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The MAB framework has many applications
- Online advertising

- Wireless communication
- Clinical trial

- Recommender system

- AI technology
- Finance

- …

The Multi-Armed Bandit Model

Extensively studied 
[Auer et al. 2002a][Auer et al 2002b][Agrawal&Goyal 2012][Bubeck&Cesa-Bianchi
2012][Tao et al. 2018][Kuroki et al. 2020][Du et al. 2020] [Wang&Chen
2022][Chen&Zhao&Li 2022] …
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Multi-Armed Bandits
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The MAB problem
• 𝑇 time steps, 𝐾 actions (“arms”)

• 𝑙!,# : 𝑇×𝐾 loss matrix

• Each time we choose 𝐴!, suffer & observe a loss 𝑙!,$!
• Minimize “pseudo-regret” 
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Heavy-Tailed Multi-Armed Bandits
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The Heavy-Tailed MAB problem
• 𝑇 time steps, 𝐾 actions (“arms”)

• 𝑙!,# : 𝑇×𝐾 loss matrix

• Adversary picks 𝛼, 𝜎 -heavy-tailed distributions 𝜈!,$, … , 𝜈!,% with
𝔼&∼( 𝑋 ) ≤ 𝜎), 1 < 𝛼 ≤ 2

• Each time we choose 𝐴!, suffer & observe a loss 𝑙!,*! ∼ 𝜈!,*!
• Minimize “pseudo-regret” 

m𝑎𝑥
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The Heavy-Tailed MAB problem
• 𝑇 time steps, 𝐾 actions (“arms”)

• 𝑙!,# : 𝑇×𝐾 loss matrix

• Adversary picks 𝛼, 𝜎 -heavy-tailed distributions 𝜈!,$, … , 𝜈!,% with
𝔼&∼( 𝑋 ) ≤ 𝜎), 1 < 𝛼 ≤ 2

Natural generalization in both directions
• Stochastic heavy-tailed MAB: 𝜈$,# = 𝜈+,# = ⋯𝜈,,#
• Classical Adversarial MAB: 𝜈!,# is a Dirac-measure at 𝑙!,# ∈ [0,1]
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The Heavy-Tailed MAB problem
• 𝑇 time steps, 𝐾 actions (“arms”)

• 𝑙!,# : 𝑇×𝐾 loss matrix

• Adversary picks 𝛼, 𝜎 -heavy-tailed distributions 𝜈!,$, … , 𝜈!,% with
𝔼&∼( 𝑋 ) ≤ 𝜎), 1 < 𝛼 ≤ 2

Challenges
• Potentially unbounded 2nd moment (estimation and concentration)
• Unknown 𝜎 and 𝛼 values (learning)



Representative Results on Heavy-Tailed MAB

Adaptive Best-of-Both-Worlds Algorithms for Heavy-Tailed MAB

Table 1. An overview of the proposed algorithms and related works.

Algorithm Loss Type Prior Knowledge Total Regret

Lower-bounds
(Bubeck et al., 2013) Stochastica α,σ

Ω

(

σ
α

α−1
∑

i!=i∗ ∆
− 1

α−1

i logT

)

Ω
(

σK1−1/αT 1/α
)

RobustUCB
(Bubeck et al., 2013) Stochastic α,σ

O
(
∑

i!=i∗(
σα

∆i
)

1
α−1 logT

)

(optimal)

O
(

σ(K logT )1−1/αT 1/α
)

(sub-optimal for logT factors)

Lee et al. (2020) Stochastic α; require µi ∈ [0, 1]
O
(

K1−1/αT 1/α logK
)

b

(sub-optimal for logK factors)

1/2-Tsallis-INF
(Zimmert & Seldin, 2019)

SCA-uniquec

require α = 2 and

[0, 1]-bounded losses

O

(

∑

i!=i∗

1
∆i

logT

)

(optimal for α = 2,σ = 1 case)

Adversarial O
(√

KT
)

(optimal for α = 2,σ = 1 case)

HTINF (ours)
SCA-unique

α,σ
O

(

∑

i!=i∗
(σ

α

∆i
)

1
α−1 logT

)

(optimal)

Adversarial O
(

σK1−1/αT 1/α
)

(optimal)

Optimistic HTINF (ours)
SCA-unique

None
O
(
∑

i!=i∗

(
σ2α

∆3−α
i

) 1
α−1

logT

)

