
MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras

Jinrui Zhang1†, Huan Yang1, Ju Ren2, Deyu Zhang1∗, Bangwen He1, Ting Cao3, Yuanchun Li4,
Yaoxue Zhang2, Yunxin Liu4∗

1School of Computer Science and Engineering, Central South University
2 Department of Computer Science and Technology, Tsinghua University 3Microsoft Research

4 Institute for AI Industry Research (AIR), Tsinghua University
1{zhangjinrui, yanghuan9812, zdy876, hebangwen}@csu.edu.cn
2{renju, zhangyx}@tsinghua.edu.cn, 3ting.cao@microsoft.com

4{liyuanchun, liuyunxin}@air.tsinghua.edu.cn

ABSTRACT
Real-time depth estimation is critical for the increasingly popular
augmented reality and virtual reality applications on mobile devices.
Yet existing solutions are insufficient as they require expensive
depth sensors or motion of the device, or have a high latency. We
propose MobiDepth, a real-time depth estimation system using the
widely-available on-device dual cameras. While binocular depth
estimation is a mature technique, it is challenging to realize the
technique on commodity mobile devices due to the different focal
lengths and unsynchronized frame flows of the on-device dual
cameras and the heavy stereo-matching algorithm.

To address the challenges, MobiDepth integrates three novel
techniques: 1) iterative field-of-view cropping, which crops the
field-of-views of the dual cameras to achieve the equivalent focal
lengths for accurate epipolar rectification; 2) heterogeneous camera
synchronization, which synchronizes the frame flows captured by
the dual cameras to avoid the displacement of moving objects across
the frames in the same pair; 3) mobile GPU-friendly stereo match-
ing, which effectively reduces the latency of stereo matching on a
mobile GPU. We implement MobiDepth on multiple commodity mo-
bile devices and conduct comprehensive evaluations. Experimental
results show that MobiDepth achieves real-time depth estimation of
22 frames per second with a significantly reduced depth-estimation
error compared with the baselines. Using MobiDepth, we further
build an example application of 3D pose estimation, which signifi-
cantly outperforms the state-of-the-art 3D pose-estimation method,
reducing the pose-estimation latency and error by up to 57.1% and
29.5%, respectively.

† This work was done during internship at Institute for AI Industry Research (AIR),
Tsinghua University.
∗ Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9181-8/22/10.
https://doi.org/10.1145/3495243.3560517

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Human-centered computing → Ubiquitous and mobile com-
puting.

KEYWORDS
Real Time, Depth Estimation, Dual Camera, Mobile Device, OpenCL
ACM Reference Format:
Jinrui Zhang1†, Huan Yang1, Ju Ren2, Deyu Zhang1∗, Bangwen He1, Ting Cao3,
Yuanchun Li4, Yaoxue Zhang2, Yunxin Liu4∗. 2022. MobiDepth: Real-Time
Depth Estimation Using On-Device Dual Cameras. In The 28th Annual Inter-
national Conference On Mobile Computing And Networking (ACM MobiCom
’22), October 17–21, 2022, Sydney, NSW, Australia. ACM,New York, NY, USA,
14 pages. https://doi.org/10.1145/3495243.3560517

1 INTRODUCTION
In recent years, the mobile industry and research community have
significantly invested in augmented reality (AR) and virtual reality
(VR) applications for mobile devices [8, 11, 20, 37, 53, 54]. Statistics
have shown that the AR/VR market has reached 30.7 billion dol-
lars in 2021 and will rise to about 300 billion dollars by 2024 [50].
Among many technologies that enable diverse AR/VR applications
on mobile devices, real-time depth estimation is a fundamental
building block that connects the physical world to its 3D digital
representation. For example, a key feature in AR applications is to
render virtual objects on the digital surface of physical objects, and
the surface is computed through depth estimation.

Currently, there are mainly three types of solutions for depth
estimation on mobile devices: 1) Dedicated depth sensors. Some
devices are equipped with dedicated depth sensors such as LiDAR,
ToF camera, and structured-light sensor. These sensors work by
emitting light in a specific spectrum and calculating the depth based
on the light reflected back. Although these sensors can achieve pre-
cise depth estimation, they are only available on a few high-end
mobile devices due to the high cost. 2) Learning-based depth
prediction. Machine learning models, such as convolutional neu-
ral networks (CNNs), can learn to predict the depth by training
on labeled data [48, 52]. However, the capability of learning-based
approaches relies heavily on the training dataset. They are usually
unable to achieve satisfactory accuracy for new scenes and new
objects that are not included in the dataset, as shown in Figure 1
(c)(d)(e). Furthermore, the models are generally heavy and difficult
to run in a real-time manner on computing limited mobile devices.

https://doi.org/10.1145/3495243.3560517
https://doi.org/10.1145/3495243.3560517

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

Figure 1: Example depth maps generated by MobiDepth, AnyNet, MADNet with and without online adaptation (namedMADNet-
MAD and MADNet-No, respectively), and ARCore, with the person sitting, walking and standing. (a) raw images. (b) our
approach estimates accurate depth with crisp edges. (c) and (d) the learning-based depth estimation models, i.e., AnyNet
and MAD-No, poorly perform in scenarios different from the training dataset. (e) the performance of MADNet-MAD is still
unsatisfactory, even with the extremely time consuming online adaptation module. (f) ARCore barely estimates depth in these
images.

The latency of the state-of-the-art (SOTA) models [48, 52] are as
high as 80ms to 550ms on the high-end Huawei Mate40Pro smart-
phone, as shown in Section 8. 3) Depth from motion. The most
common solution adopted by existing mobile systems (including
ARKit in iOS [12] and ARCore in Android [13]) is the depth-from-
motion algorithm [49]. The algorithm works by using visual-inertial
odometry (VIO) to combine information from inertial measurement
unit (IMU), with computer vision analysis of the scene visible to the
camera to obtain the depth, i.e., select keyframes during the motion
of camera and estimate depth based on stereo matching between
the most recent image and a past keyframe. Although this solution
does not rely on dedicated sensors or large-scale training data, it
requires the camera to be moving and expects the target object
to be stationary, which significantly restricts its usage scenarios.
Figure 1(e) shows the performance of ARCore to get the depth of
the moving person, it is obvious that the accuracy of ARCore’s
depth estimation is terrible in this scenario.

Inspired by the success of binocular depth estimation techniques,
we find that the distribution of the rear-facing cameras on mobile
devices brings a great opportunity for depth estimation. Ideally, the
disparity can be readily obtained by comparing the pair of frames
captured by the dual cameras. The displacement of the dual cam-
eras provides a stable baseline, compared to the depth from motion
solution. However, our in-depth analysis reveals several challenges
in using the dual rear-facing cameras for depth estimation, as fol-
lows: 1) How to reduce the impact of the diverse focal lengths of the
dual cameras. The rear-facing cameras are originally designed to
serve various application scenarios, such as macro shooting or wide
angle shooting. Their focal lengths are thus quite diverse. It greatly
impacts the accuracy of the epipolar rectification which serves as

the basis for depth estimation. 2) How to synchronize the frame flows
captured by the dual cameras. The frame flows are highly out of
sync, due to the impacts of different frame periods of the cameras,
as well as the frequent garbage collection (GC). Suffering from the
out-of-sync frame flows, estimating the depth of objects in motion
becomes impossible, since the objects have displacement in the pair
of frames. 3) How to accelerate the stereo matching on computation-
limited mobile devices. The state-of-the-art stereo matching algo-
rithms and CNN models, e.g., Semi-Global-Block Matching (SGBM),
MADNet, and HITNet, are computation heavy, leading to long run-
time on mobile devices. The stereo matching needs to run in an
online manner to find the correspondence between the points in
the pair of frames. The long runtime leads to the low refresh rate
of the depth estimation applications.

Addressing the above challenges, we propose MobiDepth to
leverage the rear-facing dual cameras to estimate depth in real-time
on mobile devices. MobiDepth resolves all the issues of the three
existing solutions, i.e., it does not rely on any dedicated sensors
or pre-training, and works well for target objects in motion. Mo-
biDepth integrates several new techniques, each addressing one of
the above challenges. Albeit simple, we are the first to apply them
for efficient depth estimation using heterogeneous dual cameras
on commodity mobile devices. 1) Iterative field-of-view cropping.
It iteratively crops the field-of-view (FoV) of one camera, until it
matches that of the other camera. As such, the dual cameras achieve
the equivalent focal lengths. It improves the accuracy of epipolar
rectification. 2) Heterogeneous camera synchronization. It filters out
the frames that are generated at prominently different time. More-
over, it timely releases the metadata created by Android to avoid
frequent garbage collection (GC). As such, the frame flows from

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

the dual cameras are synchronized to avoid the displacements of
moving objects across the frames in the same pair. 3) Mobile GPU-
friendly stereo matching. We use SGBM for stereo matching due to
its relatively high accuracy and efficiency. However, it still cannot
achieve real-time performance on mobile devices. Our insight is
that the limited memory bandwidth of mobile GPU lowers the com-
putation efficiency. As such, we fuse the calculations in SGBM to
reduce the overhead of accessing the global memory. Furthermore,
we carefully enlarge the data slicing to decrease the number of
concurrent threads. It reduces the access contention on the shared
memory and the synchronization cost among threads.

