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Abstract—Workplace stress has been increasing in recent
decades and has worsened by the unique demands imposed
by COVID-19 and the new remote/hybrid work settings. High-
stress working conditions can be detrimental to the health and
wellness of workers and can lead to significant business costs
in terms of productivity loss and medical expenses. An essential
step toward managing stress involves finding comfortable ways to
sense workers and recognizing stress as soon as it happens. This
work explores the potential value of using pervasive sensors such
as keyboards, webcams, and behavioral data such as calendar and
e-mail activity to passively assess individual stress levels of work
in real-life. In particular, we collected a large corpus of such data
from 46 remote information workers over one month and asked
them to self-report their stress levels and other relevant factors
several times a day. Analysis of the data demonstrates that passive
sensors can effectively detect both triggers and manifestations
of workplace stress and that having access to prior data of the
worker is critical for developing well-performing stress recognition
models. Furthermore, we provide qualitative feedback capturing
workers’ preferences in workplace stress monitoring.

Index Terms—Workplace Stress, Sensing, Emotion, Resilience,
Modeling, Early Detection, Demands, Stressors, Resources

I. INTRODUCTION

Stress is a significant and growing issue in our modern
society. Prolonged high levels of stress have been shown to
contribute to a wide variety of physical and psychological
health issues such as high blood pressure [40], depression [30],
mood disorders [2], and suicidal ideation [20]. One of the
major sources of daily stress is workplace stress which can
be defined as the reaction that people may experience when
they are subject to high demands and pressures at work that
do not correspond to their past experience and/or coping
capabilities [5]. Some of the main contributing factors include,
but are not limited to, juggling between professional and
personal life, a perceived lack of job security, interpersonal
issues with colleagues, and a high workload. When experienced
over long periods, workplace stress has been shown to impair
decision making, negatively affect productivity, and decrease
job satisfaction as well as lead to significant business costs,
which is approximately $300 billion per year in the U.S.
alone [2].
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Given the importance of workplace stress, researchers have
explored the potential use of technology to help better manage
it [5]. One popular method involves the delivery of stress-
reduction interventions when someone is experiencing stress to
reduce its potential harm [5]. This approach usually involves
the development of real-time stress detection systems [15], [36]
that create a digital phenotype1 of the individual in order to
infer their stress levels [38]. A large body of this work, however,
requires instrumenting individuals with custom hardware such
as wearables, which limits the potential scalability of the tech-
nology to a broad population. In addition, many of the studies
have been performed in controlled laboratory environments [14],
[27], which tend to offer limited generalization to real-life
settings, or real-life settings are used, but different sample
populations are considered (e.g., call-center employees [13],
graduate students [35]) which may not necessarily generalize
to remote information workers, as was our current focus.

Our work addresses these limitations and extends stress
research by conducting a month-long, naturalistic, uncon-
strained, observational, and multimodal sensing study with
46 remote information workers at a large technology company.
We leverage pervasive sensors such as keyboards and webcams,
available to most remote information workers, and connect
them with passively sensed behavioral data such as e-mail and
calendar activity. In addition, we used the experience sampling
method to collect ground truth self-reported measures of stress
as well as other relevant factors, such as the level of demands
and resources during the workday. We then used the collected
data to address the following questions:

• RQ1: What is the digital phenotype of remote information
workers’ stress?

• RQ2: Can we accurately recognize self-reported stress
from passively sensed data?

• RQ3: What are key end-user considerations when deploy-
ing stress sensing systems?

1In the context of precision medicine, digital phenotypes represent an
individual’s interactions with digital technologies (e.g., smartphones, wearable
devices, etc.) that can generate a longitudinal health profile [38].



II. RELATED WORK

While stress is more frequently associated with a negative
response, specifically known as “distress” it is also well known
that there are positive forms of stress, known as “eustress.” In
the context of work, distress might arise from a “toxic work envi-
ronment, negative workload, isolation, number of hours worked,
role conflicts, role ambiguity, lack of autonomy, career develop-
ment barriers, difficult relationships with administrators and/or
coworkers, managerial bullying, harassment, and organizational
climate” [7]. Eustress is a “force that stimulates us to productively
work through challenging situations and tasks” [7]. Examples
might include a promotion, a successful project presentation, a
deadline, or a positive but intense meeting.

