥 ∈
(𝑎 |𝑜 , 𝑜 |𝑎, 𝑏 |𝑜 , 𝑜 |𝑏), and \𝑥 are learnable weights. After aggregation a
linear classification layer with softmax is applied:

𝑝(𝑚 𝑗 |𝑎 𝑗 , 𝑏 𝑗 , 𝑜 𝑗) = softmax(𝑊 · ℎ + 𝑏) (4)

The resulting line-level resolution region is obtained by concate-
nating the prefix, predicted token-level resolution𝑚 𝑗 , and the suffix.
Finally, in the case of a one-to-many correspondence between the
original line-level and the token-level conflicts (see Appendix for

more details and a pseudocode), MergeBERT uses a standard beam-
search to decode the most promising predictions.

5.3 Implementation Details
We utilize a pretrained CodeBERT1 model with 6 encoder layers,
12 attention heads, and a hidden state size of 768. The vocabulary is
constructed using byte-pair encoding [39] and the vocabulary size
is 50000. We transfer the weights of the pretrained transformer en-
coder into the MergeBERT multi-input neural network, and attach
a randomly initialized linear layer with softmax. We then finetune
the resulting neural network in a supervised setting for the sequence
classification task. Input sequences for finetuning training cover con-
flicting regions and surrounding code (i.e., fragments of prefix and
suffix of a conflicting region) up to a maximum length of 512 BPE
tokens. The backbone of our implementation is HuggingFace’s 2

RobertaModel and
RobertaForSequenceClassification classes in PyTorch,
which are modified to turn the model into a multi-input architecture
shown in Fig. 2. We finetune MergeBERT with Adam stochastic
optimizer with weight decay fix using a learning rate of 5e-5, 512
batch size and 8 backward passes per allreduce. The finetuning
training was performed on 4 NVIDIA Tesla V100 GPUs with 16GB
memory for 6 hours.

In the inference phase, the model prediction for each line-level
conflict consists of one or more token-level predictions. Given the
token-level predictions and the contents of the merged file, Merge-
BERT generates the code corresponding to the resolution region.
The contents of the merged file include the conflict in question and
its surrounding regions. Afterward, MergeBERT checks the syntax
of the generated code with a tree-sitter3 parser and outputs it as the
candidate merge conflict resolution only if it is syntactically correct.

6 RESEARCH QUESTIONS
We pose the following research questions to evaluate the effective-
ness of utility of MergeBERT.
RQ1: How effective is MergeBERT in producing merge conflict
resolutions? We evaluate MergeBERT’s performance of producting
resolutions in terms of precision and accuracy of matching the actual
user resolution extracted from real-world merge resolutions. We
also provide a comparison MergeBERT to baseline approaches (at
both the line and token level) and state of the art merge resolution
approaches.
RQ2: How well does MergeBERT perform across different lan-
guages? One of our primary goals is to be able to work on multiple
languages with minimal effort. The core approach of MergeBERT
is fundamentally language agnostic (though a parser and tokenizer
is required for each additional language). We evaluate performance
of MergeBERT across four languages and also compare the results
of using four language-specific models (each trained on just one
language) to using one multi-lingual model trained on the data from
all four languages.

1https://huggingface.co/huggingface/CodeBERTa-
small-v1
2https://github.com/huggingface/transformers
3https://tree-sitter.github.io/tree-sitter

https://huggingface.co/huggingface/CodeBERTa-small-v1
https://huggingface.co/huggingface/CodeBERTa-small-v1
https://github.com/huggingface/transformers
https://tree-sitter.github.io/tree-sitter

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

RQ3: How do different choices of context encoding impact per-
formance of MergeBERT? We conduct an ablation study of the
edit type embedding to understand and evaluate the impact of our
novel edit-aware encoding on model performance.
RQ4: How do users perceive MergeBERT resolutions? We con-
duct a user study involving a survey of real-world conflicts recently
encountered by developers from large OSS projects. To understand
how developers would use MergeBERT in practice, we provide them
with an interface to explore MergeBERT’s conflict resolution sugges-
tions in relation to their original conflicting code ask them evaluate
suggestions and explain why they do or do not correctly resolve the
merge conflict.

7 DATASET
The finetuning dataset is mined from over 100,000 open source soft-
ware repositories in multiple programming languages with merge
conflicts. It contains commits from git histories with exactly two
parents, which resulted in a merge conflict. We replay git merge
on the two parents to see if it generates any conflicts. Otherwise, we
ignore the merge from our dataset. We use the approach introduced
by Dinella et al. [15] to extract resolution regions—however, we do
not restrict ourselves to conflicts with less than 30 lines only. Lastly,
we extract token-level conflicts and conflict resolution classifica-
tion labels (introduced in Section 4) from line-level conflicts and
resolutions. Tab. 1 provides a summary of the finetuning dataset.

Table 1: Number of merge conflicts in the dataset.

Programming language Development set Test set

C# 27874 6969
JavaScript 66573 16644
TypeScript 22422 5606
Java 103065 25767

The finetuning dataset is split into development and test sets in
the proportion 80/20 at random at the file-level. The development set
is further split into training and validation sets in 80/20 proportion
at the merge conflict level.

8 EVALUATION
8.1 Evaluation Metrics
We evaluate MergeBERT’s performance of resolution synthesis in
terms of precision and accuracy of string match (modulo whites-
paces or indentation) to the user resolution extracted from real-world
historical merge resolutions. This approach is rather restrictive as
a suggested resolution might differ from the actual user resolution
by, for instance, only the order of statements, being semantically
equivalent otherwise. As such, this evaluation approach gives a lower
bound of performance.

