
Gradient Estimation with Discrete Stein Operators

Jiaxin Shi†
Stanford University

jiaxins@stanford.edu

Yuhao Zhou
Tsinghua University

yuhaoz.cs@gmail.com

Jessica Hwang
Stanford University

jjhwang@stanford.edu

Michalis K. Titsias
DeepMind

mtitsias@google.com

Lester Mackey
Microsoft Research New England

lmackey@microsoft.com

Abstract

Gradient estimation—approximating the gradient of an expectation with respect to
the parameters of a distribution—is central to the solution of many machine learn-
ing problems. However, when the distribution is discrete, most common gradient
estimators suffer from excessive variance. To improve the quality of gradient esti-
mation, we introduce a variance reduction technique based on Stein operators for
discrete distributions. We then use this technique to build flexible control variates
for the REINFORCE leave-one-out estimator. Our control variates can be adapted
online to minimize variance and do not require extra evaluations of the target func-
tion. In benchmark generative modeling tasks such as training binary variational
autoencoders, our gradient estimator achieves substantially lower variance than
state-of-the-art estimators with the same number of function evaluations.

1 Introduction

Modern machine learning relies heavily on gradient methods to optimize the parameters of a learning
system. However, exact gradient computation is often difficult. For example, in variational infer-
ence for training latent variable models [29, 42] and policy gradient algorithms in reinforcement
learning [64] the exact gradient features an intractable sum or integral introduced by an expectation
under an evolving probability distribution. To make progress, one resorts to estimating the gradient
by drawing samples from that distribution [39, 49].

The two main classes of gradient estimators used in machine learning are the pathwise or reparameteri-
zation gradient estimators [29, 46, 57] and the REINFORCE or score function estimators [18, 64]. The
pathwise estimators have shown great success in training variational autoencoders [29] but are only
applicable to continuous probability distributions. The REINFORCE estimators are more general-
purpose and easily accommodate discrete distributions but often suffer from excessively high variance.

To improve the quality of REINFORCE estimators, we develop a new variance reduction technique
for discrete expectations. Our method is based upon Stein operators [see, e.g., 1, 54], computable
functionals that generate mean-zero functions under a target distribution and provide a natural way of
designing control variates (CVs) for stochastic estimation.

We first provide a general recipe for constructing practical Stein operators for discrete distribu-
tions (Table 1), generalizing the prior literature [6, 8, 9, 16, 25, 45, 66]. We then develop a gradient
estimation framework—RODEO—that augments REINFORCE estimators with mean-zero CVs
generated from Stein operators. Finally, inspired by Double CV [59], we extend our method to
develop CVs for REINFORCE leave-one-out estimators [30, 48] to further reduce the variance.
†Work done while at Microsoft Research New England.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
2.

09
49

7v
5

 [
st

at
.M

L
]

 2
8

N
ov

 2
02

2

Table 1: Discrete Stein operators that generate mean-zero functions under q (i.e., Eq[(Ah)(x)] = 0).

Stein Operator (Ah)(x)

Gibbs (4) 1
d

∑d
i=1

∑
y−i=x−i

q(yi|x−i)h(y)− h(x)

MPF (6)
∑

y∈Nx,y 6=x

√
q(y)/q(x)(h(y)− h(x))

Barker (6)
∑

y∈Nx,y 6=x
q(y)

q(x)+q(y)
(h(y)− h(x))

Difference (8) 1
d

∑d
i=1 h(deci(x))−

q(inci(x))
q(x)

h(x)

The benefits of using Stein operators to construct discrete CVs are twofold. First, the operator
structure permits us to learn CVs with a flexible functional form such as those parameterized by
neural networks. Second, since our operators are derived from Markov chains on the discrete support,
they naturally incorporate information from neighboring states of the process for variance reduction.

We evaluate RODEO on 15 benchmark tasks, including training binary variational autoencoders
(VAEs) with one or more stochastic layers. In most cases and with the same number of function
evaluations, RODEO delivers lower variance and better training objectives than the state-of-the-art
gradient estimators DisARM [14, 68], ARMS [13], Double CV [59], and RELAX [20].

2 Background

We consider the problem of maximizing the objective function Eqη [f(x)] with respect to the pa-
rameters η of a discrete distribution qη(x). Throughout the paper we assume f(x) is a differen-
tiable function of real-valued inputs x ∈ Rd but is only evaluated at a discrete subset X d due
to the discreteness of qη.2 Exact computation of the expectation is typically intractable due to
the complex nature of f(x) and qη(x). The standard workaround is to rewrite the gradient as
∇ηEqη [f(x)] = Eqη [f(x)∇η log qη(x)] and employ the Monte Carlo gradient estimator known as
the score function or REINFORCE estimator [18, 64]:

1
K

∑K
k=1(f(x

(k))− b)∇η log qη(x(k)) for x(1), . . . , x(K) i.i.d.∼ qη. (REINFORCE)

Here, b is a constant called the “baseline” introduced to reduce the variance of the estimator by
reducing the scaling effect of f(x(k)). Since Eqη [∇η log qη(x)] = 0, the REINFORCE estimator is
unbiased for any choice of b, and the term b∇η log qη(x) is known as a control variate (CV) [41,
Ch. 8]. The optimal baseline can be estimated using additional function evaluations [7, 44, 63]. A
simpler approach is to use moving averages of f from historical evaluations or to train function
approximators to mimic those values [37]. When K ≥ 2, a powerful variant of REINFORCE is
obtained by replacing b with the leave-one-out average of function values:

1
K

∑K
k=1

(
f(x(k))− 1

K−1
∑
j 6=k f(x

(j))
)
∇η log qη(x(k)). (RLOO)

This approach is often called the REINFORCE leave-one-out (RLOO) estimator [30, 47, 48] and was
recently observed to have very strong performance in training discrete latent variable models [14, 47].

All the above methods construct a baseline that is independent of the point x(k) under consideration,
but there are other ways to preserve the unbiasedness of the estimator. We are free to use a sample-
dependent baseline b(x(k)) as long as the expectation c , Eqη [b(x(k))∇η log qη(x(k))] is easily
computed or has a low-variance unbiased estimate. In this case, we can correct for any bias introduced
by b(x(k)) by adding in this expectation: 1

K

∑K
k=1(f(x

(k)) − b(x(k)))∇η log qη(x(k)) + c. For
example, b(x(k)) can be a lower bound or a Taylor expansion of f(x(k)) [22, 42]. Taking this a step
further, the Double CV estimator [59] proposed to treat f(x(k))− b(x(k)) as the effective objective
function and apply the leave-one-out idea:

1
K

∑K
k=1

[(
f(x(k))−bk(x

(k))
)
− 1

K−1
∑
j 6=k

(
f(x(j))−bj(x

(j))
)]
∇η log qη(x(k)) + c.

The resulting estimator adds two CVs to RLOO: the global CV bk(x
(k))∇η log qη(x(k)) and the

local CV bk(x
(j)). Intuitively, bk(x(j)) is aimed at reducing the variance of the LOO average. This is

2This assumption holds for many discrete probabilistic models [21] including the binary VAEs of Section 6.

2

motivated by the fact that replacing 1
K−1

∑
j 6=k f(x

(j)) with Eqη [f] in RLOO leads to lower variance
[59, Prop 1]. To obtain a tractable correction term c, Titsias and Shi [59] adopt a linear design of bk:
bk(x) = α · 1

K−1
∑
j 6=k f(xj)(x− µ) for µ = Eqη [x] and a coefficient α.

Although the Double CV framework points to a promising new direction for developing better
REINFORCE estimators, one only obtains significant reduction in variance when bk is strongly
correlated with f . This may fail to hold for the above linear bk and a highly nonlinear f , especially in
applications like training deep generative models.

In the following two sections, we will introduce a method that allows us to use very flexible CVs
while still maintaining a tractable correction term. Our method enables online adaptation of CVs
to minimize gradient variance (similar to RELAX [21]) but does not assume qη has a continuous
reparameterization. We then apply it to generalize the linear CVs in Double CV to very flexible ones
such as neural networks. Moreover, we provide an effective CV design based on surrogate functions
that requires no additional evaluation of f compared to RLOO.