Based on the techniques, we build the end-to-end MobiDepth
system. MobiDepth first crops the FoVs of the dual cameras and
synchronizes the frame flows. Then, it runs the stereo matching to
estimate the depth in a real-time manner. We implement MobiDepth
on dominated mobile devices equipped with multiple cameras, and
show the running demo in Figure 1(b). We also conduct extensive
experiments under various object distances and motion conditions.
Evaluation results show that MobiDepth achieves high performance
in terms of both latency and accuracy. For example, it achieves real-
time depth estimation of 22 frames per second (FPS) on the Huawei
Mate40Pro, i.e., an average latency of 45ms, with a small mean
depth-estimation error of 1.1%~10.4% for stationary objects at the
distance ranging from 0.5m to 5m, without requiring the motion
of device. MobiDepth significantly outperforms the learning-based
depth models, e.g., AnyNet [52] and MADNet [48], as well as the
state-of-the-art depth estimation system ARCore [13]. For exam-
ple, MobiDepth achieves a speedup of 1.66× and 12.13× compared
to AnyNet and MADNet without online adaptation on Huawei
Mate40Pro, respectively. With the motion of device, MobiDepth
achieves a small mean error of 8.7% for the objects moving at a
speed of 30-80 cm/s (at a distance of 100cm on the Huawei P30),
while the mean error of ARCore is as high as 43.5% under the same
settings. Note that ARCore does not work without the motion of
device. Furthermore, we build an example application of 3D pose
estimation based on MobiDepth and our application significantly
outperforms the state-of-the-art 3D pose estimation method, i.e.,
MobileHumanPose [8], reducing the pose estimation latency and
error by up to 57.1% and 29.5%, respectively.

In summary, the main contributions are as follows:

• Conduct in-depth analysis on the performance bottleneck of
on-device dual camera-based depth estimation;

• Propose iterative FoV cropping and heterogeneous camera
synchronization to achieve equivalent focal lengths and syn-
chronized frame flows for the dual cameras, respectively;

• Propose the mobile GPU-friendly stereo matching based
on SGBM, which significantly reduces the memory access
overhead and synchronization cost among threads;

• Implement the MobiDepth system and a MobiDepth-based
3D pose estimation application on commodity mobile devices
to demonstrate the effectiveness of MobiDepth.

2 BACKGROUND AND CHALLENGES
We first introduce the background of using dual cameras system to
estimate depth in an ideal case. Then, we elaborate on the challenges

Figure 2: Illustration of the imaging process in an ideal binoc-
ular system.

of implementing such a dual camera system on commodity mobile
devices.

2.1 Background
Depth estimation in a dual camera system. The dual cameras
system simulates the principle of human vision for depth estimating
in the 3D world, as shown in Figure 2.

The dual cameras are in the same orientation at different loca-
tions with distance 𝐵. To get the accurate depth 𝑍 of the point
𝑃 (𝑥𝑤 , 𝑦𝑤 , 𝑧𝑤), there are several prerequisites: 1) the focal length 𝑓

of the dual cameras should be equivalent. It guarantees that the cam-
eras have the same FoV, so that the imaging points, i.e., 𝑃𝐿 (𝑢𝑙 , 𝑣𝑙)
and 𝑃𝑅 (𝑢𝑟 , 𝑣𝑟), lie on the same epipolar lines on the two image
planes; 2) the dual cameras need to capture frames simultaneously;
3) the disparity 𝑑𝐿 − 𝑑𝑅 between the two points 𝑃𝐿 and 𝑃𝑅 should
be accurately estimated.

Given that the above conditions are met, the depth 𝑍 can be
derived by Equation. 1:

𝑍 =
𝐵 · 𝑓

𝑑𝐿 − 𝑑𝑅
(1)

The equation indicates that the depth can be readily derived based
on the accurate disparity, i.e., 𝑑𝐿 − 𝑑𝑅 , and equivalent focal length
𝑓 for the dual cameras.

Semi-Global Block Matching (SGBM) SGBM is a commonly
used computer vision algorithm in binocular camera systems for
depth estimation. It compares the similarity of pixels in two im-
ages captured by binocular cameras to calculate the disparity of a
pixel [19]. Figure 3 shows a block diagram of SGBM. It takes a pair of
rectified images as input and outputs the disparity map. In specific,
SGBM consists of four steps: 1) Cost Computation. It measures the
similarity between the pixels to be matched and candidate pixels
through three operations, i.e., Census Transform [41], Hamming
distance computation for cost of pixels [51], and Cost optimization
with sliding window. 2) Cost Aggregation. It aggregates the cost
values of pixels on the same row and column, respectively. 3) Dis-
parity Computation. It uses the Winner-Takes-All algorithm [31] to
determine the optimal disparity value for each pixel according to
the aggregated cost. 4) Disparity Refinement. It refines the quality
of the disparity map by filtering out the peaks.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

Figure 3: The process of SGBM. It takes a pair of rectified
images as input, and outputs the disparity map. It consists
of four steps, i.e., Cost Computation, Cost Aggregation, Dis-
parity Computation, and Disparity Refinement.

Figure 4: The raw images with different FoVs from dual cam-
eras are on the left. Through the calibration and rectification,
the images are severely distorted as shown on the right.

Figure 5: Example of frames out-of-sync. The same key-point,
i.e., left hand circled in red, is not aligned horizontally.

2.2 Design Challenges
However, using the dual cameras on commodity mobile devices
to estimate accurate depth in real-time is difficult. We expose the
key issues that hinders the accurate and real-time on-device depth
estimation: 1) diverse camera focal lengths; 2) out-of-sync frame
flows of the dual cameras; 3) computation heavy stereo matching.

The focal lengths of the dual cameras are quite diverse,
leading to inaccurate epipolar rectification. The off-the-shelf
commercial mobile devices have cameras with different focal lengths.
The focal length determines the camera’s field of view (FoV). For
instance, a primary camera with short focal length has a wide FoV
(WFoV). In contrast, the secondary camera with a long focal length
has a tele FoV (TFoV). If we directly calibrate and rectify the cap-
tured images of the dual cameras, the considerable difference in
focal lengths between the dual cameras could cause the epipolar
rectification1 disastrously, as shown in the raw images in Figure 4.

As shown in Equation. 1, having equivalent focal lengths for
the dual cameras is necessary for depth estimation. However, this
requirement is not met on commodity mobile devices.

1Epipolar rectification of a stereo pair is the process of re-sampling a pair of stereo
images so that the apparent motion of corresponding points is horizontal, which is an
important preliminary step in depth estimation [10].

Table 1: The Inference time of Stereo Matching Solutions on
Huawei Mate40Pro (Kirin 9000 SoC).

Deep Learning (DL) Method Traditional Method
Method-DL† Latency(s)FPS Method-Trad‡ Latency(s) FPS

StereoNet [22] 3.23 0.31 AD-Census∗[32] 1100 0.001
MADNet⋄ [48] 0.55 1.81 PMS∗[6] 1500 0.0006
HITNet [44] 6.98 0.14OpenCV-SGBM[19] 0.135 7.4
† These stereo matching models were tested by converting their open-source PyTorch

model into a TFLite model.
‡ The input resolution of these algorithms is 640 × 480, besides, the max disparity is

64 in SGBM.
∗ AD-Census and PMS are implemented by the open-source code from GitHub [1].
⋄ The latency of MADNet without online adaptation.

The frame flows from the on-device dual cameras are
highly out-of-sync. Synchronization between the two captured
frames of the dual cameras is crucial for the accuracy in depth esti-
mation. As shown in Figure 5, when the two frames are captured
at different times, the same key-point, such as the left hand in the
two frames, could move dozens of pixels between the two frames in
scenes with moving, making epipolar rectification extremely hard.
The reason is that the frame periods, i.e., time interval between con-
secutive frames, of the dual cameras are not exactly equal even if we
set to use the same frame rate. For 30 frames per second (FPS), we
find that the average frame period of left camera is 33.33ms, while
the one of the right camera is 33.31ms, i.e., a 0.02ms time difference
for every frame on average. Importantly, the difference accumulates
as the system runs. It makes the frame flows from the dual cameras
highly out-of-sync. Moreover, we observe that frequent garbage
collection (GC) could also make the frames out-of-sync.