We evaluate MergeBERT and compare it to baselines and existing
approaches using two metrics, precision at top-k and accuracy at
top-k. Since MergeBERT is a neural approach, it may provide more
than one suggestion, which we rank according to the associated
prediction probabilities. In addition, because we filter out resolution

suggestions that are not syntactically valid, it may provide no sug-
gestions in rare cases. Accuracy at top-1 indicates the percentage of
total conflicts for which MergeBERT produces the correct resolu-
tion as its top suggestion. Precision at top-1 indicates how often (as
a percentage) the top suggestion is correct when the MergeBERT
provides any suggestions at all. As a concrete example, if a tool
produces a resolution suggestion for 50 out of 100 conflicts and
40 of the suggestions matched the actual historical user resolution,
then the precision would be 80% (40/50), but the accuracy would
be 40% (40/100). Precision at top-k indicates how often the correct
resolution is found in the top-k suggestions and Accuracy at top-k is
analogous. When “top-k” is omitted from the metric name (e.g. just
"Precision") then k is 1.

8.2 Baseline Models
8.2.1 Language Model Baseline. Neural language models (LMs)
have shown great performance in natural language generation [36,
38], and have been successfully applied to the domain of source
code [17, 24, 48]. We consider the generative pretrained transformer
language model for code (GPT-C) and appeal to the naturalness
of software [1] to construct our baseline approach for the merge
resolution synthesis task. We establish the following baseline: given
an unstructured line-level conflict produced by diff3, we take the
common source code prefix acting as user intent for program merge.
We attempt to generate an entire resolution region token-by-token
using beam search. As an ablation experiment, we repeat this for
the conflicts produced with the token-level differencing algorithm
(Fig. 1 shows details about prefix and conflicting regions).

8.2.2 DeepMerge: Neural Model for Interleavings. Next, we
consider DEEPMERGE [15]: a sequence-to-sequence model based on
the bidirectional GRU summarized in section 3. It learns to generate
a resolution region by choosing from line segments present in the
input (line interleavings) with a pointer mechanism. We retrain the
DEEPMERGE model on our TypeScript dataset.

8.2.3 JDIME. Looking for a stronger baseline, we consider JDIME,
a Java-specific merge tool that automatically tunes the merging pro-
cess by switching between structured and unstructured merge algo-
rithms [2]. Structured merge is abstract syntax tree (AST) aware and
leverages syntactic information to improve matching precision of
conflicting nodes. We use the publicly available implementation [25],
and run JDime in semi-structured mode.

8.2.4 jsFSTMerge. Trindade Tavares et al. [50] implemented JS-
FSTMERGE by adapting an off-the-shelf grammar for JavaScript to
address shortcomings of FSTMERGE [3] and modify its algorithm.
JSFSTMERGE allows for certain types of nodes to maintain their rel-
ative order (e.g., statements) while others may be order independent
(e.g., function declarations) even when sharing the same parent node.
For cases where JSFSTMERGE produces a resolution not matching
the user resolution, we manually inspect the output for semantic
equivalence (e.g., reordered import statements).

8.3 Results
RQ1: How effective is MergeBERT in producing merge conflict
resolutions?

Program Merge Conflict Resolution via Neural Transformers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

To evaluate MergeBERT We first compare it to other neural ap-
proaches and to diff3. To be comprehensive, we evaluate at both
the token level and the line level. We then compare MergeBERT
to existing state of the art structured and semi-structured merge
language-specific merge approaches.

Table 2: Evaluation results for MergeBERT and various neural
baselines calculated for merge conflicts in TypeScript program-
ming language test set. The table shows top-1 precision and
accuracy metrics.

Approach Granularity Precision Accuracy

LM Line 3.6 3.1
DeepMerge Line 55.0 35.1

diff3 Token 82.4 36.1

LM Token 49.7 48.1
DeepMerge Token 64.5 42.7
MergeBERT Token 69.1 68.2

As seen in Tab. 2, language model baselines’ performance on
merge resolution synthesis is relatively low, suggesting that the natu-
ralness hypothesis is insufficient to capture the developer intent when
merging programs. This is perhaps not surprising given the notion
of precision that does not tolerate even a single token mismatch.

MergeBERT is based on two core components: token-level diff3
and a multi-input neural transformer model. The token-level differ-
encing algorithm alone gives a high top-1 precision of 82.4%, with
a relatively low accuracy of only 36.1% (i.e., it doesn’t always
generate a resolution suggestion, but when it does, it is very often
correct). Combined with the neural transformer model, the accuracy
is increased to a total of 68.2%. Note, as a deterministic algorithm
token-level diff3 can only provide a single suggestion.

DeepMerge precision of merge resolution synthesis is quite ad-
mirable, showing 55.0% top-1 precision. However, it fails to generate
predictions for merge conflicts which are not representable as a line
interleaving. This type of merge conflict comprises only roughly one
third of the test set, resulting in an accuracy of only 35.1% which is
significantly lower than MergeBERT.

As an experiment, we also evaluate the DeepMerge model in
combination with the token-level diff3. This enables DeepMerge
to overcome the limitation of providing only resolutions comprised
of interleavings of lines from the conflict region by interleaving to-
kens instead. As seen in Tab. 2 (DeepMerge with Token granularity)
overall accuracy improves from 35.1% to 42.7%. However this still
falls short of MergeBERT with precision that is 5% less (64.5% vs.
69.1%) and accuracy that is 25% less (42.7% vs 68.2%).