3 Control Variates from Discrete Stein Operators

At the heart of our new estimator is a technique for generating flexible discrete CVs, that is for
generating a rich class of functions that have known expectations under a given discrete distribution
q. One way to achieve this is to identify any discrete-time Markov chain (X(t))∞t=0 with stationary
distribution q. Then, the transition matrix P , defined via Pxy = P (X(t+1) = y|X(t) = x), satisfies
P>q = q and hence

Eq[(P − I)h] = 0, (1)

for any integrable function h. We overload our notation so that, for any suitable matrix A, (Ah)(x) ,∑
y Axyh(y). In other words, for any integrable h, the function (P − I)h is a valid CV as it has

known mean under q. Moreover, the linear operator P − I is an example of a Stein operator [1, 54] in
the sense that it generates mean-zero functions under q. In fact, both Stein et al. [55] and Dellaportas
and Kontoyiannis [12] developed CVs of the form (P −I)h based on reversible discrete-time Markov
chains and linear input functions h(x) = xi.

More generally, Barbour [3] and Henderson [23] observed that if we identify a continuous-time
Markov chain (X(t))t≥0 with q as its stationary distribution, then the generator A, defined via

(Ah)(x) = lim
t→0

E[h(X(t))|X(0)=x]−h(x)
t , (2)

satisfies A>q = 0 and hence Eq[Ah] = 0 for all integrable h. Therefore, A is also a Stein operator
suitable for generating CVs. Moreover, since any discrete-time chain with transition matrix P can be
embedded into a continuous-time chain with transition rate matrix A = P − I , this continuous-time
construction is strictly more general [56, Ch. 4].

3.1 Discrete Stein operators

We next present several examples of broadly applicable discrete Stein operators (summarized in
Table 1) that can serve as practical defaults.

Gibbs Stein operator The transition kernel of the random-scan Gibbs sampler with stationary
distribution q [see, e.g., 17] is

Pxy = 1
d

∑d
i=1 q(yi|x−i)1(y−i = x−i), (3)

where 1(·) is the indicator function. The associated Stein operator is A = P − I with

(Ah)(x) = 1
d

∑d
i=1

∑
y−i=x−i

q(yi|x−i)h(y)− h(x). (4)

In the binary variable setting, (4) recovers the operator Bresler and Nagaraj [8], Reinert and Ross [45]
used to bound distances between the stationary distributions of Glauber dynamics Markov chains.

Zanella Stein operator Zanella [69] studied continuous-time Markov chains with generator

Axy = κ (q(y)/q(x))1(y ∈ Nx, y 6= x)−
∑
z 6=xAxz 1(y = x), (5)

3

where Nx denotes the transition neighborhood of x and κ is a continuous positive function satisfying
κ(t) = tκ(1/t). Conveniently, the neighborhood structure can be arbitrarily sparse. Moreover, the κ
constraint ensures that the chain satisfies detailed balance (i.e., q(x)Axy = q(y)Ayx) and hence that
A>q = 0. Hodgkinson et al. [24] call the associated operator the Zanella Stein operator:

(Ah)(x) =
∑
y∈Nx,y 6=x κ

(q(y)
q(x)

)
(h(y)− h(x)). (6)

Important special cases include the minimum probability flow [52] (MPF) Stein operator (κ(t) =
√
t)

discussed in Barp et al. [6] and the Barker [4] Stein operator (κ(t) = t
t+1).

Birth-death Stein operator Let e1, . . . , ed represent the standard basis vectors on Rd. For any
finite-cardinality space, we may index the elements of X = {s0, . . . , sm−1}, let idx(xi) return the
index of the element that xi represents, and define the increment and decrement operators

inci(x) = x+ ei(s(idx(xi)+1) mod m − xi) and deci(x) = x+ ei(s(idx(xi)−1) mod m − xi).

Then the product birth-death process [28] on X d with birth rates bi,x = q(inci(x))
q(x) , death rates

di,x = 1, and generator

Axy = 1
d

∑d
i=1 bi,x1(y = inci(x)) + di,x1(y = deci(x))− (bi,x + di,x)1(y = x),

has q as a stationary distribution, as A>q = 0. This construction yields the birth-death Stein operator

(Ag)(x) = 1
d

∑d
i=1 bi,x(g(inci(x))− g(x))− di,x(g(x)− g(deci(x))). (7)

An analogous operator is available for countably infiniteX [24], and Brown and Xia [9], Eichelsbacher
and Reinert [16], Holmes [25] used related operators to characterize convergence to discrete target
distributions. Moreover, by substituting h(x) = g(x)− g(inc(x)) in (7), we recover the difference
Stein operator proposed by Yang et al. [66] without reference to birth-death processes:

(Ah)(x) = 1
d

∑d
i=1 h(deci(x))− bi,xh(x). (8)

Choosing a Stein operator Despite being better-known, the difference and MPF operators often
suffer from large variance and numerical instability due to their use of unbounded probability ratios
q(y)/q(x). As a result, we recommend the numerically stable Gibbs operator when each component
of x is binary or takes on a small number of values. When xi takes on a large number of values (m),
the Gibbs operator suffers from linear scaling withm. In this case, we recommend the Barker operator
where a sparse neighborhood structure can be specified, such asNx = {inci(x), deci(x) for i ∈ [d]}.
The Barker operator is numerically stable as its κ(q(y)q(x)) =

q(y)
q(x)+q(y) .

4 Gradient Estimation with Discrete Stein Operators

Recall that REINFORCE estimates the gradient Eqη [f(x)∇η log qη(x)]. Due to the existence of
∇η log qη(x) as a weighting function, we apply a discrete Stein operator to a vector-valued function
h̃ : X → Rd per dimension to construct the following estimator with a mean-zero CV:

Eqη [f(x)∇ηi log qη(x) + (Ah̃i)(x)]. (9)

Ideally, we want to choose the h̃ such that Ah̃i will be strongly correlated with f(x)∇ηi log qη(x) to
reduce its variance. The optimal h̃i is given by the solution of Poisson equation

Eqη [f∇ηi log qη]− f∇ηi log qη = Ah̃i. (10)

We could learn a separate h̃i per dimension to approximate the solution of (10). However, this poses
a difficult optimization problem that requires simultaneously solving d Poisson equations. Instead,
we will incorporate knowledge about the structure of the solution to simplify the optimization.

To determine a candidate functional form for h̃, we draw inspiration from an “optimal” Markov chain
in which the current state is ignored entirely and the new state is generated independently from qη . In

4

Algorithm 1 Optimizing Eqη [fθ(x)] with RODEO gradients

input: Objective fθ, sample points x(1:K) i.i.d.∼ qη , Stein operator A, step sizes αt, βt
for t = 1 : T do

1: {fθ(x(k)),∇θfθ(x(k)),∇fθ(x(k))}Kk=1 ← autodiff(fθ, x(1:K)).
2: Compute the surrogates hk(x(j)), h?k(x

(j)) of (13), (14) for j 6= k and j, k = 1, · · · ,K.
3: Compute the RODEO gradient estimator gγ(x(1:K)).
4: θ ← θ + αt

1
K

∑K
k=1∇θf(x(k)).

5: η ← η + αtgγ(x
(1:K)).

6: Update hyperparameters: γ ← γ − βt∇γ‖gγ(x(1:K))‖22.

this case, (P − I)h̃i becomes Eqη [h̃i]− h̃i, and the optimal solution is h̃i = f∇ηi log qη. Inspired
by this, we consider h̃ of the form

h̃(x) = h(x)∇η log qη(x), (11)

where we now only need to learn a scalar-valued function h. Notably, when h exactly equals f
and A = P − I for any discrete time Markov chain kernel P , our CV adjustment amounts to
Rao-Blackwellization [41, Sec. 8.7], as we end up replacing f(x)∇ηi log qη(x) with its conditional
expectationP (f∇ηi log qη)(x) = EXt+1|Xt=x[f(Xt+1)∇ηi log qη(Xt+1)]. This yields a guaranteed
variance reduction.

