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To better understand common patterns in developer behavior and produce better edit recommendations,
we can additionally use the temporal context, i.e., the edits that a developer was recently performing. To enable
edit recommendations based on temporal context, we present OVERWATCH, a novel technique for learning
edit sequence patterns from traces of developers’ edits performed in an IDE. Our experiments show that
OVERWATCH has 78% precision and that OVERWATCH not only completed edits when developers missed the
opportunity to use the IDE tool support but also predicted new edits that have no tool support in the IDE.
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1 INTRODUCTION

Integrated Development Environments (IDEs) offer developers an overwhelming deluge of tools
to support source code editing tasks, including writing new code, performing refactorings, and
applying code fixes. Popular IDEs such as Microsoft Visual Studio [Microsoft 2021] and JetBrains
ReSharper [JetBrains 2021], for example, provide over 100 C# refactorings, code fixes, and snippet
tools. Traditionally, these tools use the location where the developer is editing code and the
surrounding code as spatial context to generate candidate edits to recommend.

However, the spatial context alone is often not sufficient for IDEs to confidently predict the
developer’s next edit. At a specific location, there may be multiple candidate tools available for
different editing tasks. For instance, Figure 1a shows all tools available when the developer clicks
on the screwdriver next to a property declaration. There are 8 edits that the IDE can automate at
that location. Unsurprisingly, developers have difficulty discovering these tools and applying them
at the appropriate time and place [Ge et al. 2012; Murphy-Hill et al. 2009].

To improve code edit recommendations, in addition to the spatial context, we can also use the
temporal context that the code edits which the developer was performing at a particular point in
time. For instance, suppose the developer has just added the Of fset property in Figure 1a. Next,
the developer is more likely to add the corresponding parameter to the constructor and use it
to initialize the property (7th option in the menu) than replace the nearly introduced property
with a method (4th option). If the developer moves the cursor to the constructor, then it is very
likely that they are about to insert the parameter. Recently, Visual Studio announced that they
used this idea of temporal context to implement an analyzer to detect this edit sequence and offer
the suggestion as “gray text” (Figure 1b) to add the parameter to the constructor as soon as the
developer moves the cursor to the constructor after adding a new property. By using spatial and
temporal contexts to generate suggestions at the right time and location, the IDE can afford to
preemptively show these edit suggestions, avoiding discoverability (developers are unaware of
the existing tool) and late-awareness problems (developers get further in their workflow before
remembering an appropriate tool exists).

However, implementing tools that use temporal context is non-trivial. Tool builders have to
reason not only about the location where an edit should be suggested and how to automate the
edit but also how previous edits relate to the edit under consideration. Consider the example above,
developers can perform the "Insert Property", "Insert Parameter”, "Insert Assignment" edit sequence
in any order but Visual Studio only handles the order shown in Figure 1. Given the complexity of
manually implementing these edit sequence patterns, only few of them are available today in IDEs.

Instead of manually implementing patterns to recommend code edits, researchers have proposed
several approaches to learn edit patterns from edits in source code repositories [Bader et al. 2019;
de Sousa et al. 2021; Kim et al. 2013; Rolim et al. 2017; Yin et al. 2019]. These patterns represent the
location where an edit should be applied and how to perform the desired edit. However, very few
approaches use previous edits as temporal context. Blue-Pencil [Miltner et al. 2019] use previous
edits to suggest similar repetitive edits. C*PO [Brody et al. 2020] learns a model to complete an
edit given other edits, but can only predict edits that do not generate new content. Additionally,
C3PO is trained on data from source code repositories, which do not capture the temporal context
because the data do not reflect the order of edits made by developers in an IDE.

In this paper, we propose OVERWATCH, a technique for learning Edit Sequence Patterns from
traces logged during editing sessions in the IDE. As input, OVERWATCH takes a set of source file
versions. Each version represents the state of the file while a developer is editing it. Given this
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public string Tag { get; }
public string Author { get; }
public int Offset { get; }

Add parameters to ‘Query(string, string)'

Add optional parameters to 'Query(string, string)" a

(a) Edit suggestions based on spatial context (b) Edit suggestion using spatial and temporal contexts

Fig. 1. Edits suggested by Visual Studio when the developer adds a property to a class

input, OVERWATCH’s problem is to find recurrent edit sequences and generalize them into Edit
Sequence Patterns (ESPs). In a nutshell, OVERWATCH performs three major steps: (1) generating edit
sequence sketches and their corresponding specifications, (2) synthesizing edit sequence patterns,
and (3) selecting and ranking the edit sequence patterns. Given a new development trace (i.e., edit
history), OVERWATCH can then use the learned edit sequence patterns to predict the next edit.