We also compared MergeBERT to state of the art structured and
semi-structured merge tools. Since both JDIME and JSFSTMERGE

are language-specific, to compare against MergeBERT, we use our
dataset’s corresponding language-specific subset of conflicts (leading
to slightly different results for MergeBERT on Java and JavaScript).

As can be seen from Tab. 3, JSFSTMERGE only produces a reso-
lution for 22.8% of conflicts and when a resolution is produced by
JSFSTMERGE, it is only correct 15.8% of the time, yielding a total
accuracy of 3.6%. This is in line with the conclusions of the creators
of JSFSTMERGE that semi-structured merge approaches may not be

Table 3: Comparison of MergeBERT to JDIME and JSFST-
MERGE semi-structured merge tools. The table shows the per-
centage of conflicts in which the tool produces a resolution, the
top-1 precision of produced resolutions, and the overall top-1
accuracy of merge resolution synthesis. JDIME evaluation is on
a Java data set and JSFSTMERGE is on a JavaScript data set.

Approach Language % conf. w/ res. Precision Accuracy

JDIME Java 82.1 26.3 21.6
MergeBERT Java 98.9 63.9 63.2

JSFSTMERGE JavaScript 22.8 15.8 3.6
MergeBERT JavaScript 98.1 66.9 65.6

as advantageous for dynamic scripting languages [50]. Because JSF-
STMERGE may produce reformatted code, we manually examined
cases where a resolution was produced but did not match the user
resolution (our oracle). If the produced resolution was semantically
equivalent to the user resolution, we classified it as correct.

To compare the accuracy of JDIME to that of MergeBERT, we
use the Java Test data set introduced previously and complete the fol-
lowing evaluation steps: JDIME does not merge all conflicts and gen-
erates a resolution for 82.1% of conflicts. This is in line with related
work reporting that as much as 21% of files cannot be merged [2].
Therefore, first, we identify the set of merge conflict scenarios where
diff3 reports a conflict and JDIME produces a non-conflicted
merge. When comparing the JDIME output to the actual historical
user-performed merge conflict resolution, we do not use a simple
syntactic match. As a result of its AST matching approach, code
generated by JDIME is reformatted, and the original order of state-
ments and other constructs are not always preserved. In an effort to
accurately and fairly identify semantically equivalent merges, we
use GumTree [16], an AST differencing tool, to identify and ig-
nore semantically equivalent differences between JDIME output and
the user resolution, such as reordered method declarations. When
JDIME produces a resolution, it generates a semantically equivalent
match 26.3% of the time, with an accuracy of 21.6%.
RQ2: How well does MergeBERT perform across different lan-
guages? One goal of our approach is to be able to handle multiple
languages with minimal effort. For MergeBERT to be able to provide
merge resolution suggestions for conflicts in a particular language,
it needs three things. First, a tokenizer in that language, which al-
lows us to split the source text into tokens for processing. Second,
a parser in that language, which allows us to filter out syntactically
incorrect merge resolution suggestions. Third, a data set of merge
conflicts and their user-resolutions to train MergeBERT. Fortunately,
tokenizers and parsers for nearly any language are readily available
(e.g., we use GitHub’s tree-sitter for this) and repositories that use
a particular language can be easily identified (e.g. on GitHub) and
mined for conflicts and resolutions.

We incorporated tokenizers and parsers into MergeBERT for
JavaScript, TypeScript, Java, and C# and gathered merge conflict
data for these languages as described previously. Note that both
comments and strings in these languages are represented as single
tokens and can be quite long. Therefore we further split these to-
kens on whitespace. Tab. 4 shows the detailed evaluation results of
MergeBERT broken down by language. The top section of results

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

Table 4: Detailed evaluation results for (top) monolingual
JavaScript, TypeScript, Java, and C# models, and (bottom) mul-
tilingual MergeBERT model trained on all four programming
languages. The table shows precision and accuracy of merge
resolution synthesis.

Test (Train) Languages Precision Accuracy

Top-1 Top-3 Top-1 Top-3

JavaScript (JS) 66.9 75.4 65.6 73.9
TypeScript (TS) 69.1 76.6 68.2 75.6
Java (Java) 63.9 76.1 63.2 75.2
C# (C#) 68.7 76.4 67.3 74.8

JavaScript (JS, TS, C#, Java) 66.6 75.2 65.3 73.8
TypeScript (JS, TS, C#, Java) 68.5 76.8 67.6 75.8
Java (JS, TS, C#, Java) 63.6 76.0 62.9 75.1
C# (JS, TS, C#, Java) 66.3 76.2 65.1 74.8

shows performance when MergeBERT is trained on data for that
specific language. The bottom section shows performance for each
language when MergeBERT is trained on a data set comprising data
for all languages (we term this the multilingual model). Note that
for the language specific models, performance is fairly consistent
across all four languages with Top-1 precision ranging from 63.9%
to 69.1% and Top-1 Accuracy ranging from 63.2% to 68.2%. We
also find that over 97% of MergeBERT suggestions are syntactically
correct across all programming languages.