While technology may not be the sole solution to helping
people manage all of these sources of stress, researchers have
explored its potential use to better understand and address some
of the sources. For instance, studies of information workers
have found that distractions can lead to higher reported stress
and lower productivity [23], [24] and there are promising
opportunities for technology to support workers’ well-being
through reflection [29], and interventions [33]. These solutions
need to be designed carefully [41].

In a relevant study, Mark et al. [23], [24] presented a framework
for how engagement and challenge at work were related to focus,
boredom, stress, and rote work. Overall, they found more focused
attention was present in the workplace than boredom. They also
found that focus peaks in mid-morning and mid-afternoon, while
boredom was highest in the morning. People were happiest doing
“rote”, or easy work, showing that focused work can involve stress.
Their study was the first to show that rhythms of attentional states
are associated with context and time, even in a dynamic workplace
environment. A subsequent empirical study [25] in the workplace
found, using physiological sensors (heart rate monitors), computer
log data, and ethnographic methods, that stress (as measured by
heart rate variability (HRV)) was lower when not using email.
Both qualitative and quantitative data corroborated the stress
findings around email use [26]. More recently, McDuff et al. [28]
analyzed information workers’ facial expressions longitudinally to
reveal that passive sensors could pick up similar diurnal patterns
in affective experience with displays of negative affect increasing
monotonically on average over the course of the day.

In a separate effort, Lopez et al. [21] have looked at real-time
automatic stress detection for information workers but within
a controlled setting. Using physiological data gathered by an
Empatica E4 wristband for registering EDA, they examined
an arousal-based statistical approach, and they compared their
stress detection model to self-reported stress in quiet office
environments versus when their participants were exposed to
different kinds of emotional triggers. Though they had some
success with this approach to detecting stress, it was still not
studied in a realistic, natural setting. Similarly, Ide et al. [16]
utilized multiple physiological signals to predict stress in daily life.
However, this research also used a laboratory method to induce
stress in various ways. Using electrocardiogram, pulse wave,
breathing rate, and skin temperature, the authors predicted four
psychological states: relaxed, normal stress, monotonous stress,
and nervous. They used the integration of nine physiological

features identified as related to stress leading to 87% accuracy for
stress detection and 63% accuracy for stress type.

In an extensive survey examining stress detection in daily
life using mostly wearable sensors, Can et al. [5] reviewed the
reported accuracy of various combinations of sensors across
different environments, including office workplaces. They
found that office environments provide a nice bridge between
controlled laboratory settings and more mobile settings since
office workers tend to be seated at their desks and quiet more
often. In their review, research that employed EDA and HR had
the highest performance in the office setting. They discussed
problems with identifying key contextual features and the
artifacts that result from physical movement. Finally, the authors
discussed the problems involved in getting subjective ground
truth from users who might exhibit the same physiological
markers but rate their stress levels in dissimilar ways. We
acknowledge these challenging issues and will also need to
address them in our research.

III. METHODOLOGY

A. Study Design and Data Collection
The study duration was four weeks, in which participants

had to install a data logging software and respond to several
surveys focused on stress and other relevant factors. In the
following, we describe the surveys gathered at various stages
of the study and the data logging tool. The study was reviewed
and pre-approved by the institutional Ethics Review Board.

1) Surveys Instruments: During the study, participants
responded to various surveys that can be grouped into five
main categories based on their delivery time.
Study Intake. At the beginning of the study, we gathered base-
line information from our participants about their demographics
(e.g., age, gender, job type) and baseline mental well-being. In
particular, we collected validated surveys such as the DASS-
21 [22] that captures stress, depression, and anxiety, and the
Perceived Stress Scale [6].
Experience Sampling. During each workday, participants
received multiple prompts (around every hour ± 15 min)
containing several 5-Likert scale questions to rate the level
of perceived work demands and resources [9], their valence
and arousal levels [4], [34], and their stress levels during
the 30 minutes preceding the prompt. Participants were given
the following options for demands and resources: very low,
low, moderate, high, and very high. These definitions and
options were consistent with the previous literature looking at
workplace demands and resources [9]. For valence and arousal,
participants were provided with the following options: very
unpleasant, unpleasant, neutral, pleasant, and very pleasant
and very low, low, moderate, high, and very high respectively.
For stress, participants were provided with the following
options: not at all, slightly stressed, moderately stressed, very
stressed, and extremely stressed.
Daily Check-In. At the beginning of each workday, participants
were asked to answer questions about their previous night of
sleep. In particular, they were asked to report the time when
they started to try to fall asleep, the time they got out of bed,
the number and duration of awakenings, and the overall quality
of sleep as it has been shown to influence stress [18].