To evaluate OVERWATCH, we collected 335, 687 source file versions, which were logged from 12
professional software developers from a large company across several months. In our experiments,
OVERWATCH achieved 78.38% precision in the test set, showing a degree of domain-invariance,
when compared to its performance on the validation set collected 6 months earlier. Additionally,
we performed a qualitative analysis on the ESPs learned with OvErwatcH. Our findings show that
ESPs can be used not only to complete edits when developers typically miss the opportunity to
use the IDE tool support but also to predict new edits that have no tool support at all in the IDE.
Finally, we show that OVERWATCH outperforms the closest approaches, C*PO and Blue-Pencil, on
the task of predicting the next edit in the edit sequences from our dataset.

In short, the paper makes the following contributions:

(1) We formalize the problem of learning Edit Sequence Patterns (ESPs) (Section 3);

(2) We propose OVERWATCH, a technique for learning edit sequences patterns from traces col-
lected during editing sessions in the IDE (Sections 4-6);

(3) We show that the ESPs learned by OVERWATCH can be used to predict edits with 78.38%
precision (Section 7.2);

(4) Our qualitative analysis shows that ESPs can be used not only to complete edits when
developers missed the opportunity to use the IDE tool support but also predict new edits
that have no tool support at all in the IDE (Section 7.3);

(5) Our experiments shows that OVERwATCH outperforms C3PO and Blue-Pencil. While C3PO
does not support most of the edit sequences in our dataset, Blue-Pencil fails to synthesize
transformations at the right level of abstraction in an offline setting (Section 7.4).

2 OVERVIEW

We begin with an overview of OVERWATCH’s technique to learn ESPs and how we can use these
patterns to predict code edits. To illustrate the process, we show how OVERWATCH learns an ESP that
predicts the code edit recommended by Visual Studio in Figure 1b. As we mentioned, Visual Studio
developers had to manually implement this feature, which is time-consuming and hard to scale. In
Section 7.3 we present a list of other patterns that were automatically learned by OVERWATCH.
Consider the source file traces shown in Figures 2 and 3 depicting the sequences of versions
produced when developers were performing similar edits in an IDE. At a high level, the developers
are performing the same ESP: (a) adding a new property to the class, (b) adding a new parameter to
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class Node {

class Node { class Node { = public str Id { }
: EHDICRS + public str Id {get;}
Node () { Node () { Node () ¢ ;
3 3} )
} }
@ vo (b) v¢ } v,
class Node { ClazZI?ZdZtE Id (get;set;) class Node {
- public str Id {get;} ~ ZOde() y get; ’ public Stf? Id {get;set;}
+ public str Id {get;set;} e Node(str id) {
Node () { CLEs + Id = id;
3} 3 ) }
3
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Fig. 2. Development Session: Syntactically correct versions while adding and initializing a property.

class Graph {

public int Id {get;set;}
- public int Id {get;set;}
+ public int Size {get;set;}
Graph(int id) {

Id = id;
}

class Graph {
public int Id {get;set;}
+ public int Id {get;set;}
Graph(int id) {
Id = id;

class Graph {
public int Id {get;set;}
Graph(int id) {
Id = id;
) @) ’
a) vg } b
\Y
( ) 7 3 (C)Vg
class Graph {
public int Id {get;set;}
public int Size {get;set;}
Graph(int id, int size) {

class Graph {
public int Id {get;set;}
public int Size {get;set;}
= Graph(int id) {

