

Adaptive Best-of-Both-Worlds Algorithm for Heavy-Tailed Multi-Armed Bandits

Longbo Huang Tsinghua University

2022 MSRA Data-Driven Optimization Workshop

The Multi-Armed Bandit Model

The MAB framework has many applications

- Online advertising
- Wireless communication
- Clinical trial
- Recommender system
- AI technology
- Finance

- ...

Extensively studied

[Auer et al. 2002a][Auer et al 2002b][Agrawal&Goyal 2012][Bubeck&Cesa-Bianchi 2012][Tao et al. 2018][Kuroki et al. 2020][Du et al. 2020] [Wang&Chen 2022][Chen&Zhao&Li 2022] ...

Multi-Armed Bandits

The MAB problem

- *T* time steps, *K* actions ("arms")
- $\{l_{t,a}\}$: $T \times K$ loss matrix
- Each time we choose A_t , suffer & observe a loss l_{t,A_t}
- Minimize "pseudo-regret"

$$\max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^{T} l_{t,A_t} - \sum_{t=1}^{T} l_{t,a} \right]$$

Heavy-Tailed Multi-Armed Bandits

The Heavy-Tailed MAB problem

- *T* time steps, *K* actions ("arms")
- $\{l_{t,a}\}$: $T \times K$ loss matrix
- Adversary picks (α, σ) -heavy-tailed distributions $v_{t,1}, \dots, v_{t,K}$ with $\mathbb{E}_{X \sim \nu}[|X|^{\alpha}] \leq \sigma^{\alpha}, 1 < \alpha \leq 2$
- Each time we choose A_t , suffer & observe a loss $l_{t,A_t} \sim v_{t,A_t}$
- Minimize "pseudo-regret"

$$\max_{a \in [K]} \mathbb{E} \left[\sum_{t=1}^{T} l_{t,A_t} - \sum_{t=1}^{T} l_{t,a} \right]$$

Heavy-Tailed Multi-Armed Bandits

The Heavy-Tailed MAB problem

- *T* time steps, *K* actions ("arms")
- $\{l_{t,a}\}$: $T \times K$ loss matrix
- Adversary picks (α, σ) -heavy-tailed distributions $v_{t,1}, \dots, v_{t,K}$ with $\mathbb{E}_{X \sim \nu}[|X|^{\alpha}] \leq \sigma^{\alpha}, 1 < \alpha \leq 2$

Natural generalization in both directions

- Stochastic heavy-tailed MAB: $v_{1,a} = v_{2,a} = \cdots v_{T,a}$
- Classical Adversarial MAB: $v_{t,a}$ is a Dirac-measure at $l_{t,a} \in [0,1]$

Heavy-Tailed Multi-Armed Bandits

The Heavy-Tailed MAB problem

- *T* time steps, *K* actions ("arms")
- $\{l_{t,a}\}$: $T \times K$ loss matrix
- Adversary picks (α, σ) -heavy-tailed distributions $v_{t,1}, \dots, v_{t,K}$ with $\mathbb{E}_{X \sim \nu}[|X|^{\alpha}] \leq \sigma^{\alpha}, 1 < \alpha \leq 2$

Challenges

- Potentially unbounded 2nd moment (estimation and concentration)
- Unknown σ and α values (learning)