Daily Check-Out. At the end of each workday, we asked
participants to rate their daily stress, valence, arousal, demands,
and resources with the same 5-Likert scale questions described
above. In addition, participants were asked to report their
food and caffeinated drink intake episodes during the workday
as having a stressful workday might often lead to more
snacking [39], irregular meal patterns [31], and drinking more
caffeinated drinks [8], among other things. Finally, participants
were asked to indicate the presence and potential intensity of
the following stressors: 1) a high pace workday, 2) too many
meetings, 3) too much emails, 4) overly packed day, 5) too
many ongoing activities, 6) sitting for too long, 7) lack of
breaks, 8) missing exercise due to work/personal life demands,
9) loss of sleep due to longer working hours or deadlines, and
10) unable to separate work life demands. The answers ranged
from 0 (did not apply today) to 5 (applied with a lot of impact).
These stressors emerged as being some of the most relevant
ones in an exploratory survey.

End of Study. At the end of the study, participants shared their
potential expectations when having a stress sensing system
deployed on their work machine. In particular, participants
answered the following questions: 1) what would be your
comfort level with different sensing modalities (e.g., wearable
device, computer usage, webcam, etc.)? and 2) how would you
prefer your data to be stored (e.g., local vs. cloud)?

2) Passive Sensing: To capture the digital manifestations of
stress, we developed a custom multimodal logging software
that recorded information about the participants’ activities,
behaviors, and physiological states. The main components are
as follows:

Email, Calendar, and Application Usage Information. The
software ran on the participant’s desktop computer and logged
the number of emails received in their inbox, number of
calendar appointments, and applications used (including when
they were opened and closed, in the foreground, etc.). We
logged events that were informative about an individual’s
stress level based on prior work. For example, we know that
email is one of the most significant signals of work-related
communications for information worker [25]. In addition,
calendar information contains vital workday-related information
for information workers. Especially during COVID-19, the
frequency of remote meetings has increased significantly, and
individuals spend more time in meetings, often leading to stress
and fatigue [1]. Application usage, keyboard, and mouse activity
are direct proxies of how much interaction an information
worker has with their work environment. They are often
investigated in the stress literature as meaningful signals for
detecting the stress levels of participants [14].

Face position and Facial Action Units. Based on the
relevance of facial expressions in the context of emotion
understanding, we captured a participant’s facial position and
facial action units [11]. In particular, the software used a
pipeline to process the video frames in real-time (i.e., without
storing video frames in the cloud for privacy) at 1 frame per
second. Using a convolutional neural network (CNN) facial
detector, it extracted the bounding box corresponding to the

user’s face2 and then processed this region of interest using
another CNN model to extract the probabilities of 12 facial
action units (AU01, AU02, AU04, AU05, AU06, AU09, AU12,
AU15, AU17, AU20, AU25, and AU26) [12], based on the
standard Facial Action Coding System (FACS) [11]. These
FAUs were selected as they are generally most frequently
observed and most accurate at predicting projected emotional
actions. These actions are associated with expressions of both
positive (e.g., AU12/zygomatic major/smiling) and negative
(e.g., AU04/corrugator/brow furrowing) effects. It is important
to note, however, that no action unit maps uniquely to anyone’s
expression or emotional state, but they may still capture a rich
array of users’ behaviors [32].
Non-Contact Physiological Sensing. Physiological signals
usually sensed with contact-based sensors have been frequently
used for monitoring stress but they usually require wearing
additional devices, which can be cumbersome and socially
stigmatizing [5]. To minimize these challenges while maximiz-
ing the benefits, we leveraged the previous computer vision
pipeline to extract heart rate, inter-beat intervals, and breathing
rate from subtle color and motion changes of the face using a
non-contact video-based approach [19].