+  Graph(int id, int size) { Id = id;
Id = id: + Size = size;
} }
} 3
(d)vo () vio
Fig. 3. Development Session: Syntactically correct versions while copying, updating, and initializing a property.
pre post pre _ post pre _ post
class H{{ class Hi{ .
Hz H, H; ( Hi( { {
’ ’
public Hy Hs {get; set;} He He » Hz H]Z
Hs HY Hy Hs Hg = H5;
} 3 ) ) } 3}
T = ’_ o -
H, = Hy AH) = Hy A Hj = Hs Hy = Hy A Hg = He A Hy =Hy H; = H7 AH; =Hs
A Hg = ToLower (Hs) AHE =H
(a) InsertProperty (b) InsertConstructorParam (c) InsertAssignment

Fig. 4. Example of an Edit Sequence Pattern learned by OverwatcH for the workflow InsertProperty -
InsertConstructorParameter-InsertAssignment The variable component of the pattern (holes) are represented
by H. Below each pre and post representaion of the template, we present the Hole Predicates specifying the
relationship between holes across the edit pattern sequence.

the constructor with the same name as of the property (but lowercase) and same type, (c) adding a
statement assigning the parameter to the property. However, the developers take different paths
in the two cases—in Figure 2, the developer directly types in the new code while in Figure 3, the
developer copies an existing property and changes the name. Figure 4 illustrates how OVERWATCH
represents this pattern. Each individual transition represents the pre and post template of an edit
template. We see that the insert property pattern in Figure 4a has templates with holes in it. Holes
H and Hs, respectively, represent the surrounding class members and methods preceding and
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class Metric {

class Metric { class ﬂetrlc { - public float Cost { 7
+ public float Cost { } .
. K + public float Cost {get;}
Metric() { Metric() { Metric() {
3 } }
) (@) vi1 3 (b) vi2 3 (©) vi3
class Metric { class Metric { class Metric {
- . . public float Cost {get;set;} public float Cost {get;set;}
T R IR s T oot vai
. ’ ’ + Metric(int val) { + Cost = Math.Abs(val);
Metric() { . 2
} 3
) (@ v ’ )
14 } (e) vis (f) vie

Fig. 5. Another sequence of versions that is different from the edit sequence pattern learned in Fig 4.

following the location of the edit. The type and name of the added property in the post template
correspond to holes Hy and Hs, respectively. Based on the newly added property, holes Hy and Hs
can be replaced with the appropriate type and name to match the edit.

We use hole predicates to define relationships between holes in the pre- and post-templates. The
predicates H] = H; for i € {1, 2,3} represent that the class name and the class body does not change
apart from the newly added property. Similarly, in Figure 4b, the predicate H; = H¢ represents
that the constructor parameters do not change except the newly added parameter. The predicate
H: = ToLower(Hs) says that the name of the parameter is the lower case version of the property
name (e.g., if the property name is Id, the parameter name will be id). Note that this predicate
relates the holes in two different edit templates, i.e., Hs is in the InsertProperty template while H:
is in InsertConstructorParam. Hence, while learning an ESP, we need to consider the sequence of
edits as a whole, instead of separately learning single edit patterns and putting them together.

2.1 Using Edit Sequence Patterns to Predict Edits

We can use the above pattern to predict the next edits that the developer will perform. For instance,
consider the scenario shown in Figure 2. Suppose the developer has just performed the changes
vo — v3. We can match this edit to InsertProperty to get the values of the holes Hy and Hs, i.e., str
and Id, respectively. Now, using the predicates H; = Hy and H; = ToLower(Hs), we can instantiate
InsertConstructorParam to obtain the next edit. In an IDE, we can use this instantiation to suggest
adding str id as soon as the developer moves the cursor to the constructor’s parameter list using
an interface similar to the one shown in Figure 1b. Note that in Figure 1b, we can predict two
subsequent changes (adding the constructor parameter and adding an assignment) at once using
edit patterns InsertConstructorParam and InsertAssignment in sequence.

Note that the predictions made using the ESP is just that, a prediction. As shown in Figure 5, the
developer may actually want to make a different sequence of changes, i.e., the name and type of the
property and the initialization expression are different that the ones predicted by the ESP. In our
IDE plugin implementation, the developer can press the Escape key to ignore the recommendation
from the edit sequence template and make their own change.

2.2 Learning Edit Sequence Patterns

Given the traces in Figures 2, 3, and 5 as input, OVERWATCH aims to learn the ESP in Figure 4.