Representative Results on Heavy-Tailed MAB

Algorithm	Loss Type	Prior Knowledge	Total Regret
Lower-bounds (Bubeck et al., 2013)	Stochastic ^a	$lpha, \sigma$	$\Omega\left(\sigma^{\frac{\alpha}{\alpha-1}}\sum_{i\neq i^*}\Delta_i^{-\frac{1}{\alpha-1}}\log T\right)$
			$\Omega\left(\sigma K^{1-1/lpha}T^{1/lpha} ight)$
			$\mathcal{O}\left(\sum_{i \neq i^*} (rac{\sigma^{lpha}}{\Delta_i})^{rac{1}{lpha - 1}} \log T ight)$ (optimal)
RobustUCB (Bubeck et al., 2013)	Stochastic	$lpha,\sigma$	$\mathcal{O}\left(\sigma(K\log T)^{1-1/\alpha}T^{1/\alpha}\right)$
			(sub-optimal for $\log T$ factors)
Lee et al. (2020)	Stochastic	α ; require $\mu_i \in [0, 1]$	$\mathcal{O}\left(K^{1-1/lpha}T^{1/lpha}\log K ight)^{b}$
			(sub-optimal for $\log K$ factors)
	SCA-unique ^c		$\mathcal{O}\left(\sum_{i \neq i^*} \frac{1}{\Delta_i} \log T\right)$
¹ / ₂ -Tsallis-INF (Zimmert & Seldin, 2019)		[0,1]-bounded losses	(optimal for $\alpha = 2, \sigma = 1$ case)
(Zminiert & Seldin, 2015)	Adversarial		$\mathcal{O}\left(\sqrt{KT}\right)$ (optimal for $\alpha = 2, \sigma = 1$ case)
HTINF (ours)	SCA-unique	$lpha,\sigma$	$\mathcal{O}\left(\sum_{i\neq i^*} \left(\frac{\sigma^{\alpha}}{\Delta_i}\right)^{\frac{1}{\alpha-1}} \log T\right) \text{ (optimal)}$
	Adversarial		$\mathcal{O}\left(\sigma K^{1-1/lpha}T^{1/lpha} ight)$ (optimal)
Optimistic HTINF (ours)	SCA-unique	None	$\mathcal{O}\left(\sum_{i \neq i^*} \left(\frac{\sigma^{2\alpha}}{\Delta_i^{3-\alpha}}\right)^{\frac{1}{\alpha-1}} \log T\right)$
	Adversarial		$\mathcal{O}(\sigma^{\alpha}K^{\frac{\alpha-1}{2}}T^{\frac{3-\alpha}{2}})$
AdaTINF (ours)	Adversarial	None ^d	$\mathcal{O}\left(\sigma K^{1-1/lpha}T^{1/lpha} ight)$ (optimal)

Need to know σ , α before-hand

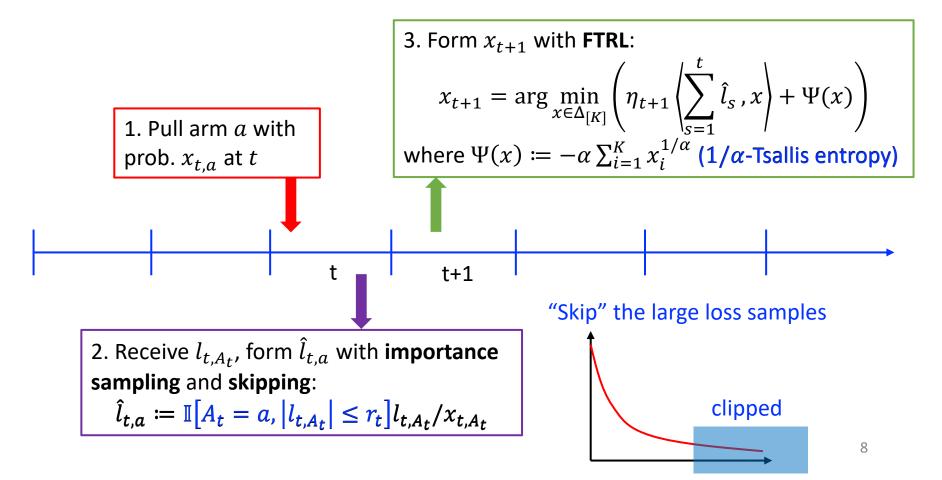
Our Contributions

Three novel algorithms

- Heavy-Tail Tsallis-INF (HTINF) known σ , α
 - First to achieve *best-of-both-worlds* for heavy-tailed MAB
 - Applicable to unknown σ , α case (OptTINF): $O(\log T)$ for stochastic and $O(K^{\frac{\alpha-1}{2}}T^{\frac{3-\alpha}{2}})$ for adversarial
- Adaptive Tsallis-INF (AdaTINF) zero knowledge
 - Optimal $O\left(\sigma K^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\right)$ regret for adversarial

Heavy-Tail Tsallis-INF (HTINF) – Known σ , α

- Based on Follow-the-Regularized-Leader (FTRL)
- A novel skipping idea to "clip" large samples



Heavy-Tail Tsallis-INF (HTINF) – Known σ , α

Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K, heavy-tail parameters α and σ **Output:** Sequence of actions $i_1, i_2, \dots, i_T \in [K]$