Surrogate function design Based on the above reasoning, we can view h as a surrogate for f . We
avoid directly setting h = f because our Stein operators evaluate h at all neighbors of the sample
points, and f can be very expensive to evaluate [see, e.g., 50]. To avoid this problem, we first observe
that h̃ (11) can be made sample-specific, i.e., we can use a different h̃k for each sample point x(k):

1
K

∑K
k=1[f(x

(k))∇η log qη(x(k)) + (Ah̃k)(x
(k))]. (12)

We then consider the following choices of hk that are informed about f while being cheap to evaluate:

hk(y) =
1

K−1
∑
j 6=kH(f(x(j)),∇f(x(j))>(y − x(j))). (13)

Here y will take on the values of x(k) and its neighbors in the Markov chain. We omit x(k) in the sum
(13) to ensure that the function hk is independent of x(k) and hence that Eqη [1K

∑K
k=1(Ah̃k)(x

(k))] =
0. Moreover, this surrogate function design introduces no additional evaluations of f beyond those
required for the usual RLOO estimator. Also, as observed by Titsias and Shi [59], for many
applications, including VAE training, where f has parameters θ learned through gradient-based
optimization, {∇f(x(k))}Kk=1 can be obtained “for free” from the same backpropagation used to
compute ∇θfθ(x(k)) (see Algorithm 1).

RODEO We can further improve the estimator by leveraging discrete Stein operators and the above
surrogate function design to construct both the global and local CVs in the Double CV framework [59]
(see Section 2). We call our final estimator RODEO for RLOO with Discrete StEin Operators:

1
K

K∑
k=1

[(f(x(k))− 1
K−1

∑
j 6=k

(f(x(j))+(Ahj)(x
(j))))∇η log qη(x(k))+(Ah̃?

k)(x
(k))], (RODEO)

where h̃?k(y) = h?k(y)∇η log qη(y) and {hk, h?k}Kk=1 are scalar-valued functions. Here,
(Ahj)(x

(j)) is a scalar-valued CV introduced to reduce the variance of the leave-one-out base-
line 1

K−1
∑
j 6=k f(x

(j)), while (Ah̃?k)(x
(k)) acts as a global CV to further reduce the variance of

the gradient estimate. We adopt the aforementioned design of h (13) and h̃ (11) for the two CVs.
In Appendix B, we show that the RODEO estimator is unbiased for∇ηEqη [f(x)] when each hk is
defined as in (13) and

h?k(y) =
1

K−1
∑
j 6=kH

?(f(x(j)),∇f(x(j))>(y − x(j))). (14)

Optimization with RODEO In practice, we let the functions H and H? share a neural net-
work architecture with two output units. Since the estimator is unbiased, we can optimize the

5

Table 2: Training binary latent VAEs with K = 2, 3 (except for RELAX which uses 3 evaluations)
on MNIST, Fashion-MNIST, and Omniglot. We report the average ELBO (±1 standard error) on the
training set after 1M steps over 5 independent runs. Test data bounds are reported in Table 4.

Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

K
=

2 DisARM −102.75± 0.08 −237.68± 0.13 −116.50± 0.04 668.03± 0.61 182.65± 0.47 446.61± 1.16
Double CV −102.14± 0.06 −237.55± 0.16 −116.39± 0.10 676.87± 1.18 186.35± 0.64 447.65± 0.87
RODEO (Ours) −101.89± 0.17 −237.44± 0.09 −115.93± 0.06 681.95± 0.37 191.81± 0.67 454.74± 1.11

K
=

3 ARMS −100.84± 0.14 −237.05± 0.12 −115.21± 0.07 683.55± 1.01 193.07± 0.34 457.98± 1.03
Double CV −100.94± 0.09 −237.40± 0.11 −115.06± 0.12 686.48± 0.68 193.93± 0.20 457.44± 0.79
RODEO (Ours) −100.46± 0.13 −236.88± 0.12 −115.01± 0.05 692.37± 0.39 196.56± 0.42 461.87± 0.90

RELAX (3 evals) −101.99± 0.04 −237.74± 0.12 −115.70± 0.08 688.58± 0.52 196.38± 0.66 462.23± 0.63

parameters γ of the network in an online fashion to minimize the variance of the estimator
(similar to [20]). Specifically, if we denote the RODEO gradient estimate by gγ(x

(1:K)), then
∇γTr(Var(gγ(x(1:K)))) = E[∇γ‖gγ(x(1:K))‖22]. In Algorithm 1, we use an unbiased estimate of
this hyperparameter gradient,∇γ‖gγ(x(1:K))‖22, to update γ after each optimization step of η.

5 Related Work

As we have seen in Section 2, there is a long history of designing CVs for REINFORCE estimators
using “baselines” [7, 37, 44, 63]. Recent progress is mostly driven by leave-one-out [30, 38, 47, 48]
and sample-dependent baselines [20, 22, 42, 59, 61]. REBAR [61] constructs the baseline through
continuous relaxation of the discrete distribution [26, 35] and applies reparameterization gradients to
the correction term. As a result REBAR uses three evaluations of f for each x(k) instead of usual
single evaluation (see Appendix A for a detailed explanation). The RELAX [20] estimator generalizes
REBAR by noticing that their continuous relaxation can be replaced with a free-form CV. However,
in order to get strong performance, RELAX still includes the continuous relaxation in their CV and
only adds a small deviation to it. Therefore, RELAX also uses three evaluations of f for each x(k)
and is usually considered more expensive than other estimators.

An attractive property of the RODEO estimator is that it incorporates information from neighboring
states thanks to the Stein operator while avoiding additional costly f evaluations thanks to the learned
surrogate functions hk. Estimators based on analytic local expectation [58, 60] and GO gradients [11]
also use neighborhood information but only at the cost of many additional target function evaluations.
In fact, the local expectation gradient [58] can be viewed as a Stein CV adjustment RODEO with a
Gibbs Stein operator and the target function f used directly instead of the surrogate h. The downside
of these approaches is that f must be evaluated Kd times per training step instead of K times as in
RODEO, a prohibitive cost when f is expensive and d ≥ 200 as in Section 6.

Prior work has also studied variance reduction methods based on sampling without replacement [31]
and antithetic sampling [13–15, 67] for gradient estimation. DisARM [14, 68] was shown to outper-
form RLOO estimators when K = 2 and ARMS [13] generalizes DisARM to K > 2.

Stein operators for continuous distributions have also been leveraged for effective variance reduction
in a variety of learning tasks [2, 5, 36, 40, 51, 53] including gradient estimation [27, 34]. In
particular, the gradient estimator of Liu et al. [34] is based on the Langevin Stein operator [19]
for continuous distributions and coincides with the continuous counterpart of RELAX [20]. In
contrast, our approach considers discrete Stein operators for Monte Carlo estimation in discrete
distributions with exponentially large state spaces. Recently, Parmas and Sugiyama [43, App. E.4]
used a probability flow perspective to characterize all unbiased gradient estimators satisfying a mild
technical condition; our estimators fall into this broad class but were not specifically investigated.

6 Experiments

Python code replicating all experiments can be found at https://github.com/thjashin/rodeo.

6

https://github.com/thjashin/rodeo

6.1 Training Bernoulli VAEs

Following Dong et al. [14] and Titsias and Shi [59], we conduct experiments on training variational
auto-encoders [29, 46] (VAEs) with Bernoulli latent variables. VAEs are models with a joint density
pθ(y, x), where x is the latent variable and θ denotes model parameters. They are typically learned
through maximizing the evidence lower bound (ELBO) Eqη(x|y)[f(x)] for an auxiliary inference
network qη(x|y) and f(x) , log pθ(y, x)− log qη(x|y). In our experiments, p(x) and qη(x|y) are
high-dimensional distributions where each dimension of the random variable is an independent
Bernoulli. Since exact gradient computations are intractable, we will use gradient estimators to learn
the parameters η of the inference network. The VAE architecture and training experimental setup
follows Titsias and Shi [59], and details are given in Appendix D. The dimensionality of the latent
variable x is d = 200. The functionsH (13) andH∗ (14) share a neural network architecture with two
output units and a single hidden layer with 100 units. For the numerical stability and variance reasons
discussed in Section 3, we use the Gibbs Stein operator (4) as a default choice in our experiments,
but we revisit this choice in Section 6.3.