Building the Edit Graph. OVERWATCH first creates the edit graph in Figure 6a to where the
nodes represent edits at different levels of granularity and the directed edges represent temporal
relation, i.e., one edit sequentially follows the other. For example, the figure contains both the node
vo — vs, as well as the nodes vo — vy, vi — v;, and v, — vs; these represent the same change
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Mo i 2 e vz > vs] e val{vr > vs] M= Vaa - viz = vis [ vis = via |

|V0—>V3|—>{V3—>V4}—>|V4—’V5| |V6—>V8|—>{V8—’V9}—>|V9—>V1o| |V11—>V14|—>{V14—>V15}—>|V15—’V16|

(a) Part of edit graph for traces from Figures 2, 3, and 5

Insert Property V) > Vi >V Insert Get Vi > vy v Insert Set
Vo — Vi1, Vg — V3 Vil — Vi2 — Vi3 Vi — Vg, V12 — Vi3 Vi2 — Vi3 — Vi4 Vg — V3, Vi3 — Vg
Ve — V7, V6 — Vg
Vi1 7 Vi, Vi1 > Ve V2 D V3 2 Vq
V) — V] — V2 J Vi3 = Vi4 — V15
Vg — Vg — Vg
Vi — Viz Vi3 L Insert Parameter Insert Assignment
Update Name V3 — Vg4, Vg — Vo Vs V4 7 Vs V4 — Vs, Vg = Vyg
—_— Vg — Vg — Vjo
V7 — Vs Via = V15 Vig = V15 — V16 Vis = Vie
(b) Quotient graph for edit graph in Figure 6a
pre post pre post pre post Specification: {

Vo — V3 — V4 — Vs,
Vil = Vig = Vis = Vig }
(c) Sketch for the edit sequence pattern “Insert Property” — “Insert Parameter” — “Insert Assignment”

Fig. 6. OverwATcH: From Edit Graphs to Edit Sequence Patterns. We omit edits vo — vy and vi; — vi3 that
should be in the edit graphs for ease of presentation.

of adding the property public str Id { get; set; 3}, but at different levels of granularity. The
edit vo — vs represents adding the full property, while vy — vy, vi — v,, and v, — v3 represent
adding the property with the empty accessor list, adding the get;, and adding the set;. The edges
between vy — vi, vi — vz, and v, — vs represent that each edit immediately follows the previous
in the trace. Note that the graph does not contain nodes for all changes (for example, vy — vs).
We describe how we select the edits that should be there in the graph in Section 4-intuitively, we
ignore large and unrelated edits.
Creating Sketches for Edit Pattern Sequences. Next, OVERWATCH produces a quotient graph by
grouping together similar edits in the edit graph. Two edits are grouped together, i.e., in the same
partition, if they have the same edit type (Insert, Delete, or Update) and the same type of AST node
that is being modified (e.g., PropertyDeclaration and Parameter). In Figure 6a, the nodes are colored
by partition. For example, the green nodes all represent the insertion of a PropertyDeclaration.
Figure 6b shows the quotient graph produced by OverwaTcH. The quotient graph summarizes
the edit graph at the level of partitions: the vertices of the quotient graph are the partitions. An
edge between two partitions exists in the quotient graph iff there are at least 2 pairs of edits in the
partitions that sequentially follow each other. For example, there is an edge between InsertProperty
and InsertParameter as there are 3 pairs of edits where a parameter is added immediately af-
ter a property is added (see edge label in Figure 6b). However, there are no edges to and from
UpdateName since no two occurrences of update name are followed by edits of the same partition.
The paths in the quotient graph represent recurrent edit sequences applied by developers. For
each path in the quotient graph, the support is the set of all edit sequences that correspond to it.
For each path up to a size n with sufficient support in the quotient graph, OVERWATCH creates a
sketch along with a specification that is given by its support. The right part of Figure 6¢ shows the
sketch of the ESP insert property, insert parameter, and assign property, and the specification given
by {edSeq,, edSeq,, edSeq,} which correspond to the traces from Figures 2, 3, and 5.
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From Sketches to Edit Sequence Patterns. In the next step, OVERWATCH uses these concrete
sequences to infer edit templates and hole predicates to complete the sketch. We use a procedure
based on anti-unification to generalize the edit sequences into edit templates and corresponding
hole predicates. In essence, anti-unification is a technique to generalize two ASTs into a template
by replacing differing subtrees with holes. However, we anti-unify edit sequences instead of ASTs
and further, generate predicates relating the holes in the individual templates (see Section 5.2).