We had no a priori expectations of the performance of the mul-
tilingual model, as it is trained on more data, which could lead to
improvement, but it is not language specific, which could lead to
poorer results. Overall, the multilingual variant of the model gen-
erates results that are just slightly below the monolingual versions.
Thus performance on one language isn’t improved by adding more
data in other languages. Thus, from a pragmatic perspective, if one
chooses to simplify their use of MergeBERT by training just one
model instead of one model per language, then the performance
takes only a negligible hit.
RQ3: How do different choices of context encoding impact per-
formance of MergeBERT?

We conduct an ablation study on the edit type embedding to
understand the impact of edit-awareness of encoding on the model
performance. As shown in Tab. 5, use of the edit type embedding
improves MergeBERT from 63% to 68%.

Table 5: Evaluation results for MergeBERT and the model vari-
ant without edit-type embedding for merge conflicts in Type-
Script programming language test set. The table shows top-1
precision and accuracy metrics.

Approach Precision Accuracy

w/o edit type embeddings 65.2 63.1
MergeBERT w/ edit type embeddings 69.1 68.2

Figure 4: Methodology to identify candidate conflicts for the
user study.

Table 6: Summary of projects in user study, total number of
conflicts per project, number of conflicts evaluated in the study,
and the survey participants.

Language Project Conflicts Survey Participants
Conflicts

Java
Azure-Cosmosdb 341 6 P1
Azure-SDK 997 14 P2-4
ApplicationInsights 313 10 P5-6

TS
MakeCode 106 12 P7-8
VSCode 2256 48 P9-17

C#
AspNetCore 567 11 P18-19
EFCore 397 7 P20-21
Roslyn 1894 14 P22-25

Total 8 projects 6871 122 25

9 USER EVALUATION
9.1 User Study Design
To better understand how MergeBERT performs in practice, we ask
developers about conflicts that MergeBERT is unable to correctly
resolve. Since MergeBERT’s resolution suggestions are evaluated
against user resolutions using a verbatim string match (modulo
whitespace), asking study participants to confirm identical resolu-
tions predicted by MergeBERT is not informative. Therefore, we
extract conflicts where MergeBERT suggestions are not a direct
match to the user resolution to determine what the limitations of the
suggestions are, and how they might be perceived in practice.

To build an oracle of merge conflicts and resolutions we identify
8 open source projects hosted on GitHub. The selected projects are
active, with multiple contributors, and contain a large number of
conflict scenarios in one of the languages supported by MergeBERT.
Tab. 6 contains a list of projects chosen. For each project, we follow
the same steps outlined in Section 7 to extract candidate conflicts
and user resolutions to use in the survey.

Fig. 4 explains the methodology used to identify candidate merge
conflicts. We identify the set of conflicts MergeBERT is unable to
correctly merge (within the top-3 suggestions). From this set of
conflicts, we identify candidate conflicts to use as part of the user
study. We filter candidate files with the following criteria:

(1) Conflicts should have been recently resolved i.e., at most
within the past 12 months. Participants may not retain the
context needed to evaluate suggestions for older conflicts.

Program Merge Conflict Resolution via Neural Transformers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

(2) Files must have at most 4 conflicts. Participants evaluate up to
3 suggestions per conflict. More conflicts may be too complex
to evaluate within the interview time slot.

(3) Conflicts should be non-trivial. Trivial conflicts, such as those
that only involve formatting changes or renames, are manually
excluded. The determination of if a conflict was non-trivial
was manual and subjective, informed by our belief that more
substantive conflicts would lead to more insights in the user
study.

For each candidate conflict identified, we use the GitHub API to
identify authors for each of the conflicting branches and the resolved
file. Authors with at least 3 candidate merge conflicts are identified
as potential survey participants. Our final pool of candidate partic-
ipants consists of 52 unique authors. We recruit participants via
email, using contact information on GitHub. Out of the 52 contacted
developers, 25 agreed to participate in the study. All participants
were professional software developers with at least 2-8 years of
experience working at large technology companies. We asked partic-
ipants to evaluate MergeBERT resolution suggestions for their own
merge conflicts. Tab. 6 contains the final number of participants and
conflicts evaluated in our study. 122 conflicts were evaluated: 32 C#
conflicts, 30 Java, and 60 Typescript.

9.1.1 MergeBERT Interface. We designed an online interface
where participants can view their own conflicts and explore Merge-
BERT’s resolution suggestions. Participants are asked to evaluate
their own recently resolved merge conflicts, and the corresponding
generated resolution suggestions by MergeBERT. The interface is
customized based on the signed-in participant and displays a list of
their recently encountered merge conflicts. Participants can click
through different resolution suggestions to evaluate if they are ac-
ceptable ways to resolve the merge conflict. They can view their
original resolution on the same page, and if needed, participants
can navigate to the conflicting commit on GitHub using a link if
they need additional context. They can also view a diff between the
conflict file and any of the selected options (resolution suggestion or
user resolution). Participants use this interface to select one or more
of the suggested resolutions, indicate if the suggested resolution is
acceptable, and explain the reasons why or why not. Our online data
package [19] and appendix [18] contain the questions, images of the
interface, and participant responses.

9.1.2 Protocol. The user study was conducted as 30 minute inter-
views remotely over Microsoft Teams using the interface we built.
First, participants watched a video explaining MergeBERT and how
to navigate conflicts and evaluate resolution suggestions using the
interface. Then, the participants evaluated a set of conflicts and sub-
mitted their responses. One of the authors was on the teams call
to help participants navigate the interface and ask any clarifying
questions based on their evaluation of the MergeBERT resolution
suggestions. Questions were iteratively developed based on two pi-
lot interviews. Each interview was recorded for transcription and
analysis.