State-of-the-art stereo matching solutions are computa-
tion heavy, leading to intolerable runtime latency. We test
the latency of several state-of-the-art CNN models and traditional
algorithms for stereo matching running on the CPU2 of Huawei
Mate40 Pro with Kirin 9000 SoC (System on a Chip). Table 1 shows
the results that these stereo-matching solutions could not achieve
real-time performance on mobile devices. Even with SGBM [19],
it still takes 135𝑚𝑠 , limiting the frame rate to only 7𝐹𝑃𝑆 . What’s
worse, the latency shown in Table 1 does not include the time for
data copying and image rendering, which are also time consuming.

Next, we describe how MobiDepth addresses these challenges
by inventing novel techniques.

3 MOBIDEPTH SYSTEM OVERVIEW
To enable dual-camera-based real-time depth estimation on mobile
devices, we need to achieve three goals: 1) matching the views of
the dual cameras with different focal lengths; 2) synchronizing the
frame flows captured by the dual cameras; 3) boosting the stereo
matching algorithm on mobile devices. We design the MobiDepth
system to achieve the three goals. It consists of two phases, i.e., the
offline phase and the online phase, as shown in Figure 6.

In the offline phase, we design an iterative FoV cropping tech-
nique to determine how to match the FoVs of dual cameras (Sec-
tion 4). It takes the several chessboard patterns as the input for

2We use CPU rather than the GPU because the algorithms/models either cannot run
or run slower on the mobile GPU.

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Figure 6: The system overview and workflow of MobiDepth.

camera calibration, and crops the WFoV iteratively until the focal
lengths of the dual cameras are equivalent. Based on the WFoV
cropped by factor 𝛼 and the TFoV, the following epipolar rectifi-
cation module calculates the value of baseline 𝐵 and focal length
𝑓 . The offline phase runs only once during the initialization of the
MobiDepth system.

In the online phase, we introduce a heterogeneous camera syn-
chronization technique (Section 5) to align the frame flows from
the dual cameras, such that the time difference between two frames
from dual cameras does not exceed a certain threshold. The im-
age rectification module takes a pair of cropped and synchronized
images as input. It determines the correspondence between the
epipolar lines between the pair of images, based on the parameters
obtained in the offline phase. After that, the mobile GPU-friendly
stereo matching technique (Section 6) efficiently finds the corre-
spondence points on the epipolar lines to calculate the disparity.
The final depth map can be readily estimated based on the disparity,
baseline, and focal length.

The details of the proposed techniques can be found in the fol-
lowing sections.

4 ITERATIVE FOV CROPPING
The focal lengths of the dual cameras on mobile devices are usually
quite diverse, leading to different FoVs of the dual cameras. Gen-
erally, device manufacturers provide the equivalent focal length
of each camera. Ideally, we can calculate the crop factor to make
the FoV of the dual cameras equal. Yet, the provided equivalent
focal length is not accurate enough. For example, the Honor V30Pro
officially provides an equivalent focal length equal to 16mm while
the measured value is close to 17mm. Cropping the images using
the provided equivalent focal length leads to significant error. In
addition, the existing approaches typically use image matching
algorithms to crop the FoVs, such as SIFT [30], SURF [5], ORB [36].
However, the accuracy of these approaches is not satisfactory since
they only perform a homography transformation, with the experi-
mental results shown in Section 8.3.1. In the following, we first an-
alyze the feasibility of finding the equivalent focal lengths through
cropping the FoVs. Then we iteratively crop the FoVs until the focal
lengths are equivalent for the dual cameras.

FoV cropping analysis. According to the lens imaging rule [35],
the field-of-view (FoV) of a camera is determined by its focal length.
Specifically, the camera with a smaller focal lengths 𝑓𝑊 has a
𝑊𝐹𝑜𝑉 , and the camera with a longer focal length 𝑓 𝑇 has a 𝑇𝐹𝑜𝑉 ,
as shown in Figure 7. By cropping the WFoV to be equal to the
TFoV, we can make the focal lengths of the dual cameras both equal
to 𝑓 𝑇 . As such, it is a fact that the same FoVs brings the equivalent
focal lengths for the dual cameras.

Figure 7: The relationship between focal length and FoV size.

Based on the fact, MobiDepth propose the iterative FoVs cropping
to iteratively crop the WFoV, until the focal lengths of the dual
cameras are equivalent. Since the image captured by the camera is
not square, i.e., the size of image is 640×480, we use 𝛼 = (𝛼𝑥 , 𝛼𝑦)
to denote the crop factor on the width and height, respectively.
We formulate Equation 2 as the loss function which quantifies the
difference of focal lengths between the dual cameras.

𝐽 (𝛼) = 1
2 (𝑓

𝑊
𝛼𝑖 − 𝑓 𝑇)2 (2)

where 𝑓 𝑇 denotes the focal length of the TFoV camera. We de-
fine 𝑓𝑊

𝛼𝑖 as the focal length of the WFoV camera after 𝑖 rounds
of cropping. The optimal crop factor can be found by iteratively
minimizing the loss.

Figure 8 illustrates the workflow of iterative FoV cropping: 1)
First, we initialize the crop factor 𝛼0 to 1, and get the focal lengths
of the dual cameras with Zhang’s calibration method [58] 3, i.e.,
𝑓 𝑇 and 𝑓𝑊

𝛼0 . To obtain more accurate values, we capture over 15
images of the calibration pattern (i.e., the chessboard) at different
3Zhang’s method is a camera calibration method that uses calibration pattern, e.g.,
chessboard, to get the camera parameters, such as focal lengths, lens distortion coeffi-
cient, etc.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

Figure 8: The process of the Iterative FoVs Cropping tech-
nique.

positions and filter out the image pairs with re-projection error
over 𝜙 (𝜙 is set to 0.05 in our implementation). 2) Then, we crop the
images with WFoV from all sides according to 𝛼𝑖 with the center of
the FoV as the basis point, then calibrate the camera after cropping
to get the updated focal length 𝑓𝑊

𝛼𝑖 . 3) Next, we update the value
of 𝛼𝑖 to 𝛼𝑖+1 using the following rule: if 𝑓𝑊

𝛼𝑖 − 𝑓 𝑇 > 0, then 𝛼𝑖+1

= 𝛼𝑖 − 𝑠𝑡𝑒𝑝 . Otherwise, 𝛼𝑖+1 = 𝛼𝑖 + 𝑠𝑡𝑒𝑝 , where 𝑠𝑡𝑒𝑝 is set to 0.01
in our implementation. 4) In case the value of Equation 2 becomes
less than Δ (0.01 according to our evaluation) for five consecutive
rounds, we obtain the final crop factor 𝛼 , based on which the focal
lengths of the dual cameras are equivalent.

5 HETEROGENEOUS CAMERA
SYNCHRONIZATION

The accurate depth estimation of objects highly relies on the syn-
chronization of frame flows of the heterogeneous dual cameras. In
case of out-of-sync flows, the target object will move a dozen of
pixels between the pair of rectified images, leading to a disastrous
performance of stereo matching.

To obtain time-aligned frames, previous works often use addi-
tional external hardware signals to simultaneously trigger cameras
to capture images [21, 40]. However, there is no such dedicated
hardware to trigger cameras on most mobile devices. As discussed
in Section 2.2, the actual frame rates of the dual cameras are slightly
different even under the same setting. The time difference of the
frames captured by the heterogeneous cameras would accumulate
at runtime if they are not carefully synchronized.

In this section, we introduce a simple yet effective technique to
reduce the time difference between the frames from two heteroge-
neous cameras to under a threshold. Figure 9 illustrates the process
of the technique. 𝑇𝐿 and 𝑇𝑅 denote the frame periods of the left
camera and the right camera, respectively. The small circles in the
figure represent frames, and the number above the circle represents
the order of the frames in the frame flow. The camera synchro-
nization works as follows based on the recorded timestamp of each
frame captured by both cameras: 1) Compare the timestamps of two
frames with the same order in the frame flows. 2) If the difference
between the timestamps of a frame pair is lower than the threshold
\ , regard the two frames as a matched pair, denoted by the solid
line in Figure 9. The matched frame pair is used as the input in the
next step (image rectification). 3) If the time difference exceeds the
threshold \ , discard the frame in the faster flow and goes to step
1 to compare its next frame with the frame in the other flow. For
example, in Figure 9, the 𝑛 − 𝑡ℎ frames in the two flows are not

Figure 9: The illustration of heterogeneous camera synchro-
nization.
Table 2: The latency of each step of SGBM using existing par-
allel optimization strategy on the GPU of Huawei Mate40Pro
(Kirin 9000 SoC).