Anti-unifying the edit sequences edSeq,, edSeq,, and edSeq,; produces the ESP depicted in
Figure 4, but without the predicates H; = Hy, H. = ToLower(Hs), and H: = ToLower(Hs). This
pattern, while general, cannot be used to predict the next changes. The absence of these predicates
means that we can predict neither the name and type of the inserted parameter, nor the right-hand
side of the assignment. On the contrary, anti-unifying just edSeq; and edSeq, produces exactly the
pattern in Figure 4, which can be used for predictions as shown in Section 2.1. OVERWATCH uses
agglomerative hierarchical clustering over edit sequences to produce a hierarchy of increasingly
general ESPs. Hence, we will produce both ESPs (with and without anti-unifying edSeq,). We select
and rank a subset of the generated ESPs based on their predictive power on the input traces.

3 EDIT SEQUENCE PATTERNS

The goal of this paper is to learn a sequence of edit patterns from a set of developer edit traces and
to make editing suggestions by the learned patterns while a developer is working in an IDE. In
contrast to related works [Bader et al. 2019; de Sousa et al. 2021; Yin et al. 2019] that learn only a
single edit pattern, we aim to use the hole predicates among the sequence of edit patterns. In this
section, we show a novel representation for the sequence of edit patterns learned by our approach.
Versions and Development Sessions. A version v is a syntactically correct source file that occurs
while a developer is editing code. A development session or trace Trace = vy ... v, is the sequence of
all versions that appear during an editing session. Here, we identify each version with its abstract
syntax tree (AST). Hence, unparsable intermediate versions of code do not appear in the trace.

Edits and Edit Sequences. The edit ed = vpe — Vpost changes version vpre to Vpost. The function
Localize on edits that produce the smallest difference between the two ASTs in the edit. Formally,
Localize(vpre = Vpost) = v’lgre — if: (a) v¥,, and v’;ost are subtrees of vpre and vpest, respectively;

v*
post pre
(b) replacing v;,e ¢ i Vpre yields vpose; and (c) v;re is the smallest subtree of such kind.

*
pos

by v

Example 3.1. Consider the edit v3 — v4 in Figure 2, where the developer adds the parameter
str id to the constructor of Node. The localized version of this edit Localize(vs — vy4) is given by
v; — v, where: (a) v; corresponds to the subtree of v3 that represents the empty parameter list (),
and (b) vj corresponds to the subtree of v4 that represents the parameter list (str id). O

An edit in the trace Trace = vq ... v, is given by v; — v; € Edits(Trace) where 0 < i < j < n.

Given edits ed = v; — v; and ed” = vi — v, from Trace, we say that ed’ sequentially follows
edifi < j = k < L. This is written as ed —q ed’. An edit sequence ed, . ..ed, is a sequence of
contiguous edits, i.e., Vi.ed; —seq ediz1.
Templates and Edit Templates. An AST template (or template for short) t is an AST where
some leaf nodes are holes, i.e., they do not represent a program fragment but are placeholders. A
substitution o is a function that maps each hole to a finite sequence of AST nodes. The AST obtained
by replacing each hole H in t by the node sequence o(H) is written as o(t). We assume that holes
are unique, i.e., that a single hole does not appear in more than one location in a template and that
multiple templates cannot share holes.

Example 3.2. An example of a template t is (H, str id) where H is a hole. This template
represents all parameter lists of length 1 or more where the last parameter is str id. Note that we
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are writing templates using the equivalent code for readability. The template t is represented as an
AST and does not contain a node for the comma separator.