9.2 User Study Results
RQ4: How do users perceive MergeBERT resolutions?

Using the interface participants evaluate the conflict resolution
suggestions generated by MergeBERT and indicate if any of the
suggestions were acceptable, and explain why or why not. There
were no noticeable differences in the participants’ responses across
different languages or projects so we do not break down our results
by those dimensions. Participant’s evaluations of the merge sugges-
tions generally fall into three categories: 1) the merge suggestion
is correct and would be used to resolve the conflict 2) the merge is
incorrect but the correct resolution would require an understanding
of external context and 3) the merge is incorrect and no external
context is needed.

9.2.1 Acceptable Merge Suggestions. Surprisingly, of the 122
conflicts included in the study, participants indicated that at least one
of the 3 suggestions generated by MergeBERT was correct for 54%
(66/122) of the examples. By design, the suggestions presented in
the study are not syntactically equivalent to the participant’s original
resolution, however, they still indicated that the suggestion was a
correct merge. Using participant responses, we identify a few reasons
why merge suggestions may be acceptable to a developer, even if it
is not syntactically equivalent to their original resolution:

Semantically Equivalent Resolution (54 of 122 conflicts)
Semantically equivalent resolutions include scenarios where the
statements are re-ordered, equivalent changes made to naming or
documentation, and unneeded import statements or commented out
code is preserved or removed.

One example in the study of conflicting changes that are both
equally acceptable, and one is arbitrarily accepted by the resolving
author is when authors of conflicting branches renamed the same
variable with a slight variation:
SPAN_TARGET_ATTRIBUTE_NAME and
SPAN_TARGET_APP_ID_ATTRIBUTE_NAME. In these cases, either
version selected by the merging algorithm might still be acceptable
to the developer. MERGEBERT generated a suggestion to keep the
variable name SPAN_TARGET_ATTRIBUTE_NAME whereas the user
resolution originally kept the other. Participant P5 marked this reso-
lution as acceptable and semantically equivalent, explaining that in
this scenario they had ‘no preference as to which one is better’.

Takeaway 1: Evaluating the performance of MergeBERT using
strict syntactic approaches estimates a lower bound of perfor-
mance. Survey results show almost 45% of MergeBERT sugges-
tions are acceptable merges that are semantically equivalent to
the participant’s original resolution. MergeBERT’s performance
could be improved by considering semantic information, for exam-
ple, to identify how changes related to naming or documentation
should be merged.

Tangled Code Changes in Oracle (10/122)
Resolutions for 10 of the conflicts contained additional “tangled”
changes [23, 29] that were unrelated to the resolution. Examples
include renaming a method and adding a variable in the conflict
region that is then used later outside the conflict region. In all 10
instances, MERGEBERT generates a suggestion that does not include
the additional tangled code, but is acceptable to the participant as
a resolution of the conflict. Participants indicated that if they had

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

access to the MERGEBERT suggestions, they would select the correct
resolution and then manually add the additional code.

Takeaway 2: When committing merged code, developers may
introduce changes unrelated to the conflict which are inadver-
tently included in conflict resolution oracles. These changes can
negatively impact model performance estimated with automatic
metrics.

9.2.2 Merge Requires External Context. MERGEBERT did not
generate an acceptable suggestion for 46% (56/122) of examples
shown to survey participants. Participants were asked to indicate
whether they resolved these examples using external context that
cannot be inferred from the conflicting code regions and to explain
what the external context was. Results indicate that 16% (20/122)
of conflicts in the survey sample require external information not
found in either conflicting file, in order to be correctly resolved. One
example of external context is knowledge of linter rules enabled
at a project level. Projects often require linter checks before code
can be committed to the repository, as a step towards improving
the quality and maintainability of the source code. One example
is a merge conflict from Roslyn where the correct resolution was
to remove a null check from the code. Participant P23 explained
the decision to remove the check: "The previousResults parameter
is non-nullable because C# nullability checking is now enabled at
the project level. The null check is unnecessary". In this scenario,
without specific knowledge of linter checks, an automatic approach
is unable to predict an accurate merge.

Another example of external context is updates to languages
rules that have cascading effects on existing code. Participant P22
from the Roslyn project explained one such conflict: "Changes were
due to updates in ’using’ rules for the C# language". Language
updates in C# version 8.0 introduced an alternative syntax for the
using statement and P22’s team had made to adopt this syntax.
P22 therefore updated this code (involved in the conflict) during the
merge. Other examples of external context identified through the
survey include: removal of global dependencies from non-conflicting
files within a project, rolling back features that shouldn’t be included
in a release branch, and project-level decisions to remove ’final’
modifiers for variables.

Takeaway 3: The local view of a conflict is sufficient to merge a
majority of conflicts. Around 16% of the conflicts require external
information to correctly resolve. One direction to improve Merge-
BERT is to consider external context as an additional information
source for resolving conflicts.