Steps GPU(ms)

Cost Computation 30
Cost Aggregation 150

Disparity Computation 10
Disparity Refinement 9

Total latency 199

matched, so the 𝑛 − 𝑡ℎ frame from the left camera is discarded, and
the (𝑛 + 1) − 𝑡ℎ frame in the left camera are compared with 𝑛 − 𝑡ℎ

frame in the right camera.
By fine tuning \ , we have a trade-off between the synchroniza-

tion of frame flows and the loss of frames. With a larger value of \ ,
we can retain more frames, but the frames may have larger time
difference and lead to inaccurate depth estimation due to object
displacement, and vice versa. The value of \ should be determined
according to the application scenario. For example, in a scenario
where the target object is mostly static, we can use a larger \ to
tolerate frames that are slightly out-of-sync. While if the target
objects move fast, the value of \ should be smaller to ensure higher
accuracy.

In addition, when implementing the synchronization technique,
we observed that retrieving frame flows from dual cameras would
frequently trigger Android garbage collection (GC) events, which
caused the frame periods of the dual cameras to fluctuate. By tracing
the memory usage of MobiDepth, we found that the frequent GCs
were due to the un-recycled metadata, such as the CameraMetadata
objects which contains the settings of the camera [14]. After run-
ning for a while, the un-recycled metadata would take all the pre-
allocated memory. To solve this issue, we used the Java reflection
method to timely release the metadata once it is no longer useful.

6 MOBILE GPU-FRIENDLY STEREO
MATCHING

We use SGBM as the stereo matching algorithm in MobiDepth due
to its relatively low latency (e.g., 135ms on the CPU of the Kirin
9000 SoC) and satisfactory accuracy (e.g., 4.41% erroneous pixels in
total with error threshold as 5 pixels on KITTI 2012 [16]).

Although SGBM is efficient, it still cannot achieve real-time
performance on mobile devices. Using GPU may be a promising
direction to further optimize its performance. However, existing
works of SGBM acceleration are for desktop GPUs [4, 18]. We adopt
the similar optimizations to implement SGBM on mobile GPU, but
the performance is even worse than running on the CPU, as shown
in Table 2. This is due to the following limitations of mobile GPUs.

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Figure 10: The process of Cost Computation in SGBM.

Limited memory bandwidth. The most time-consuming steps
in SGBM are Cost Computation and Cost Aggregation since they
require frequent memory read/write operations to calculate the
disparity of each pixel. However, the memory bandwidth of mobile
GPUs is quite limited compared with desktop GPUs [27, 55]. For
instance, the Mali-G78 GPU in the Kirin 9000 SoC has 25.98 GB/s
memory bandwidth shared with the CPU, which is only 1

24 of the
memory bandwidth of the NVIDIA RTX 2080Ti GPU (i.e., 616 GB/s).
As a result, the frequent memory read/write operations in SGBM
lead to a long latency on mobile GPUs.

Limited memory architecture support. In Cost Aggregation
of SGBM, we need to use thread synchronization to get the mini-
mum aggregated cost of a pixel with all disparities. In the desktop
GPU, thread synchronization is performed in the fast on-chip shared
memory, while mobile GPUs such as the Mali GPU only has off-chip
shared memory which is much slower.

To tackle the challenges, we propose multiple techniques, includ-
ing calculation fusion and data merged memory write to reduce the
cost of memory read and write in SGBM, and enlarge data slicing
to reduce the overhead of thread synchronization.

6.1 Reducing the Memory Read and Write
Overhead

Memory read and write overhead analysis. In the SGBM al-
gorithm, each step utilizes the results of the previous step, which
incurs a large amount of read and write operations to the global
memory. 1) In Cost Computation, after Census Transform converts
each pixel of the pair of stereo images to a binary string, SGBM
calculates the Hamming distance between each pixel in the left
image and the corresponding disparity range pixel in the right im-
age and writes the data to the memory, and then reads the data
out for cost computation with sliding window. Figure 10 shows
the original process of Cost Computation step. We set the image
resolution as 𝑊 × 𝐻 and the max disparity range is 𝐷 . Calculat-
ing the Hamming distance for one disparity requires reading two
pixels from the memory and writing one result back into memory,
which requires𝑊 × 𝐻 × 𝐷 × 3 times for memory read and write.
After the calculation of the Hamming distance of all pixels, SGBM
reads two Hamming distance results of the two disparities from the
memory, and input them to cost computation operation to derive
the disparity cost. Thus, the times of memory read and write to
obtain the whole image’s disparity cost is 𝑊 × 𝐻 × 𝐷 × (3 + 3).
2) Cost Aggregation adopts four paths aggregation, i.e., left-right,
up-down. The existing approach to calculate pixels’ aggregation
cost is to compute the results for each path individually, which also

Figure 11: The process of data merged memory write in Cost
Aggregation (Take left-right aggregation as an example).

causes considerable amount of memory read and write operations.
3) In Cost Aggregation, SGBM needs to get the aggregation cost
of each pixel in each of the four paths. It requires to write these
values back to the memory which requires 2 ×𝐻 × 𝐷 + 2 ×𝑊 × 𝐷

times writing.
Calculation fusion. To reduce memory read and write over-

head, we fuse some calculations in Cost Computation and Cost
Aggregation. In Cost Computation, we compute the two Hamming
distances with four pixels each and then use the results directly
to get the disparity cost. In this case, the times of memory read
and write is𝑊 ×𝐻 × 𝐷 × (4 + 1), which reduces𝑊 ×𝐻 × 𝐷 times
compared with the original approach. In Cost Aggregation, the
left and right aggregations operate on the same data. Therefore,
they can be done simultaneously. For instance, we may calculate
the 𝐼𝑑 th pixel in the left aggregation and the 𝐼𝑊 −1−𝑑 th pixel in the
right aggregation at the same time. In this way, we could reduce
the times of memory accesses by𝑊 ∗ 𝐷 +𝐻 ∗ 𝐷 . This is the same
for the up and down aggregations.

Datamergedmemorywrite. Merging data before writing back
to memory can further reduce memory access overhead. In Cost
Aggregation, we combine the two values obtained from the left
and right aggregations, or the up and down aggregations, into one
array for memory write. As such, the times of memory write can
be reduced by half. As shown in Figure 11, we combine the two
16-bit values obtained from left and right aggregation into a 32-bit
value. It is written into memory only once.

6.2 Reduced Data Synchronization Overhead
In Cost Aggregation, one of the critical steps is to calculate the mini-
mal aggregated cost for each pixel which requires all the disparities
of each pixel to be calculated and synchronized. The existing im-
plementation of SGBM typically creates a number of threads equal
to the maximum number of disparity(𝐷) to calculate the minimum
value of all aggregated costs for a pixel. However, it leads to ex-
tensive synchronization cost and contention on memory access.
The synchronization is done in on-chip shared memory in desktop
GPU with low execution time, while in the mobile GPUs, i.e., Mali
GPUs, this operation is executed in off-chip shared memory, which
is time-consuming.

Enlarged data slicing. To address this issue, we take 2𝑛 (we
set n=3 according to our evaluation) disparities data at once by the
vectorized memory access and then put them on a single thread
for processing, as shown in Figure 12. By our enlarged data slicing
method, each thread calculates 2𝑛 disparity values and gets the
minimum disparity cost on that thread. Therefore, we only need

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

Figure 12: The schematic diagram of data slicing.

Figure 13: The latency hiding in our SGBM algorithm.

to synchronize 𝐷
2𝑛 threads in the mobile shared memory to get the

minimum value of all disparities, which significantly reduces the
data synchronization cost on mobile GPUs. Furthermore, using our
method could also reduce the times of shared memory read and
write. We read 2𝑛 disparity values into memory with vectorized
memory access only once, which decreases memory read times by
𝐷 − 𝐷

2𝑛 , and we only need to write 𝐷
2𝑛 data to shared memory to

get the minimum disparity cost. Besides, we increase the amount of
data on each thread, improving the data throughput and bandwidth
utilization.

Furthermore, the Cost Computation of one frame can start right
after the accomplishment of the disparity computation of the last
frame. To further reduce the latency of SGBM on mobile devices,
we allocate the Disparity Refinement of the frame onto the CPU, as
shown in Figure 13. The other three steps, i.e., Cost Computation,
Cost Aggregation, and Disparity Computation, still run on mobile
GPU.

7 IMPLEMENTATION
We implement MobiDepth on commodity Android mobile devices in
Java [3] and C++ [43] with 5,457 lines of code excluding the testing
code, counted by Android Studio Statistic tool. Specifically, we use
the official multi-camera API [14] to obtain the images captured by
each camera at 30 FPS.

To obtain the focal length of camera, we adopt the calibration
tool in OpenCV [9] which is based Zhang’s method [58] to ob-
tain the parameter. With the method, we capture 20 images of
the 12 × 9 chessboard pattern placed on a plate with a size of
20𝑚𝑚× 20𝑚𝑚, and then we filter out the image pairs with reprojec-
tion error exceeding 0.2 pixels to improve the calibration accuracy.
After we align the FoVs of the dual cameras based on the iterative
FoV cropping method, we pass the processed pairs of images to the
cvStereoRectify function in OpenCV for epipolar rectification.