With the substitution oy = {H +— ¢} that maps H to the empty sequence of nodes, we
have op(t) = (str id). Note that the comma disappears when we substitute the hole with
the empty list—this is an artifact of writing the template as code. For 07 = {H — int count}
and o, = {H — int count, str attr} we have o;(t) = (int count, str id) and oy(t) =
(int count, str attr, str id). Note that oy, oy, and o, map H to sequences of AST nodes of
length 0, 1, and 2, respectively. O

We represent common editing motifs using edit templates. Formally, an edit template et =
tpre — tpost is a pair of AST templates. We say that an edit vjre — Vpost matches an edit template
tpre — tpost ift (a) Localize(vpre — Vpost) = VZre — and (b) there exists a substitution ¢ such

*

that V’F‘,re = 0(tpre) and Vpost = o (tpost)-

*
Vpost’

Example 3.3. An example of an edit template is et = (H;) — (H;, str id). Here, the first
template matches all parameter lists while the second matches all parameter lists where the last
parameter is str id. Hence, it would match the edit v — v, in Figure 2. However, note that this
edit template does not relate the values of H; and H; in pre- and post-versions of the edit. Therefore,
an edit like (int id) — (str label, str id) will match the edit template et. We solve this issue
using hole predicates below.

Hole Predicates. We introduce the notion of hole predicates to (a) relate the values of holes across
multiple templates, and (b) restrict the set of substitutions that can be applied to a template. Formally,
a hole predicate is an expression of type Boolean over holes and is evaluated over a substitution o.

e Unary predicates. The predicate IsNotNull(H) asserts that the hole H cannot be replaced
by an empty sequence, i.e., the substitution o must satisfy o(H) # € if IsNotNull(H) = True.
Another unary predicate IsKind|ape(H) is parametrized by an AST node type label (e.g.,
AssignExpr or ClassDeclaration). We have that IsKindjapel(H) = True for a substitution o
only if 6(H) = node and the label of node is label. Note that IsKindy;nq forbids the hole value
from being an empty sequence and a sequence with multiple elements.

e Binary predicates. We also use a class of predicates over two holes, written as H; = F(H;)
where F is a function. The most common F is the identity function in terms of text value, in
which case, we write the predicate as H; = H,. Other two functions F we use are ToLower
and ToUpper, which indicate that the text value of H; in the substitution is the same as that
of H,, but the case of the first character changed appropriately.

Example 3.4 (Hole predicates). Consider the template t = (H, str id) from Example 3.2. Here,
imposing the predicate IsNotNull(H) ensures that any AST matched by t must have at least 2
parameters in the parameter list. Continuing from Example 3.3, we can augment the edit template
(Hy) — (Hy, str id) with the hole predicate H; = H, to ensure that we exactly capture the class
of edits that insert a new parameter str id to an existing parameter list. O

Example 3.5. Hole predicates can be used to relate holes across multiple edits to exactly capture
the common editing pattern illustrated in Figure 2.

e Add a new property to a class. This category of edits is captured by the edit template et; =
{H; Hz} — {Hs public Hys Hs {get;} H¢}. Here, H; and H, represent the class members
that appear before and after the newly inserted property, respectively. The type and name of
the property are represented by Hy and Hs, respectively. We can add the unary predicates
IsKindtype (Hy) and IsKindigent (Hs) to ensure that Hy and Hs are a Type node and an Identifier
node, respectively. To ensure that the contents of the class do not change apart from the
newly inserted property, we need the predicates H; = H; and Hg = H,.
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o Add a new parameter to the constructor. This edit is captured by the edit template and predicates
similar to the ones presented in Example 3.4. We have et, = (H;) — (Hs, Ho Hyp) with
the predicate Hg = H; to ensure that the parameter list is preserved apart from the new
parameter. We have the additional predicates Hy = Hy and Hyy = ToLower(Hs) to ensure
that the type and name match that of the inserted property. Note that the relation between
Hs and Hyy is not strict equality, but involves an additional transformation ToLower to Hs.

o Assign the new parameter to the new property. These edits add a new assignment statement
to the end of the block and are captured by et; = {H;1} — {Hiz; Hiz = Hig; ) with the
predicates Hyz = Hyy, Hys = Hs, and Hys = Hyo. However, we omit some unary predicates if
the absence does not hinder understanding for ease of presentation in this paper.

Together, the edit templates ety, et,, and et; along with the above predicates fully capture the
common editing pattern of adding a new property to a class and initializing it in the constructor. O

Edit Sequence Patterns. The main object of study in this paper is an Edit Sequence Pattern (ESP).
ESPs are used to capture sequences of common editing actions like in Example 3.5. Formally, an ESP
is a pair (TS, Preds) where: (a) TS is a restricted regular expression over edit templates, and (b) Preds
is a set of hole predicates. Here, the restricted regular expression TS is of the form et; . .. etn_let,[l*]
where [#] represents an optional Kleene star. That is, TS is a sequence of edit templates where the

last template may have a Kleene star.