We consider the MNIST [33], Fashion-MNIST [65] and Omniglot [32] datasets using their standard
train, validation, and test splits. We use both binary and continuous VAE outputs (y) as in Titsias and
Shi [59]. In the binary output setting, data are dynamically binarized, and the Bernoulli likelihood is
used; in the continuous output setting, data are centered between [−1, 1], and the Gaussian likelihood
with learnable diagonal covariance parameters is used.

200K 400K 600K 800K 1M
Training Step

1.0

1.2

1.4

1.6

1.8

G
ra

di
en

t V
ar

ia
nc

e

1e 2 2 evals

RODEO (ours)
Double CV
DisARM

200K 400K 600K 800K 1M
Training Step

0.6

0.8

1.0

1e 2 3 evals

RODEO (ours)
Double CV
ARMS
RELAX

200K 400K 600K 800K 1M
Training Step

108

106

104

102

Tr
ai

ni
ng

 E
LB

O
2 evals

200K 400K 600K 800K 1M
Training Step

106

104

102

100 3 evals

Figure 1: Training binary latent VAEs with 2 or 3 f evaluations per step on binarized MNIST.

K = 2 In the first set of experiments we focus on the most common setting of K = 2 sample
points and compare our variance reduction method to its counterparts including DisARM [14] and
Double CV [59]. Results for RLOO are omitted since it is consistently outperformed by Double
CV [see 59]. Table 2 shows, on all three datasets, RODEO achieves the best training ELBOs. In
Figure 1 (left), we plot the gradient variance and average training ELBOs against training steps for
all estimators on dynamically binarized MNIST. RODEO outperforms DisARM and Double CV by a
large margin in gradient variance.

Next, we consider VAEs with Gaussian likelihoods trained on non-binarized datasets. In this case
the gradient estimates suffer from even higher variance due to the large range of values f(x) can
take. The results are plotted in Figure 2. We see that RODEO has substantially lower variance than
DisARM and Double CV, leading to significant improvements in training ELBOs. In Appendix
Figure 7, we find that RODEO also consistently yields the best test set performance in all six settings.

K = 3 In the second set of experiments we compare RELAX [20], which uses three evaluations
of f per training step, with RODEO, Double CV, and ARMS [13] for K = 3. Figure 1 (right) and
Table 2 demonstrate that RODEO outperforms the three previous methods and generally leads to
the lowest variance. Although RELAX was often observed to have very strong performance in prior
work [14, 59], our results in Figure 1 suggest that, for dynamically binarized datasets, much larger
gains can be achieved by using the same number of function evaluations in other estimators.

For the experiments mentioned above, we report final training ELBOs in Table 2, test log-likelihood
bounds in Appendix Table 4, and binarized MNIST average running time in Appendix Table 5. For
K = 3, RODEO has the best final performance in 5 out of 6 tasks and runtime nearly identical to
RELAX. For K = 2, RODEO has the best final performance for all tasks and is 1.5 times slower than
Double CV and DisARM. We attribute the runtime gap to the Gibbs operator (4) which performs
2d evaluations of the auxiliary functions H and H∗ in (13) and (14). While this results in some
extra cost, the network parameterizing H and H∗ takes only 2-dimensional inputs, produces scalar
outputs, and is typically small relative to the VAE model. As a result, the evaluation of H and H∗ is

7

200K 400K 600K 800K 1M
Training Step

2

3

4

5

G
ra

di
en

t V
ar

ia
nc

e

MNIST

200K 400K 600K 800K 1M
Training Step

1.0

1.5

2.0

2.5
Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

1

2

3

4

Omniglot

RODEO
Double CV
DisARM

200K 400K 600K 800K 1M
Training Step

600

625

650

675

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1M
Training Step

120

140

160

180

200K 400K 600K 800K 1M
Training Step

350

400

450

RODEO
Double CV
DisARM

Figure 2: Training binary latent VAEs with Gaussian likelihoods, K = 2, and non-binarized datasets.

significantly cheaper than that of f , and its relative contribution to runtime shrinks as the cost of f
grows. To demonstrate this, we include a wall clock time comparison of our method with RLOO in
Appendix C.1. In this experiment we replace the two-layer MLP-based VAE with a ResNet VAE,
where the cost of f is significantly higher than the single-layer MLP of H,H∗. In this case, RODEO
and RLOO have very close per-iteration time (0.025s vs. 0.023s). And RODEO achieves better
training ELBOs than RLOO for the same amount of time.

6.2 Training hierarchical Bernoulli VAEs

To investigate the performance of RODEO when scaling to hierarchical discrete latent variable models,
we follow DisARM [14, 67] to train VAEs with 2/3/4 stochastic layers, each of which consists of
200 Bernoulli variables. We set K = 2 and compare our estimator with DisARM and Double CV on
dynamically binarized MNIST, Fashion-MNIST, and Omniglot. For each stochastic layer, we use
a different CV network which has the same architecture as those in our VAE experiments from the
previous section. More details are presented in Appendix D.

500K 600K 700K 800K 900K 1M
Training Step

239

238

237

236

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

2 × 10
3

3 × 10
3

4 × 10
3

6 × 10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
2

RODEO (Ours)
Double CV
DisARM

Figure 3: Training hierarchical binary latent VAEs with four stochastic layers on Fashion-MNIST. In
this experiment, the estimators have very different behaviors towards the beginning and the end of
training. We show this on the right by zooming into the first 50K steps of the gradient variance plot.

We plot the results on VAEs with four stochastic layers on Fashion-MNIST in Figure 3. The results
for other datasets and for 2 and 3 stochastic layers can be found in Appendix E. RODEO generally
achieves the best training ELBOs. One difference we noticed when comparing the variance results
with those obtained from single-stochastic-layer VAEs is that these estimators have very different
behaviors towards the beginning and the end of training. For example, in Figure 3, Double CV starts
with lower variance than DisARM, but the gap diminishes after around 100K steps, and DisARM
start to perform better as the training proceeds. In contrast, RODEO has the lowest variance in both
phases for all datasets save Omniglot, where DisARM overtakes it in the long run.

6.3 Ablation study

Finally, we conduct an ablation study to gain more insight into the impact of each component of
RODEO. In each experiment we train binary latent VAEs with K = 2.

8

200K 400K 600K 800K 1M
Training Step

2

3

4

5

6

7

G
ra

di
en

t V
ar

ia
nc

e

Gibbs
Difference
MPF
Barker

200K 400K 600K 800K 1M
Training Step

1.00

1.25

1.50

1.75

2.00

2.25

2.50

G
ra

di
en

t V
ar

ia
nc

e

1e 2

LOO + global + local
LOO + global
LOO + local
Only global
LOO

200K 400K 600K 800K 1M
Training Step

1.0

1.2

1.4

1.6

1.8

G
ra

di
en

t V
ar

ia
nc

e

1e 2

RODEO
RELAX with our surrogate

200K 400K 600K 800K 1M
Training Step

580

600

620

640

660

680

Tr
ai

ni
ng

 E
LB

O

Gibbs
Difference
MPF
Barker

(a)

200K 400K 600K 800K 1M
Training Step

108

107

106

105

104

103

102

Tr
ai

ni
ng

 E
LB

O

LOO + global + local
LOO + global
LOO + local
Only global
LOO

(b)

200K 400K 600K 800K 1M
Training Step

108

106

104

102

Tr
ai

ni
ng

 E
LB

O

RODEO
RELAX with our surrogate

(c)

Figure 4: Ablation study of impact of RODEO components: (a) Stein operators, (b) LOO baseline
and global and local CVs, (c) surrogate functions on binary VAE training performance.

Impact of Stein operator Figure 4a explores the impact of RODEO Stein operator choice on
non-binarized MNIST. As expected, the less stable difference (8) and MPF (6) operators lead to
significantly higher gradient variances and worse training ELBOs. In fact, the same operators led
to divergent training on binarized MNIST. The Barker operator (6) with neighborhoods defined by
having one differing coordinate yields results very similar to Gibbs (4) as the operators themselves
are very similar for binary variables (notice that q(y)

q(y)+q(x) = q(yi|x−i) when x−i = y−i).