We implement the SGBM in MobiDepth on mobile GPUs with
OpenCL 2.0 [42], which is supported by most mobile device sys-
tems. We use the vloadn/vstoren functions to vectorize the read
buffer format to improve bandwidth utilization, and use the select
function to reduce branch operation. To ensure stable performance

Figure 14: The hardware platform used to evaluate Mo-
biDepth. It aligns the lenses horizontally to guarantee the
accuracy of the evaluation.

Table 3: Hardware configurations of the mobile devices used
in the experiments.

Device SoC CPU GPU

HWM40P∗ Kirin 9000 Cortex-A77 Mali G78
HuaweiP30(HWP30) Kirin 980 Cortex-A76 Mali G76

Google Pixel6Pro Google Tensor Cortex-X1 Mali G78
∗ HWM40P is the abbreviation of Huawei Mate40 Pro.

of our system, we set the input image resolution of the SGBM algo-
rithm to 640 × 480, and the disparity level to 64, and use four path
directions for cost aggregation.

In addition, we implement an example 3D pose-estimation ap-
plication based on MobiDepth. We use a lightweight 2D pose-
estimation method [57] based on TensorFlow Lite [28] to get the 2D
coordinates of human keypoints. Then, we combine the coordinates
of each keypoint and the depth of the corresponding position to
form the 3D coordinates.

8 EVALUATION
In this section, we evaluate the overall performance of MobiDepth
and its key components. We also evaluate the 3D pose-estimation
application and the system overhead of MobiDepth, including the
latency in mid-low end mobile device, the power consumption, and
the memory usage.

8.1 Experimental Setup
Hardware platform. We built a hardware platform to evaluate
the depth estimation performance of MobiDepth. As shown in
Figure 14, we placed a mobile device and a depth camera (Intel
RealSense D435i) horizontally on a bracket, facing the same active
area. We install the MobiDepth and baseline solutions on the mobile
device to calculate the depth of objects in the active area, and the
depth camera was used to produce the ground-truth depth values.
We tested three mobile devices that covered different mobile SoCs
and diverse computing capabilities, as shown in Table 3.

Operating conditions.We considered a wide range of operating
conditions to evaluate the depth estimation systems, including the
situations when the mobile device is stationary or moving and
the target object is stationary or moving at different distances.
Specifically, we considered different statuses of the target object,
including stationary, moving slowly, and moving quickly. For each
object status, we considered different distances of the target object,
including 50cm, 100cm, 300cm, and 500cm. The target object is a box
with a plate surface for the convenience of accuracy computation.

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

We also included the cases where the depth estimation device is
stationary or moving.

Baselines.The primary baselines which we compared MobiDepth
against are AnyNet [52] and MADNet with and without online adap-
tation4 [48], which are the state-of-the-art depth estimation model
on mobile devices, and ARCore [13], which is the official framework
for depth estimation on Android. For simplicity, we name MADNet
with and without online adaption as MADNet-MAD and MADNet-
No, respectively. We also considered several other baselines for
evaluating different components of MobiDepth. For example, we
compared with the SIFT method [30] on the performance of FoV
matching. When evaluating the example application (mobile 3D
pose estimation) based on MobiDepth, we selected a SOTA 3D hu-
man pose estimation model, MobileHumanPose [8], as the baseline.

Metrics. We evaluated the performance of MobiDepth in terms
of accuracy, latency, energy cost, and memory usage. For depth-
estimation accuracy, we used the mean distance error (𝑚𝐷𝑒𝑟𝑟), the
average percentage error between the estimated depth of each
pixel 𝑝 in the target object (𝐷𝑒𝑝𝑡ℎ𝑒𝑠𝑡) and the groundtruth depth
(𝐷𝑒𝑝𝑡ℎ𝑔𝑡), as follows:

𝑚𝐷𝑒𝑟𝑟 =𝑚𝑒𝑎𝑛𝑝∈𝑂𝑏 𝑗𝑒𝑐𝑡

|𝐷𝑒𝑝𝑡ℎ𝑔𝑡 (𝑝) − 𝐷𝑒𝑝𝑡ℎ𝑒𝑠𝑡 (𝑝) |
𝐷𝑒𝑝𝑡ℎ𝑔𝑡 (𝑝)

(3)

When evaluating the example application, we computed the mean
per-joint position error (MPJPE), which is the mean Euclidean dis-
tance between the positions of predicted joints and the ground
truth.

8.2 Overall Depth Estimation Accuracy
We first evaluate the end-to-end performance of MobiDepth on
depth estimation. Table 4 shows the accuracy of MobiDepth, AnyNet,
MADNet and ARCore on different mobile devices. Among the three
devices, HWP30 supports all methods. ARCore is not supported on
HWM40P since it cannot run Google play services for AR. As for
the third-party application, MobiDepth is not authorized to access
the libopencl.so library in the Pixel series phones, since Google
does not publicly support the OpenCL library. Therefore, we only
evaluate the performance of ARCore on Google Pixel6Pro.

As shown in Table 4, MobiDepth outperforms the deep learning
model baselines, i.e., AnyNet, MADNet-MAD and MADNet-No, in
most cases. For instance, when the device and the target object are
stationary, the estimation error of MobiDepth is 2.8%, 1.1%, 5.1%
and 10.4% at various distances, and yet, AnyNet achieves 3.5%, 2.4%,
6.5%, 12.0% and MADNet-No is 10.6%, 12.4%, 47.6%, 61.5% at the
corresponding distances. Only on HWP30 with object at distance
50 cm, the estimation error of MobiDepth is slightly higher than
AnyNet, i.e., 3.8 % compared to 3.4%. One reason for the higher error
of deep learning based models is that the pair of images for model
training has been perfectly rectified. However, the rectification
of images captured by the on-device dual cameras suffers from
inevitable error due to the diverse setting of cameras, e.g., a normal
lens and wide-angle lens. Another reason is from the limited scenes
in the training dataset. In comparison, MobiDepth tolerates slight
image rectification error as the SGBM uses block matching method
to calculate the disparity. More importantly, MobiDepth does not

4We use an average of 1280 frames for online adaptation.

require any pre-training. It not only enables MobiDepth to work in
new scenes, but also saves lots of human efforts in collecting and
labeling a training dataset.

From Table 4, MobiDepth also always outperforms ARCore. For
example, when the two systems are tested under the exact same
condition (moving device and stationary target) on HWP30, Mo-
biDepth achieves average accuracy of 5.0%, 4.2%, 8.9% and 23.2%
at different distances, while the accuracy of ARCore is 14.3%, 7.1%,
11.7% and 25.5% respectively.

The greater advantage of MobiDepth is found when the target
object is moving. Due to the algorithmic basis of ARCore, it cannot
work well on moving targets, because the motion of the target object
will harm the relative displacement between frames measured by
IMU. However, it is not an issue in MobiDepth since our depth
is estimated in a per-frame manner. As a result, we can observe
a significantly superior performance of MobiDepth (e.g., 8.7% vs.
43.5% on HWP30 at distance=100cm) when the target is moving
slowly (30 − 80𝑐𝑚/𝑠).

In addition, the accuracy of MobiDepth is even better when the
device is stationary. For example, on HWM40P, the accuracy with
the device stationary and moving are 1.1% and 3.2% respectively
for stationary target at distance=100cm. On the contrary, ARCore
is unable to obtain depth information without motion, which may
limit its usage scenarios such as live streaming with a fixed mobile
device camera.

The accuracy of MobiDepth may be affected by the device. We
can notice that the performance of MobiDepth on HWM40P is better
than others, as the quality of cameras and the distribution of dual
cameras on HWM40P are better. The performance of MobiDepth
may get worse if the secondary camera on the device is too poor or
lies too close to the main camera. Nevertheless, MobiDepth can still
achieve a reasonable accuracy on most devices since most mobile
devices today are equipped with powerful dual cameras.

8.3 Performance Breakdown
We next evaluate the performance of the key components of the
MobiDepth system in detail.

8.3.1 FoV Matching. As introduced in Section 4, MobiDepth uses
an iterative FOV cropping method to match the FoVs of dual cam-
eras. An alternative to our method is the SIFT-based method, and
thus we tested the performance of MobiDepth if the FoV matching
part is implemented with SIFT. The result is shown in Table 5. We
can see that the SIFT baseline can lead to higher mean distance er-
rors than our original method on depth estimation, which are 7.3%
vs. 2.8%, 6.6% vs. 1.1%, 8.2% vs. 5.1%, 13.3% vs. 10.4% when the target
object distance is 50cm, 100cm, 300cm and 500cm, respectively. This
demonstrates the effectiveness of our iterative cropping-based FoV
matching method.