Example 3.6. The edit templates and hole predicates from Example 3.5 can be written as an
ESP (TS, Preds). Here, TS = et;etyet; and Preds = {H; = Hy,Hg = Hy, Hg = H;,Hg = Hy, Hyg =
ToLower(Hs), Hiz = Hyy, His = Hs, Hig = Hio} U {IsKindrype (Hy), IsKindigentifier (Hs), . . .}

class Comms { We say that a sequence of edits

// Edit 1 ed;...ed, matches (TS,Preds), where
- void Write(Stream s, TS = ety ...et,_et,, if there exists a substitu-
- bytell bs, bool flush) { } tion o such that: (a) each ed; matches et; for

+ void Write(Stream s, . . . .
<i<
+ byte[] bs) { 3 1 < i < n, (b) the hole valuations in o satisfy

all the predicates in Preds.
3 . . ..
void Main() { Extending this definition, we say that
// Edit 2 a sequence of edits ed;...ed, (with
- Comms.Write(io, bytes, f);} m > n) matches (TS, Preds), where
+ Comms.Write(io, bytes); TS = et;...etyqet), if each of the se-
// Edit 3 quences ed;...edp_jedp forn < k < m
- Comms.Write(io, result, f); matches {et; ...et,_jet,, Preds).

+ Comms .Write(io, result);
Example 3.7. Consider an ESP (TS, Preds),

Fig. 7. Delete a Parameter and Delete Arguments where TS = etet; has a Kleene star, with et; =

(Hi, Hz H3) — (Hy), etz = (Hs,Hg) — (Hy),
and Preds = {H; = Hy, Hs = Hy, IsKindtype(Hz), IsKindigent (H3), IsKindarg(He)}. This pattern
represents an editing sequence where the developer deletes the last parameter in a declaration, and
then, deletes the corresponding argument in multiple callsites.

Consider the three edits ed;, edy, and eds; in Figure 7. We have that ed;ed;ed;s matches
etjet;. To show this, we need to show that both ed;ed, and ed;ed; match the un-starred
ESP (et;ets, Preds). We can see that ed;ed, matches etjet, with the substitution o =
{H; + Stream s, byte[] bs,H; +— bool,H; + flush,H; + Stream s, byte[] bs,Hs
io, bytes,Hg — f,H; > io, bytes}. Similarly, we can show that ed;eds; matches et et, with
the substitution oy, which is the same as o7 with bytes replaced by result for Hs and Hj. m]
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Remark 3.8. In our implementation, we consider a slightly more general form of edit sequence
patterns. There, we can have ESPs where any edit template (not just the last one) may be starred.
These more general patterns can be formalized in a straightforward way, though we do not do so
here for ease of presentation.

Using Edit Sequence Patterns. After a edit sequence matches a prefix of an ESP, we can use the
next edit template in the ESP to predict the next change that the developer will make. We illustrate
an usage of an ESP in the following example and we will further describe the details in Section 6.

Example 3.9 (Usage of an ESP). Consider the ESP (et;etzets, Preds) defined in Example 3.6, and
the edit sequence ed; —seq ed; from Figure 2, where ed; = vy — v3,ed; = v3 — v4. We will
consider the task of predicting the next edit give that the developer has just performed ed; and ed.

e First, we find a substitution o such that ed; and ed; match et; and et;, respectively using
o. Further, we require that o satisfies each predicate in Preds that is over only the holes
appearing in et; and et,. Here, we have o = {H, + Node() { },Hy — str,Hs > Id,H¢ —
Node() { },Hg + str,Hyy — ld,} U {H, = € | i€ {1, 3, 7,8}}

e Then, we find an AST node in v4 such that the node matches ets . using a substitution o”.
We get 0’ = {Hq; > €} for the AST node that represents the empty body of the constructor.
And we require that o U ¢’ satisfies all predicates in Preds that are over the domain of o U ¢”.