Impact of LOO baseline and global and local CVs Figure 4b explores binarized MNIST perfor-
mance when RODEO is modified to retain a) only the LOO baseline (this is equivalent to standard
RLOO), b) only the global CV, c) the LOO baseline + the global CV, or d) the LOO baseline + the
local CV. We observe that the global and local Stein CVs both contribute to variance reduction and
have complementary effects. Moreover, remarkably, the global Stein CV alone outperforms RLOO.

Impact of surrogate functions To tease apart the benefits of our new surrogate functions (13) and
the remaining RODEO components, we replace the surrogate function cφ(z) in RELAX [21] with our
surrogates, which only requires a single evaluation of f per x(k) (see Appendix A for more details).
Figure 4c compares the performance of RODEO and this modified RELAX on binarized MNIST.
Since the surrogate functions are matched, the consistent improvements over modified RELAX can be
attributed to the Stein and double CV components of RODEO. In Appendix C.2, we also experiment
with increasing the complexity of H and H∗ by using two hidden layers instead of a single hidden
layer in the MLP. We did not observe significant improvements in variance reduction.

7 Conclusions, Limitations, and Future Work

This work tackles the gradient estimation problem for discrete distributions. We proposed a variance
reduction technique which exploits Stein operators to generate control variates for REINFORCE
leave-one-out estimators. Our RODEO estimator does not rely on continuous reparameterization of
the distribution, requires no additional function evaluations per sample point, and can be adapted
online to learn very flexible control variates parameterized by neural networks.

One potential drawback of our surrogate function constructions (13) and (14) is the need to evaluate
an auxiliary function (H or H∗) at K − 1 locations. This cost can be comfortably borne when H
and H∗ are much cheaper to evaluate than f , such as in the ResNet VAE example in Appendix C.1
and many large VAE models used in practice [62]. And, in our experiments with the most common
sample sizes, the runtime of RODEO was no worse than that of RELAX. To obtain a more favorable
cost for large K, one could employ alternative surrogates that require only a constant number of

9

auxiliary function evaluations, e.g.,

hk(y) = H
(

1
K−1

∑
j 6=k f(x

(j)), 1
K−1

∑
j 6=k∇f(x(j))>(y − x(j))

)
.

The runtime of RODEO could also be improved by varying the Stein operator employed. For
example, the Gibbs operator (Ah)(x) (4) used in our experiments evaluated its surrogate function
h at d neighboring locations of x. This evaluation complexity could be reduced by subsampling
neighbors, resulting in a cheaper but still valid Stein operator, or by employing the numerically stable
Barker operator (6) with fewer neighbors. Either strategy would introduce a speed-variance trade-off
worthy of study in follow-up work. Finally, we have restricted our focus in this work to differentiable
target functions f . In future work, this limitation could be overcome by designing effective surrogate
functions that make no use of derivative information.

Acknowledgments and Disclosure of Funding

We thank Heishiro Kanagawa for suggesting appropriate names for the Barker Stein operator.

References
[1] Andreas Anastasiou, Alessandro Barp, François-Xavier Briol, Bruno Ebner, Robert E Gaunt, Fatemeh

Ghaderinezhad, Jackson Gorham, Arthur Gretton, Christophe Ley, Qiang Liu, and Lester Mackey. Stein’s
method meets statistics: A review of some recent developments. arXiv preprint arXiv:2105.03481, 2021.

[2] Roland Assaraf and Michel Caffarel. Zero-variance principle for Monte Carlo algorithms. Phys. Rev. Lett.,
83:4682–4685, Dec 1999.

[3] A. D. Barbour. Stein’s method and Poisson process convergence. J. Appl. Probab., (Special Vol. 25A):
175–184, 1988. ISSN 0021-9002. A celebration of applied probability.

[4] Av A Barker. Monte Carlo calculations of the radial distribution functions for a proton? electron plasma.
Australian Journal of Physics, 18(2):119–134, 1965.

[5] Alessandro Barp, Chris Oates, Emilio Porcu, and Mark Girolami. A Riemann-Stein kernel method. arXiv
preprint arXiv:1810.04946, 2018.

[6] Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, and Lester Mackey. Minimum
Stein discrepancy estimators. Advances in Neural Information Processing Systems, 32:12964–12976, 2019.

[7] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[8] Guy Bresler and Dheeraj Nagaraj. Stein’s method for stationary distributions of Markov chains and
application to Ising models. The Annals of Applied Probability, 29(5):3230–3265, 2019.

[9] Timothy C. Brown and Aihua Xia. Stein’s Method and Birth-Death Processes. The Annals of Probability,
29(3):1373 – 1403, 2001.

[10] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. International
Conference on Learning Representations, 2015.

[11] Yulai Cong, Miaoyun Zhao, Ke Bai, and Lawrence Carin. GO gradient for expectation-based objectives.
In International Conference on Learning Representations, 2019.

[12] Petros Dellaportas and Ioannis Kontoyiannis. Control variates for estimation based on reversible Markov
chain Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
74(1):133–161, 2012.

[13] Aleksandar Dimitriev and Mingyuan Zhou. ARMS: Antithetic-REINFORCE-Multi-Sample gradient for
binary variables. In International Conference on Machine Learning, volume 139, pages 2717–2727, 2021.

[14] Zhe Dong, Andriy Mnih, and George Tucker. DisARM: An antithetic gradient estimator for binary latent
variables. In Advances in Neural Information Processing Systems, volume 33, pages 18637–18647, 2020.

[15] Zhe Dong, Andriy Mnih, and George Tucker. Coupled gradient estimators for discrete latent variables.
arXiv preprint arXiv:2106.08056, 2021.

10

[16] Peter Eichelsbacher and Gesine Reinert. Stein’s method for discrete Gibbs measures. The Annals of
Applied Probability, 18(4):1588–1618, 2008.

[17] Charles J. Geyer. Introduction to Markov chain Monte Carlo. In Steve Brooks, Andrew Gelman, Galin
Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain Monte Carlo, pages 3–48. CRC Press,
2011.

[18] Peter W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Commun. ACM, 33(10):
75–84, October 1990.

[19] Jackson Gorham and Lester Mackey. Measuring sample quality with Stein’s method. In Advances in
Neural Information Processing Systems, pages 226–234, 2015.

[20] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation through the void:
Optimizing control variates for black-box gradient estimation. In International Conference on Learning
Representations, 2018.

[21] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops I took a
gradient: Scalable sampling for discrete distributions. In International Conference on Machine Learning,
pages 3831–3841, 2021.

[22] Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. MuProp: Unbiased backpropagation for
stochastic neural networks. In International Conference on Learning Representations, 2016.

[23] Shane G Henderson. Variance reduction via an approximating Markov process. PhD thesis, Stanford
University, 1997.

[24] Liam Hodgkinson, Robert Salomone, and Fred Roosta. The reproducing stein kernel approach for post-hoc
corrected sampling. arXiv preprint arXiv:2001.09266, 2020.

[25] Susan Holmes. Stein’s method for birth and death chains. In Persi Diaconis and Susan Holmes, editors,
Stein’s Method: Expository Lectures and Applications, pages 42–65. 2004.

[26] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. International
Conference on Learning Representations, 2017.

[27] Martin Jankowiak and Fritz Obermeyer. Pathwise derivatives beyond the reparameterization trick. In
International Conference on Machine Learning, pages 2235–2244. PMLR, 2018.

[28] Samuel Karlin and James McGregor. The classification of birth and death processes. Transactions of the
American Mathematical Society, 86(2):366–400, 1957.

[29] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on
Learning Representations, 2014.

[30] W. Kool, H. V. Hoof, and M. Welling. Buy 4 REINFORCE samples, get a baseline for free! In
DeepRLStructPred@ICLR, 2019.

[31] Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random variables by
sampling without replacement. In International Conference on Learning Representations, 2020.

[32] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[34] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent control
variates for policy optimization via Stein’s identity. arXiv preprint arXiv:1710.11198, 2017.

[35] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In International Conference on Learning Representations, 2017.

[36] Antonietta Mira, Reza Solgi, and Daniele Imparato. Zero variance Markov chain Monte Carlo for Bayesian
estimators. Statistics and Computing, 23(5):653–662, 2013.

[37] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In Interna-
tional Conference on Machine Learning, pages 1791–1799, 2014.