8.3.2 Frame Synchronization. We introduced a frame synchroniza-
tion technique (Section 5) to reduce the time difference between
the image streams of dual cameras. Figure 15 shows that the time
difference of two frames accumulates as the time goes without
the frame synchronization. The time difference exceeds 80ms after
about 4000 frames. With our frame alignment method, we can keep
the time difference of the dual cameras within 16ms (as we set the

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

Table 4: The accuracy of MobiDepth, AnyNet, MADNet and ARCore on depth estimation under different operating conditions.
Each cell is the averagemean distance error (𝑚𝐷𝑒𝑟𝑟).

Methods
Object status Obj-Stationary† Obj-Moving†(30∼80cm/s) Obj-Moving (80∼150cm/s)

50cm 100cm 300cm 500cm 50cm 100cm 300cm 500cm 50cm 100cm 300cm 500cm

HWM40P

AnyNet Dev-Stationary‡ 3.5% 2.4% 6.5% 12.0% 4.0% 5.2% 11.1% 21.4% 13.9% 19.8% 20.4% 31.4%
MADNet-No Dev-Stationary 10.6% 12.4% 47.8% 61.7% 13.5% 19.2% 50.3% 60.9% 33.3% 28.8% 55.8% 64.9%

MADNet-MAD Dev-Stationary 5.8% 4.9% 11.5% 15.3% 5.9% 8.8% 19.6% 23.7% 14.7% 15.8% 28.3% 38.7%

MobiDepth Dev-Stationary 2.8% 1.1% 5.1% 10.4% 3.8% 3.1% 9.3% 19.2% 9.8% 9.5% 15.1% 29.9%
Dev-Moving‡ 4.5% 3.2% 7.4% 14.3% 5.6% 5.8% 13.4% 23.1% 13.3% 15.7% 23.4% 31.1%

HWP30

AnyNet Dev-Stationary 3.4% 5.2% 13.3% 25.5% 4.4% 7.6% 23.8% 30.9% 11.1% 16.0% 28.3% 39.3%
MADNet-No Dev-Stationary 18.8% 15.9% 58.9% 74.4% 26.8% 16.8% 62.7% 74.6% 24.5% 17.6% 68.9% 74.6%

MADNet-MAD Dev-Stationary 8.4% 9.1% 26.2% 49.6% 9.4% 10.9% 30.6% 54.8% 14.7% 13.1% 47.4% 54.7%

MobiDepth Dev-Stationary 3.8% 4.1% 7.1% 21.4% 4.3% 6.3% 14.2% 28.5% 10.1% 13.7% 21.5% 35.6%
Dev-Moving 5.0% 4.2% 8.9% 23.2% 7.4% 8.7% 24.4% 35.2% 15.3% 20.1% 30.5% 40.3%

ARCore∗ Dev-Moving 14.3% 7.1% 11.7% 25.5% 56.6% 43.5% 54.8% 57.9% 69.9% 66.6% 58.7% 61.9%
∗ Since ARCore cannot obtain depth information while the device is stationary, we only tested ARCore with the device moving.
† Obj-Stationary and Obj-Moving denote that the status of target object is static and moving, respectively.
‡ Dev-Stationary and Dev-Moving indicate that the state of mobile device is static and moving, respectively.

Figure 15: Time difference with and with-
out frame synchronization.

Figure 16: Latency reduction of our opti-
mized SGBM for mobile GPU.

Figure 17: Latency of MobiDepthPose
and MobileHumanPose.

Table 5: The averagemean distance error (𝑚𝐷𝑒𝑟𝑟) of SIFT and
our method for FoV matching. The target object is stationary
at different distances.

Distance Methods
MobiDepth-SIFT MobiDepth-Ours

50cm 7.3% 2.8%
100cm 6.6% 1.1%
300cm 8.2% 5.1%
500cm 13.3% 10.4%

\ to 16ms, the half of the frame period). To test the effectiveness of
this technique, we compared the accuracy of MobiDepth with and
without frame synchronization, as shown in Table 6.

In Table 6, Unsync represents the cases when the two frames
used for stereo matching in MobiDepth are not synchronized (by
one frame or two frames). As can be seen from the table, our frame
synchronization method allows the MobiDepth to achieve obviously
higher accuracy than without synchronization. The advantage of
using frame synchronization is more significant when the velocity
of the target object is higher.

8.3.3 Stereo Matching Optimizations. In the stereo matching of
MobiDepth, we adopted several techniques to optimize the perfor-
mance of SGBM on mobile devices. Figure 16 shows the latency

Table 6: The average mean distance error (𝑚𝐷𝑒𝑟𝑟) of Mo-
biDepth when the two cameras are synchronized (Sync) or
not synchronized (Unsync). Unsync1 and Unsync2 have a
33ms (one frame) and 66ms (two frames) time difference be-
tween two frames, respectively. The target object is moving
at different distances and speeds.

Distance
Speed Moving (30~80cm/s)

Original Unsync1 Unsync2
50cm 3.8% 17.2% 41.2%
100cm 3.1% 12.1% 31.1%
300cm 9.3% 25.6% 42.2%
500cm 19.2% 36.3% 50.7%

reduction of our customized SGBM implementation, compared to
the existing SGBM implementation that was originally developed
for desktop GPU (denoted as D-SGBM). The result shows that al-
most all parts of the SGBM algorithm are significantly optimized,
reducing the latency of SGBM by 81.4% on HWM40P and 72.8% on
HWP30.

8.4 Case Study: 3D Pose Estimation
MobiDepth may enable various 3D applications on mobile devices.
We take 3D pose estimation (PE) as an example case study to show

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Table 7: Accuracy of MobileHumanPose and MobiDepthPose
in terms of MPJPE (mm).

Methods Walk Kick Sit Hit Avg.
MobileHumanPose [8] 290.3 231.4 213.8 229.9 241.4
MobiDepthPose (Ours) 195.3 164.8 141.6 178.5 170.1

Figure 18: Visualization of some 3D poses predicted by Mo-
biDepthPose and MobileHumanPose.

the effectiveness of MobiDepth. To do it, we implement a mobile
3D PE application based on MobiDepth, named MobiDepthPose.
The current SOTA mobile 3D PE system MobileHumanPose [8]
adopts an end-to-end neural network to predict the 3D keypoint
coordinates (𝑥,𝑦, 𝑧) of human joints. Instead, our MobiDepthPose
can directly utilize MobiDepth to obtain accurate depth information,
so that the model only needs to predicts the 2D keypoint coordinates
(𝑥 ,𝑦). In MobiDepthPose, we use an accurate and lightweight 2D
PE model [56, 57] in combination with MobiDepth to obtain the 3D
keypoint coordinates (𝑥,𝑦, 𝑧).

We evaluated the accuracy of MobileHumanPose and MobiDepth-
Pose under different settings when a person was walking, sitting,
kicking, or hitting something in the camera view. In each setting,
we collected 300 samples, and the ground truth was produced by
the combination of a full-featured depth camera (Intel RealSense
D435i) and a SOTA 2D PE model (HigherHRNet-w48 [7]). As we
can see from Table 7, MobiDepthPose is able to achieve a much bet-
ter accuracy than MobileHumanPose in all cases, with the overall
mean per joint position error (MPJPE) significantly reduced from
241.4mm to 170.1mm, i.e., a reduction of 29.5%.

Moreover, since the neural network can be much simplified
in MobiDepthPose, the latency of 3D PE can be reduced as well.
As shown in Figure 17, the latency of MobiDepthPose is reduced
by 45.4% to 57.1% compared with MobileHumanPose on different
devices. Some examples of the estimated 3D pose can be found in
Figure 18.

8.5 System Overhead
Finally, we evaluate the system overhead of MobiDepth in terms of
latency, power consumption, and memory usage. Figure 19(a) shows
the latency of MobiDepth, AnyNet, MADNet-No and ARCore on

the three mobile devices5. Compared to AnyNet and MADNet-No,
MobiDepth can reduce latency by 40.02% and 91.81% on HWM40P,
and by 24.04% and 88.34% on HWP30, respectively. Yet, as the
official framework adopted by Android, ARCore achieves better
latency than MobiDepth on both high-end and low-end devices.
Especially, the latency gap between ARCore and MobiDepth is
large (about 40ms) on HWP30. This is because that ARCore utilizes
keyframes and IMU to reduce the computation, while MobiDepth
computes depth in a per-frame manner. Nevertheless, the result
has also shown that the latency of MobiDepth is greatly reduced to
around 45ms on higher-end devices (e.g., HWM40P), which shows
the ability of MobiDepth to achieve real-time experience.

The results of power consumption are shown in Figure 19(b).
We use PerfDog [34] developed by Tencent to collect the power
consumption of different systems. Since MobiDepth exploits both
the CPU, GPU and the two cameras, its average power consumption
is about 50% higher than ARCore. However, MobiDepth can reduce
7.14% and 8.08% power consumption than AnyNet and MADNet-
No, respectively on HWM40P. This is because the most operations
of MobiDepth are simple additions and comparisons, which have a
low utilization of the ALU on GPU, i.e., 4% to 6% according to our
test.