B. Analysis

To help capture both stressors and potential manifestations
of stress, we extracted nine different types of features from
the different modalities (see Table I). As can be seen, two
of the feature groups were extracted from survey data, and
the rest from passively sensed information. While the original
goal was to develop a purely passive sensing method, we
decided to include sleep and eating/drinking habits as these
were previously found to be relevant in the context of stress
and could help inform future sensing efforts.

In terms of ground truth, this work considers workplace
stress at two temporal granularities: 1) instantaneous stress,
which was experienced during a period of 30 minutes and
was self-reported during experience sampling (N: 4747), and
2) daily stress, which was experienced during the workday and
self-reported during the daily check out (N: 803). The features
were extracted at these two temporal resolutions to model
momentary and daily stress. On some occasions, however, a
particular feature could not be computed due to missing data
(e.g., camera not working) so we had to implement a strategy
to impute the features. If a participant had at least 3 days of
data for a missing data stream, we imputed the missing data
with the median values of the feature of the participant. If the
participant did not have at least 3 days of data, we imputed
the missing features by taking the median of all participants.

For the machine learning analysis, we treated the problem
as a binary classification problem with low and high-stress
levels. To ensure a balanced split within each individual, we
used an adaptive baseline approach that separated the samples
of each person in a way that would minimize the difference
in sample size across the two classes. In terms of models,
we explored the predictive performance of different classifiers
that are commonly used in the context of stress prediction [5].

2https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB



TABLE I
FEATURES EXTRACTED FROM EACH DATA MODALITY.

Signal Modality Type Features
Sleep Survey Self-reported sleep quality, time participants went to bed, time participants tried to fall

asleep, number of awakenings during the sleep, time participants got out of bed, total
sleep time, and difference of total sleep time compared to the mean sleep time for each
participant.

Eating and Drinking Survey Total number of eating events, total number of caffeinated drinking episodes, difference
between breakfast and lunch time compared to the average breakfast and lunch time
within individuals.

Email Passive Total number of unique email threads, average number of CC’ed contacts, and total
number of emails that an individual received until the time that they reported stress.

Calendar Passive Total number of various meetings, total allocated time (in minutes) for different meetings
that an individual had on their calendar up to the time they provided the stress report,
total count and total duration (in minutes) for accepted meetings, number of cancelled
meetings, number of tentative meetings, number of self-meetings, and number of recurring
meetings.

Application Usage, Keyboard, and
Mouse

Passive Total number of minutes, number of different computer applications were running in
the foreground, total number of minutes different applications were being actively used
by the participant, total number of key press events from the keyboard, total number of
mouse clicks, and total number of mouse wheel rotations.

Physiological Sensing Passive Mean, median, and standard deviation of Root mean squared difference between
successive inter-beat intervals (RMSSD), beats per minute, and breaths per minute.

Facial Action Units Passive Mean, max, median, and standard deviation of action units AU01, AU02, AU04, AU05,
AU06, AU09, AU12, AU15, AU17, AU20, AU25, and AU26.

Day Specific Features Passive Hour of the day and day of the week.
Face Position Features Passive Standard deviation of face rectangle’s length, width, and standard deviation of top and

left coordinates.

In particular, we evaluated Random Forest (RF), Multilayer
Perceptron (MLP), Gradient Boosting (XGB), Support Vector
Machines with RBF Kernel (SVM), and Ridge Classifier (RC).
For a baseline comparison, we included two other classifiers:
1) a Majority classifier that always predicted the majority class
based on the training set, and 2) a Random classifier that made
random predictions.

C. Participant Recruitment and Compensation

The study participants were recruited through an email sent
to a random set of information workers at a large technology
company. As part of the eligibility criteria, participants needed
to mostly use a single work computer, avoid working in
virtual machines, be connected to the Internet, have a webcam,
and use Outlook desktop as their default email and calendar
software. In addition, their computer had to be able to run the
custom sensing software that ran on Windows OS and used
around 2 GB RAM.