- 1: for $t = 1, 2, \cdots$ do
- 2: Calculate policy with learning rate $\eta_t^{-1} = \sigma t^{1/\alpha}$; Pick the regularizer $\Psi(x) = -\alpha \sum_{i=1}^{K} x_i^{1/\alpha} + \frac{1/\alpha}{\alpha}$ -Tsallis entropy $x_t \leftarrow \underset{x \in \Delta_{[K]}}{\operatorname{argmin}} \left(\eta_t \sum_{s=1}^{t-1} \langle \hat{\ell}_s, x \rangle + \Psi(x) \right)$ -Follow-the-Regularized-Leader
- 3: Sample new action $i_t \sim x_t$.
- 4: Calculate the skipping threshold $r_t \leftarrow \Theta_{\alpha} \eta_t^{-1} x_{t,i_t}^{1/\alpha}$ where $\Theta_{\alpha} = \min\{1 - 2^{-\frac{\alpha-1}{2\alpha-1}}, (2 - \frac{2}{\alpha})^{\frac{-1}{2-\alpha}}\}$. Skipping threshold (avoid overly large loss in estimation)
- 5: Play according to i_t and observe loss feedback ℓ_{t,i_t} .
- 6: **if** $|\ell_{t,i_t}| > r_t$ then
- 7: $\hat{\ell}_t \leftarrow \mathbf{0}$.
- 8: **else**

9: Construct weighted importance sampling loss estimator l̂_{t,i} ← l_{t,i} ⊥[i = i_t], ∀i ∈ [K].
10: end if
11: end for

Heavy-Tail Tsallis-INF (HTINF) – Known σ , α

Theorem (Informal) HTINF achieves

Adversarial environment

$$R_T \le O\left(K^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\log K\right)$$

• Stochastic environment

$$R_T \le O\left(\sigma^{\frac{\alpha}{\alpha-1}} \sum_{a \neq a^*} \Delta_i^{-\frac{1}{\alpha-1}} \log T\right)$$

Remark

 Best-of-both-worlds: Both cases are optimal without knowing which environment beforehand

Adaptivity to unknown σ , α

Theorem (Informal) When σ , α are unknown, running HTINF with $\sigma = 1$, $\alpha = 2$ (OptTINF) achieves

Adversarial environment

$$R_T \le O\left(\sigma^{\alpha} K^{\frac{\alpha-1}{2}} T^{\frac{3-\alpha}{2}} + \sqrt{KT}\right)$$

• Stochastic environment $R_T \le O\left(\sigma^{\frac{2\alpha}{\alpha-1}} \sum_{a \ne a^*} \Delta_i^{-\frac{3-\alpha}{\alpha-1}} \log T\right)$

Remarks

- Still $O(\log T)$ regret for stochastic case
- o(T) regret for adversarial case

Regret decomposition of HTINF

$$\mathcal{R}_{T}(y) \triangleq \sum_{t=1}^{T} \mathbb{E}\left[\langle x_{t} - y, \mu_{t} \rangle\right] \quad (y \in \Delta_{[K]})$$
$$= \mathbb{E}\left[\sum_{t=1}^{T} \langle x_{t} - y, \mu_{t} - \mu_{t}' \rangle\right] + \mathbb{E}\left[\sum_{t=1}^{T} \langle x_{t} - y, \hat{\ell}_{t} \rangle\right]$$
Skipping gap FTRL Error

where $\mu'_{t,i} \triangleq \mathbb{E}[\ell_{t,i} \mathbb{1}[|\ell_{t,i}| \le r_t] \mid \mathcal{F}_{t-1}, i_t = i]$ is the clipped expectation

Skipping threshold impacts the regret

- A larger r_t leads to a smaller skipping gap but a larger FTRL error
- Optimal tradeoff achieved at $r_t = \Theta(\eta_t^{-1} x_{t,i_t}^{1/\alpha})$