9.2.3 Unacceptable Merge Suggestions. Survey results show
that MERGEBERT suggestions were incorrect for 29% (36/122) of
the conflicts. Participants indicated that none of the 36 conflicts
required external context to be resolved. We manually analyze the
conflicts looking to identify patterns that may explain the incorrect
merges, for example, affected language construct [34] and type of
conflict [40], but do not identify any consistent patterns. In summary,
existing automatic evaluation strategies estimate a lower bound of
approach performance: MergeBERT suggestions are correct for 54%
of conflicts included in our sample, despite not being syntactically

equivalent to the user resolution. Further, suggestions from Merge-
BERT helped two participants find bugs in their own recent merge
conflict resolutions! This is in addition to those resolutions where
MergeBERT does provide an exact match. This finding suggests
that automatic evaluation techniques that rely on a strict syntactic
comparison between the user resolution and merge suggestion might
be estimating a much lower bound of performance. This highlights
a discrepancy between how approaches are typically automatically
evaluated, and how developers may evaluate an approach in practice.
Researchers should consider conducting user studies to more accu-
rately evaluate approaches when feasible. Tools like MergeBERT
can reduce effort and bug proneness involved in manually merging
conflicts. Future studies should investigate these potential benefits.

9.3 Related Work
There have been multiple attempts to improve merge algorithms
by restricting them to a particular programming language or a spe-
cific type of applications [32]. Typically, such attempts result in
algorithms that do not scale well or have low coverage. Syntactic
merge algorithms improve upon diff3 by verifying the syntac-
tic correctness of the merged programs. Several syntactic program
merge techniques have been proposed [5, 52] which are based on
parse trees or ASTs and graphs.

Apel et al. noted that structured and unstructured merge each has
strengths and weaknesses. They developed FSTMERGE, a semi-
structured merge, that alternates between approaches [4]. Tavares et
al. implemented JSFSTMERGE by adapting an off-the-shelf gram-
mar for JavaScript to address shortcomings of FSTMERGE and also
modifying the FSTMERGE algorithm itself [49]. Cavalcanti et al.
performed a large scale retrospective evaluation of semi-structure
merge on over 30,000 merges and found that it can still suffer from
false negatives, cases where there is actually a semantic conflict
but the merge approach produces a (incorrect) resolution [10]. They
improve FSTMERGE by adding “handlers” that check for common
false negative cases (e.g. renames, added references to modified
elements) that remove these cases completely. Leßenich noted that
using AST representations works well for merge, but differencing
is NP-hard due to renamings and shifted code. They propose an ap-
proach to improve performance of the JDIME algorithm at minimal
cost [30]. Dinella et al. take a data driven approach to the merge
conflict resolution problem and introduce DEEPMERGE, a deep neu-
ral network that uses a pointer network architecture to construct the
resolution from lines in the different input versions of the code [15].

Finally, Sousa et al. [46] explore the use of program verification
to certify that a merge obeys a semantic correctness criteria, but does
not help synthesize resolutions. On the other hand, Pan et al. [35]
explore using program synthesis to learn repeated merge resolutions
within a project. However, the approach is limited to a single C++
project, and only deals with restricted cases of import statements.

9.3.1 Empirical Studies. Several empirical studies have investi-
gated merge conflicts and challenges faced by developers in merge
resolution. McKee et al. [31] and Nelson et al. [33] interviewed
developers and performed a follow-up survey with 162 developers
to build a detailed understanding of developer perceptions regarding
merge conflicts in general. They found, among other things, that
complexity of the conflicting lines of code and file as a whole, the

Program Merge Conflict Resolution via Neural Transformers ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

number of LOC in the conflict, and developers’ familiarity with
the conflicting lines of code impact how difficult developers find a
conflict to resolve. Brindescu et al. investigated the impact of merge
conflicts and their resolutions on software quality [7, 8]. They found
that 20% of code changes resulted in a merge conflict and the code in
these conflicts were twice as likely to contain bugs as other changes.
Further, if the changes included semantically interacting changes,
the likelihood of a defect is 26 times that of non-conflicting changes.

Costa et al. presented TIPMerge, an approach for identifying and
recommending developers to participate in merge sessions when
resolving conflicts [12]. They evaluated it on 2,040 merges across
25 open source projects and found that TIPMerge can improve joint
knowledge coverage by an average of 49% in merge scenarios [13].

Vale et al. [51] performed an empirical study to understand what
makes merge challenging for developers. Through a large scale
automated analysis and a survey of 140 developers, they identified
factors that contribute to merge conflict resolution difficulty (e.g.,
number of chunks in the conflict and number of developers involved
in the merge scenario). Seibt et al. [37] explore and evaluate merge
algorithms on a suite of ten software repositories, paying attention
to the amount of resolutions produced, size of conflict, runtime cost,
and correctness. Interestingly, they use the test suites of each project
as an oracle to assess correctness of code after the merge.

None of the existing studies evaluate automatic merge resolution
tools with software developers on their own real-world conflicts.
The participants in our survey have expertise to understand when
MergeBERT resolution suggestions would be acceptable on their
own real-world conflicts, providing rich explanations about when
external context is required, or when tangled code changes are made.

10 THREATS TO VALIDITY
The choice of hyper-parameters in our model (Section 5.3) is based
on prior work of others and generally accepted norms [14]. It’s pos-
sible that exploring the hyper-parameter space could yield different
results. The sample of conflicts and projects used in the study may
pose a threat to the external validity of our work. We only considered
public open-source projects hosted on GitHub, therefore, results may
not generalize to closed source projects or repositories hosted on
other platforms. To mitigate this threat, we select a diverse set of
projects varying in size and language. Similarly, survey participants
evaluate their own recently-merged conflicts and the set of conflicts
used in the survey to answer RQ4 may not be a representative sam-
ple, as it was dependent on participant availability. We filtered out
merge conflicts from the user study that we considered to be “triv-
ial” conflicts. This was a subjective judgement, but we did aim to
select substantive conflicts in the hopes that they would elicit more
valuable and informative feedback from participants. The survey
interface replicates the VSCode diff3 view. Participants not familiar
with this view may have a harder time navigating the conflict view
and answering survey questions, to mitigate this threat, we create an
instructional video for participants to watch.