We recruited a total of 50 information workers. However, one
participant dropped out during the second week of the study
due to software problems. In addition, we had to exclude three
participants from the analysis as they showed little variance
in their self-reports (< 2 std), indicating that they provided
similar responses most of the time. Considering the final
set of participants, 25 self-identified as male, 19 as female,
and 2 as non-binary/gender diverse. The large majority of
participants (71.74%) reported being in the age range of 26-45
years old. The majority of participants (60%) described their job
function to be in engineering and development, but there were
also participants working as administrative assistants, sales, and
human resources. Finally, the majority of participants (71.74%)
reported not having any direct reports. Each participant could
receive up to $300 in the form of a gift card. To promote

completion of the study, we provided a scalable monetary
reward in which each participant received $50 after the 1st
week, $50 after the 2nd week, $100 after the 3rd week, and
$100 after the 4th week.

IV. RESULTS

A. RQ1: What is the digital phenotype of remote information
workers’ stress?

To better understand workplace stress and how it manifested
in the collected data, we separately considered the two types
of stress (instantaneous and daily) and their correlation with
different variables. In particular, we used Pearson’s correlation
coefficient, reported correlation coefficients, and Bonferroni-
adjusted p-values.

1) How does instantaneous stress manifest on the data?:
Considering the experience sampling responses, we found
that self-reported stress was positively correlated with de-
mands (r=0.55, p<0.01) and negatively correlated with re-
sources (r=-0.19, p<0.01), which is consistent with prior work
examining these factors in the context of workplace stress [3].
Self-reported stress was also negatively correlated with va-
lence (r=-0.33, p<0.01) and less strongly but still significant
with arousal (r=-0.13, p<0.01). Self-reported level of demands
was negatively correlated with valence (r=-0.14, p<0.01) and
positively correlated with arousal (r=0.11, p<0.01), suggesting
that a high level of demands was generally associated with
negative and aroused feelings. Self-reported level of resources
was positively correlated with valence (r=0.31, p<0.01) and
arousal (r=0.41, p<0.01), suggesting that a high level of
resources was associated with positive and arousing feelings.

We found that lower quality of sleep was negatively corre-
lated (r=-0.22, p<0.01) with higher stress levels. Late bedtime
was associated (r=0.07, p<0.01) with a higher stress level.



These observations are aligned with previous literature on
stress [17]. More keyboard activity and less facial movement
were positively correlated with stress (r=0.05, p<0.05 and
r=0.09, p<0.05, respectively), which could be interpreted as
a proxy for high work demands and the need for sustained
attention for long periods. AU06 or cheek raiser was nega-
tively (r=-0.10, p<0.01) correlated with stress, indicating that
our participants seem to smile less when stressed. On the other
hand, AU07 or “lid tightener” was positively correlated (r=0.08,
p<0.01) with stress, which may similarly indicate prolonged
sustained attention.

2) How does daily stress manifest on the data?: When
considering the stress reported at the end of the workday, we
found that the level of demands was also significantly and
positively (r=0.57, p<0.01) correlated with stress. In contrast,
valence (r=-0.42, p<0.01) and resources (r=-0.42, p<0.01)
were negatively and significantly correlated with stress. We
did not find a significant correlation between arousal and daily
stress levels.

When considering the broader range of signals, we found
that the average time spent on different applications (r=0.11,
p<0.01) and the number of open applications (r=0.13, p<0.01)
were the only two features that were positively and significantly
correlated with stress. In addition, as part of the daily check-
out survey, participants also reported the occurrence of ten
pre-defined stressors.

High pace workday, was positively correlated with av-
erage time spent on open applications (r=0.29, p<0.001),
total number of busy slots (r=0.16, p<0.001), total dura-
tion of busy slots (r=0.16, p<0.05), total number of meet-
ings (r=0.15, p<0.05), key press count (r=0.24, p<0.001),
keyboard events (r=0.27, 0<0.001), mouse events (r=0.19,
p<0.001), and total number of open applications (r=0.29,
p<0.001). High values of these features indicate that individuals
were spending more time on their work machines, suggesting
that these signals represent high pace workday stressors.