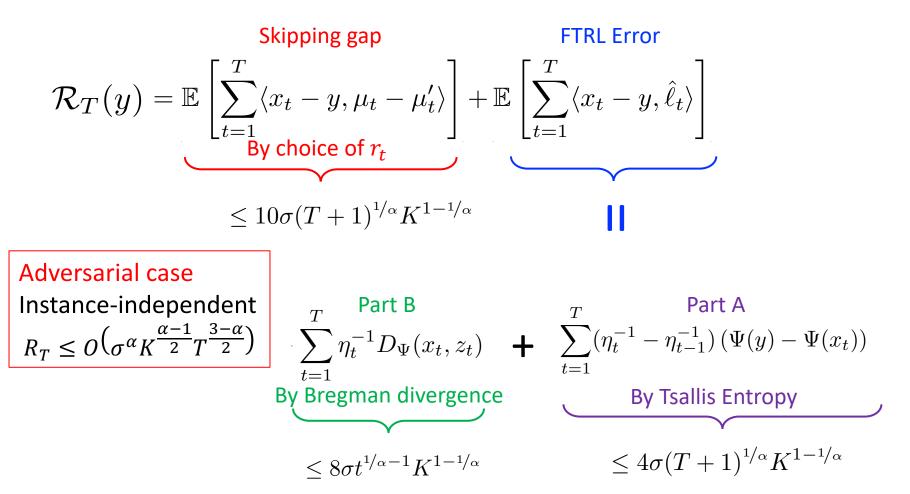
Regret decomposition of HTINF

$$\mathcal{R}_{T}(y) \triangleq \sum_{t=1}^{T} \mathbb{E}\left[\langle x_{t} - y, \mu_{t} \rangle\right] \quad (y \in \Delta_{[K]})$$
$$= \mathbb{E}\left[\sum_{t=1}^{T} \langle x_{t} - y, \mu_{t} - \mu_{t}' \rangle\right] + \mathbb{E}\left[\sum_{t=1}^{T} \langle x_{t} - y, \hat{\ell}_{t} \rangle\right]$$
Skipping gap FTRL Error

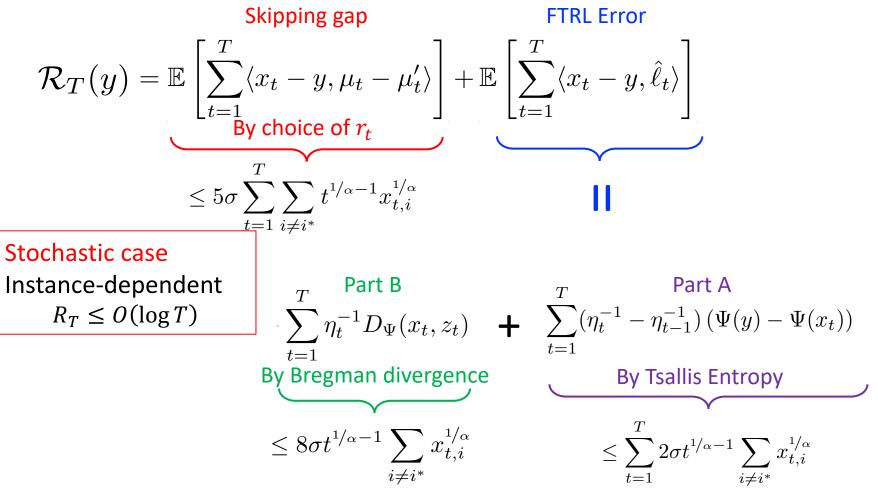
where $\mu'_{t,i} \triangleq \mathbb{E}[\ell_{t,i} \mathbb{1}[|\ell_{t,i}| \leq r_t] | \mathcal{F}_{t-1}, i_t = i]$ is the clipped expectation Analysis idea

- "Self-bounding property" similar to (Zimmert & Seldin, 2019)
- <u>First</u> result for $1/\alpha$ -Tsallis ($\alpha < 2$) regularized FTRL