11 CONCLUSION
This paper introduces MergeBERT, a transformer-based program
merge framework that leverages token-level differencing and refor-
mulates the task of generating the resolution sequence as a classi-
fication task over a set of primitive merge patterns extracted from

real-world merge commit data. MergeBERT exploits pretraining over
massive amounts of code and then finetuning on specific program-
ming languages, achieving 64–69% precision and 63–68% recall
of merge resolution synthesis. Lastly, MergeBERT is flexible and
effective, capable of resolving more conflicts than the existing tools
in multiple programming languages.

To better evaluate the resolutions generated by MergeBERT from
the perspective of users, we conduct a user study with 25 developers
from large OSS projects. We ask participants to evaluate whether
MergeBERT resolution suggestions are acceptable on a set of 122 of
their own real-world conflicts. Results suggest, in practice, Merge-
BERT resolutions would likely be accepted at a higher rate than
estimated by the performance metrics chosen. Using participant
feedback we identify potential ways to improve MergeBERT by im-
proving the oracle to remove tangled changes or considering external
context – project or team level information that is not present in the
conflicting files.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.
51, 4, Article 81 (July 2018), 37 pages. https://doi.org/10.1145/
3212695

[2] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured merge
with auto-tuning: balancing precision and performance. In Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering.
120–129.

[3] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. 2011. Semistructured Merge: Rethinking Merge in Revision Control
Systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (Szeged, Hungary)
(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,
190–200. https://doi.org/10.1145/2025113.2025141

[4] Sven Apel, Jörg Liebig, Christian Lengauer, Christian Kästner, and William R
Cook. 2010. Semistructured Merge in Revision Control Systems.. In VaMoS.
13–19.

[5] Ulf Asklund. 1999. Identifying Conflicts During Structural Merge.
[6] Christian Bird and Thomas Zimmermann. 2012. Assessing the value of branches

with what-if analysis. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. 1–11.

[7] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An
empirical investigation into merge conflicts and their effect on software quality.
Empirical Software Engineering 25, 1 (2020), 562–590.

[8] Caius Brindescu, Yenifer Ramirez, Anita Sarma, and Carlos Jensen. 2020. Lifting
the Curtain on Merge Conflict Resolution: A Sensemaking Perspective. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 534–545.

[9] Yuriy Brun, Reid Holmes, Michael D Ernst, and David Notkin. 2011. Proactive
detection of collaboration conflicts. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engi-
neering. 168–178.

[10] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and
improving semistructured merge. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–27.

[11] Colin Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel
Sundaresan. 2020. PyMT5: Multi-mode Translation of Natural Language and
Python Code with Transformers. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 9052–9065.

[12] Catarina Costa, Jair Figueiredo, Leonardo Murta, and Anita Sarma. 2016. Tip-
merge: recommending experts for integrating changes across branches. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. 523–534.

[13] Catarina de Souza Costa, Jose Jair Figueiredo, Joao Felipe Pimentel, Anita Sarma,
and Leonardo Gresta Paulino Murta. 2019. Recommending Participants for
Collaborative Merge Sessions. IEEE Transactions on Software Engineering
(2019).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1

https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1145/2025113.2025141

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Svyatkovskiy, Fakhoury, Ghorbani, Mytkowicz, Dinella, Bird, Jang, Sundaresan, Lahiri

(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-
1423

[15] Elizabeth Dinella, Todd Mytcowicz, Alexey Svyatkovskiy, Christian Bird, Mayur
Naik, and Shuvendu Lahiri. 2021. DeepMerge: Learning to merge programs.
arXiv:2105.07569 https://arxiv.org/abs/2105.07569

[16] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing.
In ACM/IEEE International Conference on Automated Software Engineering,
ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. 313–324. https:
//doi.org/10.1145/2642937.2642982

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020. Association for
Computational Linguistics, Online, 1536–1547. https://doi.org/10.
18653/v1/2020.findings-emnlp.139

[18] Authors Elided for Review. 2022. Appendix to Program Merge Conflict Resolution
via Neural Transformers. https://doi.org/10.5281/zenodo.
6366877

[19] Authors Elided for Review. 2022. Online Data Set for Program Merge Conflict
Resolution via Neural Transformers. https://doi.org/10.5281/
zenodo.6366908

[20] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and Andre Van Der Hoek. 2018.
On the nature of merge conflicts: a study of 2,731 open source java projects hosted
by github. IEEE Transactions on Software Engineering 46, 8 (2018), 892–915.

[21] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
practices and challenges in pull-based development: the contributor’s perspective.
In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 285–296.

[22] Mário Luís Guimarães and António Rito Silva. 2012. Improving early detection
of software merge conflicts. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 342–352.

[23] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes. In
Proceedings of the Working Conference on Mining Software Repositories (MSR).
121–130.

[24] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE
Press, 837–847.

[25] JDime. 2022. JDime Publicly Available Implementation. https://github.
com/se-sic/jdime

[26] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and evaluating contextual embedding of source code. In International
Conference on Machine Learning. PMLR, 5110–5121.