Too many meetings, was positively correlated with number
of busy slots (r=0.26, p<0.001), busy slot duration (r=0.25,
p<0.001), total number of meetings (r=0.25, p<0.001), and
median AU12 (r=0.18, p<0.005). The results are intuitive in
that the number of busy slots, total busy slot duration, and
total meeting count were a proxy for how many meetings an
individual had on a given workday. In addition, individuals
were probably more likely to smile during meetings (as they
are social) which may be shown on AU12.

Too many emails, was positively correlated with me-
dian AU12 (r=0.13, p<0.05) and negatively correlated with
mean AU12 (r=-0.15, p<0.05) and standard deviation of
AU14 (r=-0.16, p<0.05), These signals may be indicative of
prolonged sustained attention when reading and responding to
emails.

Overly packed day, was positively correlated with number
of busy slots (r=0.18, p<0.001), busy slot duration (r=0.18,
p<0.001), total number of meetings (r=0.17, p<0.001), and
median AU12 (r=0.14, p<0.001). These features can be
indicative of high application usage, a high number of meetings,
and more smiling gestures (AU12) associated with social

interactions, respectively.
Too many ongoing activities, was positively correlated

with the average time spent in different applications (r=0.20,
p<0.001) and the number of open applications (r=0.20,
p<0.05). In addition, it was negatively correlated with mean
AU06 (r=-0.03, p<0.01).

Sitting for too long, was positively correlated with the total
# of mouse events (r=0.15, p<0.05). However, sitting for too
long was also negatively correlated with mean AU01 (r=-0.17,
p<0.05), mean AU02 (r=-0.11, p<0.001), mean AU06 (r=-0.19,
p<0.001), the standard deviation of AU01 (r=-0.14, p<0.001),
the standard deviation of AU02 (r=-0.11, p<0.001), and the
standard deviation of AU06 (r=-0.13, p<0.05). AU01 is the
facial action unit for the inner brow raiser, AU02 is the facial
action unit of the outer brow raiser, and AU06 corresponds to
the cheek raiser, which may be indicative of body fatigue.

Lack of breaks, was positively correlated with total # of
keyboard events (r=0.19, p<0.05) and total # of keyboard
events (r=0.16, p<0.05), which are proxies of prolonged
interaction with the work machine. Hence, if participants are
spending more time on their work computers, they are likely
to get less time for taking breaks. There was also a negative
correlation with AU06 (r=-0.10, p<0.05), which may similarly
indicate fatigue due to the lack of breaks.

Missing exercise due to work/personal life, was
positively correlated with mean AU04 (r=0.07, p<0.05),
mean AU07 (r=0.18, p<0.05), and standard deviation of
AU07 (r=0.22, p<0.01). AU04 is a proxy for brow lowering
facial action, and AU07 is a proxy for eyelid tightening. AU07
is also a proxy for the smiling gesture, which might mean that
participants were having frequent meetings that day.

Loss of sleep due to longer working hours or deadlines,
was positively correlated with mean AU04 (r=0.18, p<0.001),
mean AU07 (r=0.15, p<0.001), median AU04 (r=0.15,
p<0.05), median AU07 (r=0.15, p<0.05), standard devia-
tion of AU04 (r=0.20, p<0.001), and standard deviation of
AU07 (r=0.15, p<0.05). Loss of sleep was negatively correlated
with the standard deviation of face height (r=-0.25, p<0.001)
and the standard deviation of face width (r=-0.25, p<0.001).
These may be indicative of closed eyes due to tiredness.

Unable to separate work and life demands, was positively
correlated with mean AU04 (r=0.15, p<0.001) and standard
deviation of AU04 (r=0.18, p<0.001). It was negatively
correlated with the standard deviation of AU02 (r=-0.08,
p<0.05), the standard deviation of face width (r=-0.15, p<0.05),
and the standard deviation of face height (r=-0.15, p<0.05).
These findings may indicate that our participants were more
stationary in front of their cameras when experiencing this
stressor.