The memory usage of MobiDepth, AnyNet, MADNet-No and
ARCore are obtained using the Monitors tool in Android Studio. As
shown in Figure 19(c), the average memory usage of MobiDepth
exceeds AnyNet’s by 17.9% and ARCore’s by 35%, since it computes
the disparity of each pixel on both CPU and GPU simultaneously.
However, the total memory usage of MobiDepth is less than 450MB,
which is relatively small as mainstream mobile devices have multi-
gigabytes memory.

To sum up, MobiDepth introduces a higher overhead than AR-
Core. However, it reduces the latency and power, compared with
the AnyNet and MADNet. We believe that the overhead is tolerable
given the great advantages offered by MobiDepth.

9 RELATEDWORK
Stereomatching. To achieve the accurate depth, many works have
focused on stereo matching algorithm [17, 47]. Traditional stereo
matching methods usually utilize the low-level features of image
patches around the pixel to measure the dissimilarity, which can
be grouped into three categories: 1) Local method. Both Lazaros et
al. [33] and Kristina et al. [2] exploit the region-based local algo-
rithms, which is based on feature vectors extracted in a window
for matching. 2) Global method. Vladimir et al. [26] and Andreas et
al. [24] select the disparity with the minimal global energy function.
3) Semi-global method. Heiko [19] optimizes a path-wise form of
the energy function in multiple direction. With the development
of deep learning, many stereo matching works use CNN models
to improve the accuracy of depth estimation [25, 38, 44]. Akihito
et al. [38] propose the SGM-Nets model to improve the accuracy
of the model by providing a learning penalty to the SGM. Patrick
et al. [25] learns smoothness penalties through a conditional ran-
dom field(CRF) and combines it with a correlation matching cost

5We do not evaluate the latency of MADNet-MAD on mobile devices since the model
with the online adaptation module is extremely time consuming, which its latency is
much higher than that of MADNet-No.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

(a) Latency. (b) Power consumption. (c) Memory usage.

Figure 19: System overhead of MobiDepth, AnyNet, MADNet-No and ARCore.

predicted by CNN to integrate long-range interactions. Vladimir
et al. [44] design a CNN model that propagate the information
across different resolution levels. However, these works are only
suitable for identical dual cameras. Besides, none of these works
consider the specific architecture of mobile SoCs. MobiDepth aims
to estimate depth through a dual-camera system with diverse set-
tings, and well use the memory architecture of mobile GPU for
acceleration.

Depth estimation on mobile devices. Current methods of
getting depth on mobile devices can be divided into 3 categories: 1)
Dedicated depth sensors. Kim et al. [23] and Tian et al. [46] use the
on-device time-of-flight(ToF) camera to obtain 3D images, and Shih
et al. [39] and Stefano et al. [45] use LiDAR instead. Depth sensors
are currently only available on a few high-end mobile devices due
to the high cost. 2) Learning-based depth prediction. Liu et al. [29]
present a CNN field model to estimate depths from single monocular
images, aiming to jointly explore the capacity of CNN model and
continuous CRF. David et al. [15] propose a two-scale CNN model
trained on images and the corresponding depth maps. However, the
3D CNN models are computing-heavy, which cannot achieve real-
time performance on mobile devices. Furthermore, these methods
suffer from limited scalability, i.e., they cannot estimate the depth
of new objects that are unseen in the training dataset. 3) Using
monocular camera on mobile devices. Yang et al. [54] propose a
keyframe-based real-time surface mesh generation approach to
reconstruct 3D objects from single RGB image. ARCore [49], the
well-known AR framework, obtains depth from motion, i.e., using
monocular camera combined with inertial measurement unit (IMU)
to estimate depth. However, the limitation of these works is that
they cannot estimate the accurate depth of the object in motion.

In comparison, MobiDepth obtains the disparity from the dual
cameras, instead of moving a single camera. Therefore, MobiDepth
can accurately estimate the depth for objects in motion. Further-
more, the stereo matching algorithm used in MobiDepth, i.e., SGBM,
does not need to pre-train on any 3D datasets, and thus achieves
better scalability.

10 DISCUSSION
The current MobiDepth system has several limitations. 1) Mo-
biDepth does not take into consideration the impact of auto-focus. In
auto-focus, a motor moves the camera lens backward and forward
to adjust the image distance, making it hard for MobiDepth to do
the FoV cropping. However, if auto-focus can be well-handled, it
may help improve the depth estimation as it improves the captured

image quality. 2) Due to the short distance between the dual cameras
on mobile devices, the effective range of MobiDepth to obtain depth
is typically limited to 0.5 to 5 meters, i.e., the distance of the dual
cameras on HWM40P is about 2.1cm (the range varies slightly across
mobile devices). If the target object lies outside of the effective
distance range, the system may not accurately estimate the depth.
However, we believe the effective distance range can already cover
most AR/VR application scenarios on mobile devices. 3) MobiDepth
may not work well on devices with white-and-black cameras and relies
on the computing power of mobile GPU. For mobile devices with low-
end GPUs, the efficiency of stereo matching in MobiDepth may not
be guaranteed. This is not a severe issue since most devices today
are equipped with powerful cameras and GPUs. These limitations
can also be mitigated by incorporating more advanced algorithmic
and system optimizations, which we leave for future work.

11 CONCLUSION
In this paper, we propose MobiDepth, the first system to use the
dual cameras on commodity mobile devices for real-time depth
estimation. MobiDepth does not require dedicated sensors or large-
scale data, and works for a wide range of scenarios, where both the
device and the target objects can be stationary or moving. To do so,
MobiDepth employs three key techniques, including iterative FoV
cropping, heterogeneous camera synchronization, and mobile GPU-
friendly stereo matching. Extensive experiments have demonstrated
that MobiDepth can achieve high accuracy and low overhead. The
accuracy remains high on moving objects and moving devices,
significantly outperforming ARCore, the state-of-the-art framework
for depth estimation on Android.

12 ACKNOWLEDGMENTS
We sincerely appreciate the anonymous shepherd and reviewers for
their valuable comments. This work is supported by National Sci-
ence Foundation of China (62172439, 62122095, 62072472), National
Key R&D Program of China (2019YFA0706403), Natural Science
Foundation Major Project of Hunan Science and Technology Inno-
vation Program (S2021JJZDXM0022), Natural Science Foundation
of Hunan Province (2020JJ5774, 2020JJ2050) and U19A2067, a grant
from the Guoqiang Institute, Tsinghua University.

REFERENCES
[1] 2022. https://github.com/ethan-li-coding.
[2] Kristian Ambrosch and Wilfried Kubinger. 2010. Accurate hardware-based stereo

vision. Computer Vision and Image Understanding 114, 11 (2010), 1303–1316.

MobiDepth: Real-Time Depth Estimation Using On-Device
Dual Cameras ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

[3] Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming
language. Addison Wesley Professional.

[4] Christian Banz, Holger Blume, and Peter Pirsch. 2011. Real-time semi-global
matching disparity estimation on the GPU. In 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops). IEEE, 514–521.

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In European conference on computer vision. Springer, 404–417.

[6] Michael Bleyer, Christoph Rhemann, and Carsten Rother. 2011. Patchmatch
stereo-stereo matching with slanted support windows.. In Bmvc, Vol. 11. 1–11.

[7] Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S. Huang, and Lei
Zhang. 2020. HigherHRNet: Scale-Aware Representation Learning for Bottom-Up
Human Pose Estimation. In CVPR.

[8] Sangbum Choi, Seokeon Choi, and Changick Kim. 2021. MobileHumanPose:
Toward real-time 3D human pose estimation in mobile devices. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2328–2338.

[9] Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario Cifrek.
2012. A brief introduction to OpenCV. In 2012 proceedings of the 35th international
convention MIPRO. IEEE, 1725–1730.

[10] François Darmon and Pascal Monasse. 2021. The Polar Epipolar Rectification.
Image processing on line 11 (2021), 56–75.

[11] Pei-Huang Diao and Naai-Jung Shih. 2018. MARINS: A mobile smartphone AR
system for pathfinding in a dark environment. Sensors 18, 10 (2018), 3442.

[12] ARKit Developers Documentation. 2018. https://developer.apple.com/
documentation/arkit.

[13] ARCore Developers Documentation. 2018. https://developers.google.com/ar.
[14] Android Developers Documentation. 2021. https://developer.android.com/

training/camera2/multi-camera.
[15] David Eigen, Christian Puhrsch, and Rob Fergus. 2014. Depth map prediction from

a single image using a multi-scale deep network. Advances in neural information
processing systems 27 (2014).

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In 2012 IEEE conference on
computer vision and pattern recognition. IEEE, 3354–3361.

[17] Rostam Affendi Hamzah and Haidi Ibrahim. 2016. Literature survey on stereo
vision disparity map algorithms. Journal of Sensors 2016 (2016).