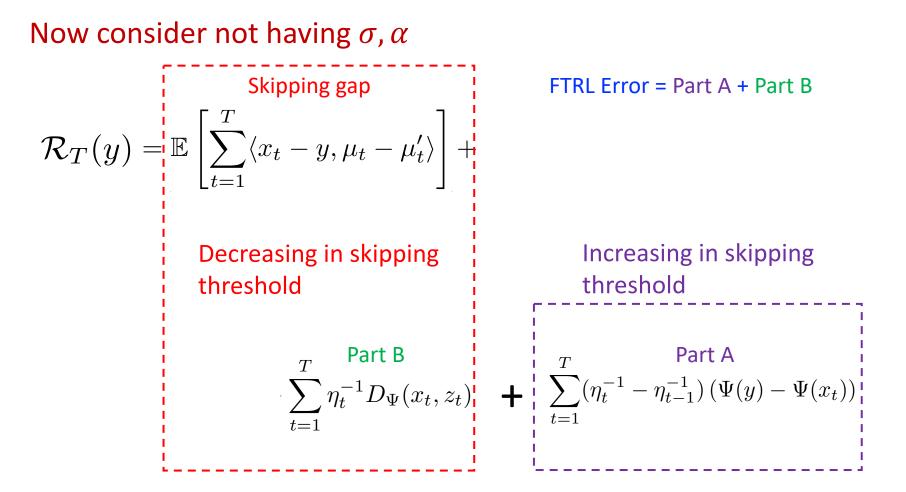
Regret decomposition of HTINF



Regret decomposition of HTINF



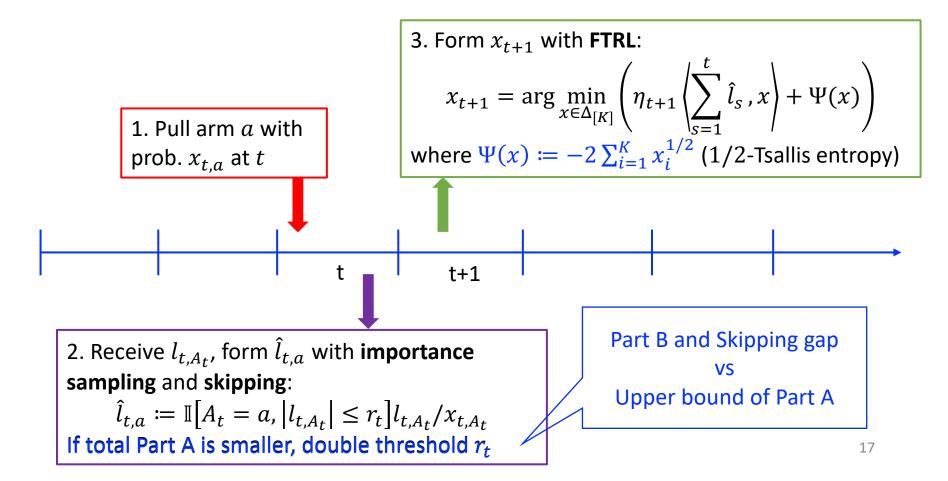
Adaptive Tsallis-INF (AdaTINF) – Unknown σ , α



AdaTINF Idea: adjust the tradeoff between <u>Part A</u> vs <u>Skipping + Part B</u> at runtime

Adaptive Tsallis-INF (AdaTINF) – Unknown σ , α

AdaTINF Idea: Using <u>doubling trick</u> to tune learning rate and skipping threshold



Adaptive Tsallis-INF (AdaTINF) – Unknown σ , α

Theorem (Informal) AdaTINF achieves the following for the adversarial environment:

$$R_T \le O\left(\sigma K^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\right)$$

Remarks

- Minimax optimal: Matches the lower bound (Bubeck et al 2013)
- Prior concentration methods heavily rely on knowing α
- Achieving instance-dependent optimality and BoBW are still open

Conclusions

Three novel algorithms for heavy-tailed MAB

- Heavy-Tail Tsallis-INF (HTINF) known σ , α
 - First to achieve *best-of-both-worlds* for heavy-tailed MAB
 - Applicable to unknown σ , α case (OptTINF): $O(\log T)$ for stochastic and $O(K^{\frac{\alpha-1}{2}}T^{\frac{3-\alpha}{2}})$ for adversarial
- Adaptive Tsallis-INF (AdaTINF) zero knowledge

• Optimal
$$O\left(\sigma K^{1-\frac{1}{\alpha}}T^{\frac{1}{\alpha}}\right)$$
 regret for adversarial

Reference: J. Huang, Y. Dai, L. Huang, "Adaptive Best-of-Both-Worlds Algorithm for Heavy-Tailed Multi-Armed Bandits," ICML 2022. 19

Institute for Interdisciplinary Information Sciences, Tsinghua Universit

Thank you!

More info: https://people.iiis.tsinghua.edu.cn/~huang