B. RQ2: Can we accurately recognize self-reported stress from
passively sensed data?

1) Can we detect instantaneous and daily stress levels of
remote information workers?: To assess the possibility of
recognizing self-reported stress, we conducted a 10-fold cross-
validation approach in which the entire dataset was split into
10 separate folds. These folds were then iteratively used to
generate 10 models. While the data from the training and



Fig. 1. Average F1-scores and their standard errors when considering different
modalities in for instantaneous (top) and daily stress (bottom) predictions. Red
and green horizontal lines represent the Majority and Random baseline classifiers,
respectively. FAU: Facial action units. App. usage: application usage.

testing sets were always different, it is important to note
that data from the same user may be in both training and
testing sets simultaneously (a.k.a., person-dependent models).
Random Forest and Gradient Boosting outperformed other
classifiers in terms of average F1-score, which was consistent
when considering daily stress. In particular, Random Forest
reached a performance of 78% when predicting instantaneous
stress (rightmost bar in top Figure 1) and 73% when predicting
daily stress (rightmost bar in bottom Figure 1). For simplicity,
we report Random Forest results in the rest of the analysis.

2) What is the predictive value of each sensing modality
for instantaneous and daily stress prediction?: Figure 1 (top)
shows the average performance across separate modalities
when predicting instantaneous stress. As can be seen, sleep-
based features yielded the best F1-score performance (72%),
which was followed by those associated with facial ac-
tion units (68%), camera-based physiological sensing (63%),
mail (58%), application usage (57%), calendar (48%) and day
specific features (46%). The Majority and Random baseline
classifiers yielded a performance of 37% and 48%, respectively.

Similarly, Figure 1 (bottom) shows the average performance
across separate modalities when predicting daily stress. In this
case, features associated with facial action units yielded the best
F1-score performance (71.52%), which was followed by those

Fig. 2. Average performance across participants when varying the number of
training days for instantaneous stress prediction.

associated with sleep (67.73%), eating and drinking (65.95%),
application usage (64.20%), camera-based physiological sens-
ing (60.39%), mail (59.63%), calendar (55.63%), and day
specific features (51.23%). In this case, the Majority and
Random baseline classifiers yield performance of 35% and
49%, respectively.

3) How much data do we need to personalize stress detection
models?: One difficult yet important challenge in the stress
detection literature is the ability to generalize to unseen partic-
ipants [38] (a.k.a., person-independent models). In our case,
conducting a leave-one-out protocol to predict instantaneous
stress yield an F1-score performance of 46% (leftmost score of
Figure 2), which is significantly lower than the results reported
in the previous section.

Hence, we wanted to investigate how much data from a par-
ticular participant would be needed to ensure good performance.
To do so, we iteratively added an increasing number of days
from a particular participant as part of the training set and used
the generated models to make predictions in the following days.
Figure 2 shows the average F1-score performance and their
standard deviation for a different number of days. As can be
seen, the average performance monotonically increases with the
amount of data considered as part of the training data. For instance,
with 15 days of training from each individual (3 weeks), the model
achieved a performance of 68% F1-score on the remaining week.

C. RQ3: What are key end-user considerations when deploying
stress sensing systems?

At the end of the study, participants provided their prefer-
ences in relation to having a stress sensing system at work.
We summarize some of the main findings in this section.

1) What sensing modalities are preferred by the partic-
ipants?: Participants were more comfortable sharing their
keyboard and mouse activity, followed by computer usage,
wearable device data, microphone, smartphone, and webcam.
Keyboard and mouse activity were significantly higher than any
other (Wilcoxon signed-rank test, p<0.05), and computer usage
was significantly higher than the microphone, smartphone, and
webcam modalities (p<0.01). However, it is important to note
that all the ratings were above the average, indicating that



our studied population could potentially accept all of them.
Such insights provide a direct implication for keeping user
preferences in mind while developing automated and multi-
modal systems that can be deployed to detect employees’ stress
levels continuously.

2) What kind of storage (e.g., local and cloud) do partici-
pants prefer for storing their stress-related data?: To investi-
gate if participants have any preference for where the stress-
related features and inferred stress scores should be stored, we
asked participants to identify their comfort levels if their data
were stored locally on their computers and/or in the cloud. For
both options, participants could identify their preferences using
a 5-point Likert scale, ranging from very comfortable (option 1)
to very uncomfortable (option 5). The median response for
local storage was “somewhat comfortable” (option 4), and the
median response for cloud storage was “neither comfortable
nor uncomfortable” (option 3), which were close to being
significantly different (Wilcoxon signed-rank test, p: 0.0576).
This indicates that participants felt more comfortable with the
local option, probably due to privacy concerns and the ability
to control the information more easily.