[18] Daniel Hernandez-Juarez, Alejandro Chacón, Antonio Espinosa, David Vázquez,
Juan Carlos Moure, and Antonio M López. 2016. Embedded real-time stereo
estimation via semi-global matching on the GPU. Procedia Computer Science 80
(2016), 143–153.

[19] Heiko Hirschmuller. 2007. Stereo processing by semiglobal matching and mutual
information. IEEE Transactions on pattern analysis and machine intelligence 30, 2
(2007), 328–341.

[20] Dong-Hyun Hwang, Suntae Kim, Nicolas Monet, Hideki Koike, and Soonmin Bae.
2020. Lightweight 3D human pose estimation network training using teacher-
student learning. In Proceedings of the IEEE/CVFWinter Conference on Applications
of Computer Vision. 479–488.

[21] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade,
Shohei Nobuhara, and Yaser Sheikh. 2015. Panoptic studio: A massively multi-
view system for social motion capture. In Proceedings of the IEEE International
Conference on Computer Vision. 3334–3342.

[22] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien
Valentin, and Shahram Izadi. 2018. Stereonet: Guided hierarchical refinement for
edge-aware depth prediction. (2018).

[23] Hyun Myung Kim, Min Seok Kim, Gil Ju Lee, Hyuk Jae Jang, and Young Min
Song. 2020. Miniaturized 3D depth sensing-based smartphone light field camera.
Sensors 20, 7 (2020), 2129.

[24] Andreas Klaus, Mario Sormann, and Konrad Karner. 2006. Segment-based stereo
matching using belief propagation and a self-adapting dissimilarity measure.
In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 3. IEEE,
15–18.

[25] Patrick Knobelreiter, Christian Reinbacher, Alexander Shekhovtsov, and Thomas
Pock. 2017. End-to-end training of hybrid CNN-CRF models for stereo. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2339–2348.

[26] Vladimir Kolmogorov and Ramin Zabih. 2001. Computing visual correspon-
dence with occlusions using graph cuts. In Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, Vol. 2. IEEE, 508–515.

[27] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang, Yang Wang, Jianhua Zou,
and Yunxin Liu. 2022. Romou: Rapidly Generate High-Performance Tensor Ker-
nels for Mobile GPUs. In Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking. https://doi.org/10.1145/3495243.3517020

[28] TensorFlow Lite. 2021. https://www.tensorflow.org/lite/.
[29] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. 2015. Learning depth

from single monocular images using deep convolutional neural fields. IEEE
transactions on pattern analysis and machine intelligence 38, 10 (2015), 2024–2039.

[30] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[31] Wolfgang Maass. 2000. On the computational power of winner-take-all. Neural
computation 12, 11 (2000), 2519–2535.

[32] Xing Mei, Xun Sun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, and Xiaopeng
Zhang. 2011. On building an accurate stereo matching system on graphics
hardware. In 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops). IEEE, 467–474.

[33] Lazaros Nalpantidis and Antonios Gasteratos. 2010. Stereo vision for robotic
applications in the presence of non-ideal lighting conditions. Image and Vision
Computing 28, 6 (2010), 940–951.

[34] PerfDog. 2022. https://perfdog.qq.com/.
[35] Todd B Pittman, YH Shih, DV Strekalov, and Alexander V Sergienko. 1995. Optical

imaging by means of two-photon quantum entanglement. Physical Review A 52,
5 (1995), R3429.

[36] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[37] Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 2017. Large-
scale outdoor 3D reconstruction on a mobile device. Computer Vision and Image
Understanding 157 (2017), 151–166.

[38] Akihito Seki and Marc Pollefeys. 2017. Sgm-nets: Semi-global matching with
neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 231–240.

[39] Naai-Jung Shih, Pei-Huang Diao, Yi-Ting Qiu, and Tzu-Yu Chen. 2020. Situated
ar simulations of a lantern festival using a smartphone and lidar-based 3d models.
Applied Sciences 11, 1 (2020), 12.

[40] Prarthana Shrstha, Mauro Barbieri, and Hans Weda. 2007. Synchronization of
multi-camera video recordings based on audio. In Proceedings of the 15th ACM
international conference on Multimedia. 545–548.

[41] Robert Spangenberg, Tobias Langner, and Raúl Rojas. 2013. Weighted semi-global
matching and center-symmetric census transform for robust driver assistance. In
International Conference on Computer Analysis of Images and Patterns. Springer,
34–41.

[42] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in science
& engineering 12, 3 (2010), 66.

[43] Bjarne Stroustrup. 2013. The C++ programming language. Pearson Education.
[44] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh Kowdle, Sean Fanello,

and Sofien Bouaziz. 2021. Hitnet: Hierarchical iterative tile refinement network
for real-time stereo matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14362–14372.

[45] Stefano Tavani, Andrea Billi, Amerigo Corradetti, Marco Mercuri, Alessandro
Bosman, Marco Cuffaro, Thomas Seers, and Eugenio Carminati. 2022. Smartphone
assisted fieldwork: Towards the digital transition of geoscience fieldwork using
LiDAR-equipped iPhones. Earth-Science Reviews (2022), 103969.

[46] Yuan Tian, Yuxin Ma, Shuxue Quan, and Yi Xu. 2019. Occlusion and collision
aware smartphone AR using time-of-flight camera. In International Symposium
on Visual Computing. Springer, 141–153.

[47] Beau Tippetts, Dah Jye Lee, Kirt Lillywhite, and James Archibald. 2016. Review
of stereo vision algorithms and their suitability for resource-limited systems.
Journal of Real-Time Image Processing 11, 1 (2016), 5–25.

[48] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano.
2019. Real-time self-adaptive deep stereo. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[49] Julien Valentin, Adarsh Kowdle, Jonathan T Barron, Neal Wadhwa, Max Dzitsiuk,
Michael Schoenberg, Vivek Verma, Ambrus Csaszar, Eric Turner, Ivan Dryanovski,
et al. 2018. Depth from motion for smartphone AR. ACM Transactions on Graphics
(ToG) 37, 6 (2018), 1–19.

[50] VR and AR market size 2024. 2021. https://www.statista.com/statistics/591181/global-
augmented-virtual-reality-market-size/.

[51] Bill Waggener, William N Waggener, and William M Waggener. 1995. Pulse code
modulation techniques. Springer Science & Business Media.

[52] Yan Wang, Zihang Lai, Gao Huang, Brian H. Wang, Laurens Van Der Maaten,
Mark Campbell, and Kilian Q Weinberger. 2018. Anytime Stereo Image Depth
Estimation on Mobile Devices. arXiv preprint arXiv:1810.11408 (2018).

[53] Jingao Xu, Guoxuan Chi, Zheng Yang, Danyang Li, Qian Zhang, Qiang Ma,
and Xin Miao. 2021. FollowUpAR: enabling follow-up effects in mobile AR
applications. In Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services. 1–13.

[54] Xingbin Yang, Liyang Zhou, Hanqing Jiang, Zhongliang Tang, Yuanbo Wang,
Hujun Bao, and Guofeng Zhang. 2020. Mobile3DRecon: real-time monocular
3D reconstruction on a mobile phone. IEEE Transactions on Visualization and
Computer Graphics 26, 12 (2020), 3446–3456.

[55] Juheon Yi and Youngki Lee. 2020. Heimdall: mobile gpu coordination platform
for augmented reality applications. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 1–14.

[56] Changqian Yu, Bin Xiao, Changxin Gao, Lu Yuan, Lei Zhang, Nong Sang, and
Jingdong Wang. 2021. Lite-HRNet: A Lightweight High-Resolution Network. In
CVPR.

[57] Jinrui Zhang, Deyu Zhang, Xiaohui Xu, Fucheng Jia, Yunxin Liu, Xuanzhe Liu, Ju
Ren, and Yaoxue Zhang. 2020. MobiPose: Real-time multi-person pose estimation

https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developer.android.com/training/camera2/multi-camera
https://developer.android.com/training/camera2/multi-camera
https://doi.org/10.1145/3495243.3517020

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang and Y. Liu

on mobile devices. In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems. 136–149.

[58] Zhengyou Zhang. 1999. Flexible camera calibration by viewing a plane from
unknown orientations. In Proceedings of the seventh ieee international conference
on computer vision, Vol. 1. Ieee, 666–673.

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Background
	2.2 Design Challenges

	3 MobiDepth System Overview
	4 Iterative FoV Cropping
	5 Heterogeneous Camera Synchronization
	6 Mobile GPU-friendly stereo matching
	6.1 Reducing the Memory Read and Write Overhead
	6.2 Reduced Data Synchronization Overhead

	7 Implementation
	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall Depth Estimation Accuracy
	8.3 Performance Breakdown
	8.4 Case Study: 3D Pose Estimation
	8.5 System Overhead

	9 Related Work
	10 Discussion
	11 Conclusion
	12 Acknowledgments
	References