¢ Now, we use the predicates in Preds that contain the holes from et; st to predict the values
for those holes. Here, from the predicates Hy; = Hyq, His = Hs, and Hy4 = Hyg, we can predict
that Hi, — €, Hy3 > Id, and Hyy = id.

o Filling in these values in et3 pos, We get the new constructor body {Id = id;3}. The predicted
version is obtained by replacing node in v4 with this new constructor body. This exactly
produces the version vs in Figure 2.

Remark 3.10. Intuitively, ESPs are a mechanism for predicting the next edit based on the temporal
context, i.e., the sequence of atomic edits the developer has been performing. However, the ESPs
themselves may operate over the non-atomic edits, i.e., they may match coarse-grained non-atomic
edits in a session. Further, as we will see below, the ESPs are learned by generalizing patterns in
non-atomic edits over multiple sessions from different developers.

Problem Statement and Solution Sketch. The input to the ESP learning problem is a set of
traces. The expected output is a ranked set of ESPs (TSy, Preds;) ... (TS,, Preds,). The aim is to
produce ESPs that are helpful in predicting the next version in any trace. To this end, we measure
the quality of the output using the standard notions of precision and recall, and a general F score
(see Section 7.2 for more details).

Our solution strategy is in 3 parts:

o Generating edit sequence sketches and specifications. (Section 4, Lines 1-6 in Algorithm 1) The
first step is to generate sets of concrete edit sequences (called the specification) that can
potentially all match the same ESP, along with a sketch for that ESP. To generate these sketches
and specifications, we (a) partition the set of all edits in Traces (Lines 1-3), (b) summarize the
edit graph by the partitions to build a quotient graph (Line 4), and (c) generate sketches and
specifications from paths of the quotient graph (Lines 5-6).

o Synthesizing ESPs. (Section 5, Lines 7-9 in Algorithm 1) Given these edit sequence sketches
and specifications, we generate a hierarchy of ESPs iteratively where each pattern in the
hierarchy is more general and matches more edit sequences in the specifications than the
patterns lower in the hierarchy. The core algorithm here takes as input a set of edit sequences
and produces a set of ESPs that can potentially matches the provided edit sequences.
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Algorithm 1 Overview of OVERWATCH

Require: Set of traces Traces

Ensure: Ranked list of ESPs

. edits « | J{Edits(Trace) | Trace € Traces}

: EditGraph < BUILDEDITGRAPH(edits)

: Partitions « partition of edits based on Kind

: QuotientGraph « QuoTieNT(EditGraph, Partitions)
: Paths < FREQUENTPATHS(QuotientGraph)

: SketchesAndSpecs «— { GENERATESKETCHANDSPEC(path) | path € Paths}
: Patterns < 0

: for (sk,spec) € SketchesAndSpecs do

Patterns < Patterns U LEARNPATTERNs(sk, spec)

VO R s Wy

—_
[=1

: return FILTERANDSELECT(Patterns)

e Selecting and ranking ESPs. (Section 6, Line 10 in Algorithm 1) Once we build a hierarchy of
ESPs, we determine their predictive power by testing them on the input Traces. Based on
their precision on the Traces, we select a subset of the patterns and rank them accordingly.

4 FROM TRACES TO EDIT PATTERN SKETCHES

In this section, we produce sketches and specifications from a set of traces. Formally, an edit pattern
sketch sk is of the form A; .. .An_lA,[l*J where each A; is a placeholder for an edit template. A
specification spec for a sketch sk is a set of edit sequences such that the length of each edit sequence
in spec (a) is equal to n if A, is un-starred in sk, and (b) is at least n if A, is starred in sk.

Example 4.1. Given a set of input traces that include the traces from Figures 2 and 3, the technique
in this section will produce a set of pairs of the form (sk, spec). One such pair might be sk = A;A;As
and spec = {edjededs, edjedseds, ...} where ed; = vo — v3, edy = v3 — vy, eds = vqg — vs,
ed] = vg — vs, ed; = vg — vy, and ed; = vy — vyo. Note that (a) ed; and ed] add a new property,
(b) ed; and ed;, add a new parameter to the constructor, and (c) eds and ed; assign the newly added
parameter to the newly added property. This sketch and specification will then be used in Section 5
to genera