[27] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big Code ̸= Big Vocabulary: Open-Vocabulary Models for
Source Code. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing
Machinery, New York, NY, USA, 1073–1085. https://doi.org/10.
1145/3377811.3380342

[28] Bakhtiar Khan Kasi and Anita Sarma. 2013. Cassandra: Proactive conflict mini-
mization through optimized task scheduling. In 2013 35th International Confer-
ence on Software Engineering (ICSE). IEEE, 732–741.

[29] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2014.
Hey! Are You Committing Tangled Changes?. In Proceedings of the International
Conference on Program Comprehension (ICPC).

[30] Olaf Leßenich, Sven Apel, Christian Kästner, Georg Seibt, and Janet Siegmund.
2017. Renaming and shifted code in structured merging: Looking ahead for
precision and performance. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 543–553.

[31] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. 2017. Software
practitioner perspectives on merge conflicts and resolutions. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). IEEE,
467–478.

[32] Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE transac-
tions on software engineering 28, 5 (2002), 449–462.

[33] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.
2019. The life-cycle of merge conflicts: processes, barriers, and strategies. Empir-
ical Software Engineering 24, 5 (2019), 2863–2906.

[34] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu Lahiri, and
Mike Kaufman. 2021. Can Program Synthesis be Used to Learn Merge Conflict
Resolutions? An Empirical Analysis. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 785–796.

[35] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu K. Lahiri,
and Mike Kaufman. 2021. Can Program Synthesis be Used to Learn Merge
Conflict Resolutions? An Empirical Analysis. CoRR abs/2103.02004 (2021).
arXiv:2103.02004 https://arxiv.org/abs/2103.02004

[36] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[37] Georg Seibt, Florian Heck, Guilherme Cavalcanti, Paulo Borba, and Sven Apel.
2021. Leveraging Structure in Software Merge: An Empirical Study. IEEE
Transactions on Software Engineering (2021).

[38] Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning
Robust Metrics for Text Generation. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7881–7892. https://doi.org/10.18653/v1/
2020.acl-main.704

[39] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Berlin, Germany, 1715–1725.
https://doi.org/10.18653/v1/P16-1162

[40] Bowen Shen, Cihan Xiao, Na Meng, and Fei He. 2021. Automatic Detection
and Resolution of Software Merge Conflicts: Are We There Yet? arXiv preprint
arXiv:2102.11307 (2021).

[41] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang Wang.
2019. IntelliMerge: a refactoring-aware software merging technique. Proceedings
of the ACM on Programming Languages 3, OOPSLA (2019), 1–28.

[42] R. Smith. 1998. GNU diff3. distributed with GNU diffutils package.
[43] Codice Software. 2021. SemanticMerge. https://www.

semanticmerge.com.
[44] Scooter Software. 2021. Beyond Compare. https://www.

scootersoftware.com.
[45] Marcelo Sousa, Isil Dillig, and Shuvendu K Lahiri. 2018. Verified three-way

program merge. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–29.

[46] M. Sousa, I. Dillig, and S. K. Lahiri. 2018. Verified Three-way Program Merge.
Proc. ACM Program. Lang. 2 (2018), 165:1–165:29.

[47] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1433–1443.

[48] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode Compose: Code Generation Using Transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
1433–1443. https://doi.org/10.1145/3368089.3417058

[49] Alberto Trindade Tavares, Paulo Borba, Guilherme Cavalcanti, and Sérgio Soares.
2019. Semistructured merge in JavaScript systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 1014–
1025.

[50] Alberto Trindade Tavares, Paulo Borba, Guilherme Cavalcanti, and Sérgio Soares.
2019. Semistructured Merge in JavaScript Systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1014–1025.
https://doi.org/10.1109/ASE.2019.00098

[51] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2021. Chal-
lenges of Resolving Merge Conflicts: A Mining and Survey Study. IEEE Transac-
tions on Software Engineering (2021).

[52] Bernhard Westfechtel. 1991. Structure-oriented merging of revisions of soft-
ware documents. In Proceedings of the 3rd international workshop on Software
configuration management. 68–79.

[53] Fengmin Zhu and Fei He. 2018. Conflict resolution for structured merge via
version space algebra. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2105.07569
https://arxiv.org/abs/2105.07569
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.5281/zenodo.6366877
https://doi.org/10.5281/zenodo.6366877
https://doi.org/10.5281/zenodo.6366908
https://doi.org/10.5281/zenodo.6366908
https://github.com/se-sic/jdime
https://github.com/se-sic/jdime
https://doi.org/10.1145/3377811.3380342
https://doi.org/10.1145/3377811.3380342
https://arxiv.org/abs/2103.02004
https://arxiv.org/abs/2103.02004
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/P16-1162
https://www.semanticmerge.com
https://www.semanticmerge.com
https://www.scootersoftware.com
https://www.scootersoftware.com
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1109/ASE.2019.00098

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background: Data-driven Merge
	4 Merge Conflict Resolution as a Classification Task
	5 MergeBERT: Neural Program Merge Framework
	5.1 Context Encoding
	5.2 Merge Tuple Aggregation
	5.3 Implementation Details

	6 Research Questions
	7 Dataset
	8 Evaluation
	8.1 Evaluation Metrics
	8.2 Baseline Models
	8.3 Results

	9 User Evaluation
	9.1 User Study Design
	9.2 User Study Results
	9.3 Related Work

	10 Threats to Validity
	11 Conclusion
	References