11

[38] Andriy Mnih and Danilo Rezende. Variational inference for Monte Carlo objectives. In International
Conference on Machine Learning, pages 2188–2196, 2016.

[39] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gradient estimation
in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

[40] Chris J Oates, Mark Girolami, and Nicolas Chopin. Control functionals for Monte Carlo integration.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):695–718, 2017.

[41] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[42] John Paisley, David M Blei, and Michael I Jordan. Variational Bayesian inference with stochastic search.
In International Conference on Machine Learning, pages 1363–1370, 2012.

[43] Paavo Parmas and Masashi Sugiyama. A unified view of likelihood ratio and reparameterization gradients.
In International Conference on Artificial Intelligence and Statistics, pages 4078–4086. PMLR, 2021.

[44] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In International
Conference on Artificial Intelligence and Statistics, page 814–822, 2014.

[45] Gesine Reinert and Nathan Ross. Approximating stationary distributions of fast mixing Glauber dynamics,
with applications to exponential random graphs. The Annals of Applied Probability, 29(5):3201–3229,
2019.

[46] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, 2014.

[47] Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. VarGrad: A
low-variance gradient estimator for variational inference. In Advances in Neural Information Processing
Systems, volume 33, pages 13481–13492, 2020.

[48] Tim Salimans and David A Knowles. On using control variates with stochastic approximation for variational
Bayes and its connection to stochastic linear regression. arXiv preprint arXiv:1401.1022, 2014.

[49] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using stochastic
computation graphs. Advances in Neural Information Processing Systems, 28, 2015.

[50] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[51] Shijing Si, Chris Oates, Andrew B Duncan, Lawrence Carin, and François-Xavier Briol. Scalable control
variates for Monte Carlo methods via stochastic optimization. arXiv preprint arXiv:2006.07487, 2020.

[52] Jascha Sohl-Dickstein, Peter Battaglino, and Michael R DeWeese. Minimum probability flow learning. In
International Conference on Machine Learning, pages 905–912, 2011.

[53] Leah F South, Chris J Oates, Antonietta Mira, and Christopher Drovandi. Regularised zero-variance
control variates for high-dimensional variance reduction. arXiv preprint arXiv:1811.05073, 2018.

[54] Charles Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent
random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 2: Probability Theory. The Regents of the University of California, 1972.

[55] Charles Stein, Persi Diaconis, Susan Holmes, and Gesine Reinert. Use of exchangeable pairs in the analysis
of simulations. Lecture Notes-Monograph Series, pages 1–26, 2004.

[56] David Stirzaker. Stochastic processes and models. OUP Oxford, 2005.

[57] Michalis K. Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for non-conjugate
inference. In International Conference on Machine Learning, 2014.

[58] Michalis K Titsias and Miguel Lázaro-Gredilla. Local expectation gradients for black box variational
inference. Advances in neural information processing systems, 28:2638–2646, 2015.

[59] Michalis K Titsias and Jiaxin Shi. Double control variates for gradient estimation in discrete latent variable
models. International Conference on Artificial Intelligence and Statistics, 2022.

[60] Seiya Tokui and Issei Sato. Evaluating the variance of likelihood-ratio gradient estimators. In International
Conference on Machine Learning, pages 3414–3423, 2017.

12

[61] G. Tucker, A. Mnih, C. J. Maddison, and J. Sohl-Dickstein. REBAR: Low-variance, unbiased gradient
estimates for discrete latent variable models. In Advances in Neural Information Processing Systems, 2017.

[62] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical variational autoencoder. Advances in Neural
Information Processing Systems, 33:19667–19679, 2020.

[63] Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learning. In
Conference on Uncertainty in Artificial Intelligence, pages 538–545, 2001.

[64] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[65] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[66] Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for discrete distributions
via Stein discrepancy. In International Conference on Machine Learning, pages 5561–5570. PMLR, 2018.

[67] Mingzhang Yin and Mingyuan Zhou. ARM: Augment-REINFORCE-merge gradient for stochastic binary
networks. In International Conference on Learning Representations, 2019.

[68] Mingzhang Yin, Nhat Ho, Bowei Yan, Xiaoning Qian, and Mingyuan Zhou. Probabilistic best subset
selection via gradient-based optimization, 2020.

[69] Giacomo Zanella. Informed proposals for local MCMC in discrete spaces. Journal of the American
Statistical Association, 115(530):852–865, 2020.

13

A Sample-dependent Baselines in REBAR and RELAX

We start with the REINFORCE estimator with the sample-dependent baseline bk:

1

K

K∑
k=1

(f(x(k))− bk)∇η log qη(x(k)) + E[bk∇η log qη(x(k))]. (15)

REBAR [61] introduces indirect independence on x(k) in bk through the continuous reparameteriza-
tion x = H(z), z(k) ∼ qη(z|x = x(k)), where z is a continuous variable and H is an argmax-like
thresholding function. Specifically, bk = f(σλ(z

(k))), where σλ is a continuous relaxation of H
controlled by the parameter λ. The correction term decomposes into two parts:

Ex(k) [Ez(k)|x(k) [f(σλ(z
(k)))]∇η log qη(x(k))]

= ∇ηEqη(z)[f(σλ(z))]− Ex(k) [∇ηEqη(z(k)|x(k))[f(σλ(z
(k)))]].

Both parts can be estimated with the reparameterization trick [29, 46, 57] which often has low
variance. The RELAX [20] estimator generalizes REBAR by noticing that f(σλ(z)) can be replaced
with a free-form differentiable function cφ(z). However, RELAX still relies on parameterizing cφ(z)
as f(σλ(z)) + rθ(z) to achieve strong performance, as noted in Dong et al. [14].

To form modified RELAX in Section 6.3, we replace bk = cφ(z
(k)) with bk = hk(σλ(z

(k))) for hk
defined in (13).

B Proof of Unbiasedness of RODEO

Recall our estimator defined in RODEO is

1

K

K∑
k=1

[(f(x(k))− 1

K − 1

∑
j 6=k

(f(x(j)) + (Ahj)(x
(j)))) · ∇η log qη(x(k)) + (Ah̃?k)(x

(k))]. (16)

To show the unbiasedness, we compute its expectation under qη as

1

K

K∑
k=1

Eqη [f(x(k))∇η log qη(x(k))]

− 1

K(K − 1)

K∑
k=1

∑
j 6=k

Eqη [(f(x(j)) + (Ahj)(x
(j)))∇η log qη(x(k))]

+
1

K

K∑
k=1

Eqη [(Ah̃?k)(x(k))].

Since the first term is the desired gradient ∇ηEqη [f(x)] and the third term is zero, it suffices to show
that the second term also vanishes. Using the law of total expectations, we find for j 6= k,

Eqη [(f(x(j)) + (Ahj)(x
(j)))∇η log qη(x(k))]

= Ex(k)∼qη [Eqη [f(x
(j)) + (Ahj)(x

(j)) | x(k)]∇η log qη(x(k))]

= Ex(k)∼qη [Eqη [f(x
(j)) | x(k)]∇η log qη(x(k))]

= Eqη [f(x(j))∇η log qη(x(k))]
= Ex(j)∼qη [f(x

(j))Ex(k)∼qη [∇η log qη(x
(k)) | x(j)]] = 0,

which completes the proof.

C Additional Experiments

C.1 Wall clock time comparison with RLOO

Besides necessary target function evaluations, the RODEO estimator comes with the additional cost
of evaluating the neural network-based H,H∗. Therefore, RODEO is most suited to the problems

14

Table 3: Architecture of the ResNet VAE in Appendix C.1. 3x3xC means kernel size 3x3 and C
output channels. Each (De)conv Res block is composed of two (de)convolutional layers with strides
1, same padding, and ReLU activations, plus a skip connection with identity map. For Res blocks
with downsample and upsample functions, the first convolutional layer has strides 2, and the skip
connection is replaced by a convolutional layer with 2x2 kernel size and strides 2.