V. DISCUSSION

Our work is focused on understanding workplace stress
through passive sensing technologies. Based on our findings,
we discuss potential implications for future workplace stress
sensing systems and research.

1) Identify stressors and their digital phenotypes to mitigate
stress.: As part of our analysis, we found several signals
correlated with frequent workplace stressors. For example, a
highly paced workday is strongly correlated with a greater
amount of computer activity (e.g., application usage, keyboard,
and mouse usage) and leads to higher stress. Our choice of
stressors to investigate was informed by empirical data from
our target population. However, these stressors might not be
as pertinent to other target populations. Because stress is a
response to a variety of contextual factors that a worker is
situated in [16], thus, such response varies by individuals, it is
important to identify appropriate stressors and their digital traits
to inform the design of targeted interventions to mitigate stress.
Therefore, future research on understanding workplace stressors
should consider context- and population-specific stressors.

2) Understand workplace demands and available resources
to design person-specific interventions.: We found that high
workplace demand was positively correlated with stress and
negatively correlated with the number of available resources for
both instantaneous and daily stress. Workplace demands could
be physical, psychological, social, or organizational aspects of
the job that require sustained physical and/or psychological
(cognitive and emotional) effort to cope. Available resources
could range from physical, psychological, social, or organi-
zational aspects of life. Note that having high demands at
work may not be a negative experience or lead to higher stress.
Understanding what individuals perceive as high demands
that are negatively affecting them and what specific resources
they need to meet those demands or to cope with the stress
generated by them is necessary to design targeted interventions
that address specific resource needs.

3) Take personalization into account when building stress
models.: We found that our one-size-fits-all stress models
did not generalize to completely unobserved participants
(Section IV-B3). On the other hand, we found that personalized
models (i.e., models built using within-person data) improved
the stress prediction within our dataset, which aligns with prior
research findings [38]. These findings suggest that a one-size-
fits-all model may not work for accurate stress detection in
the workplace, possibly because stress manifests differently
for different people. Building personalized models can be
challenging to bootstrap because of a low volume of data
generated by a single person (compared to a population of
hundreds of workers). In our analysis, we found that by using
data for 3 weeks or 15 working days, our stress prediction
model was able to detect stress levels with an F1-score of
68%. We also find that adding one additional week of data
(i.e., four weeks of data collection) achieves an even higher
F1-score (74%). However, this improved model performance
comes at the cost of potentially disrupting the users’ work with
frequent Experience Sampling questions required for training
data collection. This implies that systems that train and leverage
personalized stress sensing models should consider the upfront
cold-start costs and temporal performance variability.

4) Privacy and Ethics: User privacy is a major concern with
any application that captures personal information. Privacy in
work-related stress sensing is even more sensitive since, in a
toxic work environment, work stress-related concerns can be
stigmatized [10], [37]. Hence, protecting users’ privacy of stress
sensing systems and their tracked stress-related data is critical
and must be well regulated within respective organizations.
Note that for inferring stress, we used high-level activity data
from each participant (e.g., the total number of emails in
a given window, the total number of minutes in meetings)
instead of low-level, sensitive data (e.g., email text). Such
high-level activity data pose relatively few privacy challenges,
especially in contrast to asking someone about specific kinds of
email content that they found stressful. We also used webcams
that constantly collected data from participants. Although the
features we extracted from webcams can be decoupled from
individuals’ identity (e.g., facial action units, face position),
physiological data may be considered sensitive and constant
monitoring can lead to discomfort, as we have observed from
our participants. Irrespective of the granularity and anonymity
of such data, system designers, data privacy officers, and
organizations should establish strong regulations to protect the
workers’ privacy and data while respecting their preferences
for comfort level, storage, and retention (Section IV-C2).

VI. CONCLUSION

Leveraging a multimodal data logging platform, this work
evaluated the potential use of different signals in a 4-week
study that included 46 information workers performing their
regular work in situ. The findings of our study help advance
our understanding of workplace stress and its potential digital
manifestations. In addition, we demonstrate that these signals
can be automatically detected and used for predictions of stress
with machine learning.
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