Encoder Decoder

Conv 3x3x16, strides 1, padding 1 Fully connected, 7x7x64 units
Conv Res block 3x3x16 Deconv Res block 3x3x64
Conv Res block 3x3x16 Deconv Res block 3x3x64
Conv Res block 3x3x32 (downsample by 2) Deconv Res block 3x3x32 (upsample by 2)
Conv Res block 3x3x32 Deconv Res block 3x3x32
Conv Res block 3x3x64 (downsample by 2) Deconv Res block 3x3x16 (upsample by 2)
Conv Res block 3x3x64 Deconv Res block 3x3x16
Fully connected, 200 units Deconv 3x3x1, strides 1, padding 1

where evaluating f is very expensive and its cost dominates those of the H,H∗. This is often the
case in practice. For example, state-of-the-art variational autoencoders [e.g., 62] are often built on
expensive neural architectures such as deep residual networks (ResNet). Here, to demonstrate the
practical advantage of our method as the complexity of f grows, we replace the two-layer MLP VAEs
used in previous experiments with a ResNet VAE (achitecture shown in Table 3, while the neural
network used by H,H∗ remains a single-layer MLP with 100 hidden units. We then compare the
wall clock performance of RODEO with RLOO. The latent variables in this experiment remain binary
and have 200 dimensions.

The results are shown in Figure 5. RODEO achieves better training ELBOs than RLOO in the same
amount of time. In fact, for this VAE architecture, the per-iteration time of RODEO is 25.2ms, which
is very close to the 23.1ms of RLOO. This indicates that the cost of f is significant higher than
H,H∗.

200K 400K 600K 800K 1M
Training Step

102

100

98

96

Tr
ai

ni
ng

 E
LB

O

0.8hrs 1.7hrs 2.5hrs 3.3hrs 4.2hrs 5.0hrs
Wall Clock Time

102

100

98

96

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10 2

6 × 10 3

2 × 10 2

3 × 10 2

Gr
ad

ie
nt

 V
ar

ia
nc

e

RLOO
RODEO (Ours)

Figure 5: Comparing the performance of RODEO and RLOO on more expensive ResNet VAE models
trained on binarized MNIST with K = 2. The middle plot shows the average wall clock performance
over 5 trials.

C.2 Impact of neural network architectures of surrogate functions

We conduct one more ablation study to investigate the impact of neural network architectures used
by H,H∗. Specifically, we replace the single-hidden-layer control variate network used in previous
experiments with a two-hidden-layer MLP (each layer has 100 units) and compare their performance
on binarized MNIST with K = 2. We keep other settings the same as in Section 6.1. The results are
plotted in Figure 6. We do not observe significant difference between the two versions of RODEO.

D Experimental Details

Our implementation is based on the open-source code of DisARM [14] (Apache license) and Double
CV [59] (MIT license). Our figures display 1M training steps and our tables report performance after
1M training steps to replicate the experimental settings of DisARM [14].

15

200K 400K 600K 800K 1M
Training Step

108

106

104

102

Tr
ai

ni
ng

 E
LB

O

0 10K 20K 30K 40K 50K
Training Step

10 2

6 × 10 3

RODEO (Two Layers)
RODEO (Single Layer)

Figure 6: Comparing the performance of RODEO with single-hidden-layer and two-hidden-layer
neural network architectures for H,H∗ on binary VAEs.

D.1 Details of VAE experiments

VAEs are models with a joint density p(y, x) = p(y|x)p(x), where x denotes the latent variable.
x is assigned a uniform factorized Bernoulli prior. The likelihood pθ(y|x) is parameterized by the
output of a neural network with x as input and parameters θ. The VAE has two hidden layers with
200 units activated by LeakyReLU with the coefficient 0.3. To optimize the VAE we use Adam with
base learning rate 10−4 for non-binarized data and 10−3 for dynamically binarized data, except for
binarized Fashion-MNIST we decreased the learning rate to 3× 10−4 because otherwise the training
is very unstable for all estimators. We use Adam with the same learning rate 10−3 for adapting our
control variate network in all experiments. The batch size is 100. The settings of other estimators are
kept the same with Titsias and Shi [59].

In the minimum probability flow (MPF) and Barker Stein operator (6), we choose the neighbor-
hood Nx to be the states that differ in only one coordinate from x. Let y ∈ Nx be an element
in this neighborhood such that yi 6= xi and y−i = x−i. For the MPF Stein estimator and
the difference Stein estimator (8), the density ratio q(y)

q(x) can be simplified to q(yi|x−i)
q(xi|x−i)

. We fur-

ther replace it with q(yi|x−i)
q(xi|x−i)+10−3 to alleviate numerical instability. The Barker Stein estimator

does not suffer from the numerical issue since the coefficient is bounded in the Bernoulli case:
q(y)

q(x)+q(y) = q(yi|x−i)
q(xi|x−i)+q(yi|x−i)

= q(yi|x−i). In our experiments, we find that the difference Stein
estimator is highly unstable and may diverge as the iteration proceeds.

D.2 Details of hierarchical VAE experiments

We optimize the hierarchical VAE using Adam with base learning rate 10−4. Our control variate
network is optimized using Adam with learning rate 10−3. Settings of training multilayer VAEs are
kept the same with Dong et al. [14], except that we do not optimize the prior distribution of the VAE
hidden layer and use a larger batch size 100.

E Additional Results

In this section, we measure test set performance using 100 test points and the marginal log-likelihood
bound of Burda et al. [10], which provides a tighter estimate of marginal log likelihood than the
ELBO. Throughout, we call this the “test log-likelihood bound.”

16

Table 4: Average 100-point test log-likelihood bounds of binary latent VAEs trained with K =
2, 3 (except for RELAX which uses 3 evaluations per step) on MNIST, Fashion-MNIST, and Omniglot.
We report the average value ±1 standard error after 1M steps over 5 independent runs.

Bernoulli Likelihoods Gaussian Likelihoods

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

K
=

2 DisARM −101.61± 0.07 −239.11± 0.11 −118.34± 0.05 669.26± 0.53 163.40± 0.59 305.32± 0.89
Double CV −100.91± 0.04 −239.00± 0.17 −118.45± 0.09 677.02± 0.93 164.99± 0.71 304.72± 1.39
RODEO (Ours) −100.78± 0.16 −238.97± 0.09 −118.09± 0.05 681.11± 0.31 168.26± 0.73 308.55± 1.02

K
=

3 ARMS −99.08± 0.12 −238.19± 0.11 −116.78± 0.13 688.61± 0.84 174.14± 0.44 320.45± 1.07
Double CV −99.16± 0.12 −238.54± 0.16 −116.75± 0.15 690.28± 0.49 173.67± 0.30 322.88± 1.10
RODEO (Ours) −98.72± 0.14 −237.97± 0.12 −116.69± 0.09 695.11± 0.33 174.57± 0.30 323.92± 1.24

RELAX (3 evals) −100.80± 0.09 −239.03± 0.11 −117.60± 0.06 686.21± 0.57 171.43± 0.61 317.78± 1.25

B
in

ar
iz

ed

200K 400K 600K 800K 1M
Training Step

106

104

102

Te
st

 L
og

-L
ik

el
ih

oo
d

B
ou

nd MNIST

200K 400K 600K 800K 1M
Training Step

243

242

241

240

239

Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

122

121

120

119

118 Omniglot

RODEO
Double CV
DisARM

N
on

-b
in

ar
iz

ed

200K 400K 600K 800K 1M
Training Step

600

620

640

660

680

Te
st

 L
og

-L
ik

el
ih

oo
d

B
ou

nd MNIST

200K 400K 600K 800K 1M
Training Step

120

130

140

150

160

170 Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

290

300

310

320 Omniglot

RODEO
Double CV
DisARM

Figure 7: Average 100-point test log-likelihood bounds for binary latent VAEs trained on (top)
dynamically binarized and (bottom) non-binarized MNIST, Fashion-MNIST, and Omniglot using
K = 2.

Table 5: Average running time across 104 steps on an NVIDIA 3080Ti GPU with an AMD 5950X
CPU for the VAE experiment on binary MNIST in Section 6.1.

Double CV DisARM/ARMS RODEO (Ours) RELAX (3 evals)

K = 2 2.11 ms/step 1.89 ms/step 3.08 ms/step 4.71 ms/step
K = 3 2.28 ms/step 1.91 ms/step 4.72 ms/step

Table 6: Average running time across 104 steps on an NVIDIA 3080Ti GPU with an AMD 5950X
CPU when training hierarchical VAEs with K = 2.

Double CV DisARM RODEO (Ours)

Two layers 4.33 ms/step 3.54 ms/step 6.79 ms/step
Three layers 7.69 ms/step 6.09 ms/step 10.61 ms/step
Four layers 11.67 ms/step 9.53 ms/step 14.91 ms/step

17

200K 400K 600K 800K 1M
Training Step

1.5

2.0

2.5

3.0

G
ra

di
en

t V
ar

ia
nc

e

MNIST

200K 400K 600K 800K 1M
Training Step

0.8

1.0

1.2

1.4

1.6
Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

1.0

1.5

2.0

2.5
Omniglot

RODEO (ours)
Double CV
ARMS
RELAX

200K 400K 600K 800K 1M
Training Step

600

620

640

660

680

700

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1M
Training Step

140

160

180

200

200K 400K 600K 800K 1M
Training Step

350

400

450

RODEO (ours)
Double CV
ARMS
RELAX

Figure 8: Training binary latent VAEs with Gaussian likelihoods with three evaluations of f per
step using RODEO/Double CV/ARMS with K = 3 or RELAX on non-binarized MNIST, Fashion-
MNIST, and Omniglot. (Top) variance of gradient estimates. (Bottom) the plot of average ELBO on
training examples against training steps.

B
in

ar
iz

ed

200K 400K 600K 800K 1M
Training Step

104

102

100

Te
st

 L
og

-L
ik

el
ih

oo
d

B
ou

nd MNIST

200K 400K 600K 800K 1M
Training Step

242

241

240

239

238

Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

120

119

118

117

Omniglot

RODEO (ours)
Double CV
ARMS
RELAX

N
on

-b
in

ar
iz

ed

200K 400K 600K 800K 1M
Training Step

620

640

660

680

700

Te
st

 L
og

-L
ik

el
ih

oo
d

B
ou

nd MNIST

200K 400K 600K 800K 1M
Training Step

130

140

150

160

170

Fashion-MNIST

200K 400K 600K 800K 1M
Training Step

300

310

320

330

Omniglot

RODEO (ours)
Double CV
ARMS
RELAX

Figure 9: Average 100-point test log-likelihood bounds for binary latent VAEs trained on (top)
dynamically binarized and (bottom) non-binarized MNIST, Fashion-MNIST, and Omniglot with
three evaluations of f per step using RODEO/Double CV/ARMS with K = 3 or RELAX.

Table 7: Training hierarchical binary latent VAEs on dynamically binarized MNIST, Fashion-MNIST,
and Omniglot. We report the average (±1 standard error) training ELBOs and 100-point test log-
likelihood bounds after 1M steps over 5 independent runs.

Training ELBO Test Log-Likelihood Bound

MNIST Fashion-MNIST Omniglot MNIST Fashion-MNIST Omniglot

Two layers
Double CV −103.52± 0.06 −239.82± 0.07 −114.06± 0.04 −97.62± 0.08 −237.65± 0.06 −110.48± 0.04
DisARM −103.39± 0.12 −239.67± 0.06 −113.67± 0.05 −97.56± 0.07 −237.61± 0.06 −110.15± 0.04
RODEO (Ours) −103.15± 0.07 −239.76± 0.09 −113.84± 0.11 −97.43± 0.03 −237.63± 0.07 −110.32± 0.10

Three layers
Double CV −97.59± 0.15 −234.34± 0.07 −108.66± 0.06 −93.71± 0.12 −234.34± 0.07 −107.48± 0.07
DisARM −97.95± 0.30 −234.45± 0.05 −108.60± 0.08 −94.12± 0.28 −234.46± 0.06 −107.32± 0.10
RODEO (Ours) −97.21± 0.17 −234.11± 0.10 −108.51± 0.04 −93.52± 0.16 −234.19± 0.07 −107.26± 0.06

Four layers
Double CV −98.73± 0.06 −235.69± 0.07 −110.92± 0.06 −93.28± 0.03 −234.63± 0.03 −107.86± 0.03
DisARM −98.97± 0.02 −235.50± 0.04 −110.85± 0.07 −93.56± 0.04 −234.52± 0.04 −107.87± 0.05
RODEO (Ours) −98.67± 0.14 −235.39± 0.05 −110.79± 0.03 −93.27± 0.09 −234.39± 0.06 −107.77± 0.02

18

M
N

IS
T

500K 600K 700K 800K 900K 1M
Training Step

108

107

106

105

104

103

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

10
2

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

10
2

RODEO (Ours)
Double CV
DisARM

Fa
sh

io
n-

M
N

IS
T

500K 600K 700K 800K 900K 1M
Training Step

242.0

241.5

241.0

240.5

240.0

239.5

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

10
2

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
2

RODEO (Ours)
Double CV
DisARM

O
m

ni
gl

ot

500K 600K 700K 800K 900K 1M
Training Step

118

117

116

115

114

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

10
2

RODEO (Ours)
Double CV
DisARM

Figure 10: Training hierarchical binary latent VAEs with two stochastic layers on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot (left) the average ELBO on training
examples and (middle) variance of gradient estimates. We zoom into the first 50K steps of the
variance plot on the right figure.

M
N

IS
T

200K 400K 600K 800K 1M
Training Step

102

100

98

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1M
Training Step

10
4

10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

6 × 10
4

2 × 10
3

3 × 10
3

4 × 10
3 RODEO (Ours)

Double CV
DisARM

Fa
sh

io
n-

M
N

IS
T

200K 400K 600K 800K 1M
Training Step

237

236

235

234

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1M
Training Step

10
4

10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

10
2 RODEO (Ours)

Double CV
DisARM

O
m

ni
gl

ot

200K 400K 600K 800K 1M
Training Step

112

111

110

109

Tr
ai

ni
ng

 E
LB

O

200K 400K 600K 800K 1M
Training Step

10
4

2 × 10
4

3 × 10
4

4 × 10
4

6 × 10
4

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

6 × 10
4

2 × 10
3

3 × 10
3

RODEO (Ours)
Double CV
DisARM

Figure 11: Training hierarchical binary latent VAEs with three stochastic layers. on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot the average ELBO on training examples
(left) and variance of gradient estimates (middle). We zoom into the first 50K steps of the variance
plot on the right figure.

19

M
N

IS
T

500K 600K 700K 800K 900K 1M
Training Step

104

102

100

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

6 × 10
4

2 × 10
3

3 × 10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

10
2

RODEO (Ours)
Double CV
DisARM

Fa
sh

io
n-

M
N

IS
T

500K 600K 700K 800K 900K 1M
Training Step

239

238

237

236

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

2 × 10
3

3 × 10
3

4 × 10
3

6 × 10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
2

RODEO (Ours)
Double CV
DisARM

O
m

ni
gl

ot

500K 600K 700K 800K 900K 1M
Training Step

116

114

112

Tr
ai

ni
ng

 E
LB

O

0 200K 400K 600K 800K 1M
Training Step

10
3

4 × 10
4

6 × 10
4

2 × 10
3

G
ra

di
en

t V
ar

ia
nc

e

0 10K 20K 30K 40K 50K
Training Step

10
3

10
2

RODEO (Ours)
Double CV
DisARM

Figure 12: Training hierarchical binary latent VAEs with four stochastic layers on dynamically
binarized MNIST, Fashion-MNIST and Omniglot. We plot the average ELBO on training examples
(left) and variance of gradient estimates (middle). We zoom into the first 50K steps of the variance
plot on the right figure.

20

	1 Introduction
	2 Background
	3 Control Variates from Discrete Stein Operators
	3.1 Discrete Stein operators

	4 Gradient Estimation with Discrete Stein Operators
	5 Related Work
	6 Experiments
	6.1 Training Bernoulli VAEs
	6.2 Training hierarchical Bernoulli VAEs
	6.3 Ablation study

	7 Conclusions, Limitations, and Future Work
	A Sample-dependent Baselines in REBAR and RELAX
	B Proof of Unbiasedness of RODEO
	C Additional Experiments
	C.1 Wall clock time comparison with RLOO
	C.2 Impact of neural network architectures of surrogate functions

	D Experimental Details
	D.1 Details of VAE experiments
	D.2 Details of hierarchical VAE experiments

	E Additional Results