Adversarial O(σαK
α−1

2 T
3−α
2 )

AdaTINF (ours) Adversarial Noned O
(

σK1−1/αT 1/α
)

(optimal)

aAs discussed in Section 3, the instance-independent lower bounds automatically apply to adversarial settings, and the main result of
this paper shows that it is indeed tight even for adversarial settings.

bLee et al. (2020) regarded σ as a constant when stating their regret bounds. By designing different estimators, they also gave various

instance-dependent bounds, each with (log T )
α

α−1 (sub-optimal) dependency on T . One can check Table 1 in their paper for more
details.

cAbbreviation for stochastically constrained adversarial settings with a unique optimal arm.
dThough the time horizon T is assumed to be known in Algorithm 3, it is in fact non-essential for AdaTINF. The removal of T , via

a usual doubling trick, will not cause extra factors. Check Appendix D for more discussions.

Need to know 𝜎, 𝛼 before-hand 6



Our Contributions

Three novel algorithms

• Heavy-Tail Tsallis-INF (HTINF) – known 𝜎, 𝛼

• First to achieve best-of-both-worlds for heavy-tailed MAB

• Applicable to unknown 𝜎, 𝛼 case (OptTINF): 𝑂(log𝑇) for

stochastic and 𝑂(𝐾
"#$
% 𝑇

&#"
% ) for adversarial

• Adaptive Tsallis-INF (AdaTINF) – zero knowledge

• Optimal 𝑂 𝜎𝐾$/
$
"𝑇

$
" regret for adversarial
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Heavy-Tail Tsallis-INF (HTINF) – Known 𝜎, 𝛼

• Based on Follow-the-Regularized-Leader (FTRL)
• A novel skipping idea to “clip” large samples

t+1t

1. Pull arm 𝑎 with 
prob. 𝑥",$ at 𝑡

2. Receive 𝑙",%!, form 4𝑙",$ with importance 
sampling and skipping:  
4𝑙",$ ≔ 𝕀 𝐴" = 𝑎, 𝑙",%! ≤ 𝑟" 𝑙",%!/𝑥",%!

3. Form 𝑥"&' with FTRL: 

𝑥"&' = arg min
(∈*[#]

𝜂"&' C
+,'

"

4𝑙+ , 𝑥 + Ψ(𝑥)

where Ψ 𝑥 ≔ −𝛼∑-,'. 𝑥-
'/0 (1/𝛼-Tsallis entropy)(1/𝛼-Tsallis entropy)

8

4𝑙",$ ≔ 𝕀 𝐴" = 𝑎, 𝑙",%! ≤ 𝑟" 𝑙",%!/𝑥",%!

“Skip” the large loss samples

clipped



Adaptive Best-of-Both-Worlds Algorithms for Heavy-Tailed MAB

Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.

Heavy-Tail Tsallis-INF (HTINF) – Known 𝜎, 𝛼

9

1/𝛼-Tsallis entropy

Follow-the-Regularized-Leader

Skipping threshold (avoid 
overly large loss in estimation)

Importance Sampling 
(biased due to skipping)



Heavy-Tail Tsallis-INF (HTINF) – Known 𝜎, 𝛼
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Theorem (Informal) HTINF achieves
• Adversarial environment

𝑅, ≤ 𝑂 𝐾$/
$
)𝑇

$
) log𝐾

• Stochastic environment

𝑅, ≤ 𝑂 𝜎
)
)/$ ?

#K#∗
ΔL
/ $
)/$ log 𝑇

Remark
• Best-of-both-worlds: Both cases are optimal without knowing 

which environment beforehand



Adaptivity to unknown 𝜎, 𝛼

11

Theorem (Informal) When 𝜎, 𝛼 are unknown, running HTINF with 
𝜎 = 1, 𝛼 = 2 (OptTINF) achieves
• Adversarial environment

𝑅, ≤ 𝑂 𝜎)𝐾
)/$
+ 𝑇

M/)
+ + 𝐾𝑇

• Stochastic environment

𝑅, ≤ 𝑂 𝜎
+)
)/$ ?

#K#∗
ΔL
/M/))/$ log 𝑇

Remarks
• Still 𝑂 log 𝑇 regret for stochastic case
• o 𝑇 regret for adversarial case



HTINF Regret Analysis
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Regret decomposition of HTINF

Adaptive Best-of-Both-Worlds Algorithms for Heavy-Tailed MAB

Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.

FTRL ErrorSkipping gap

where
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.

is the clipped expectation

Skipping threshold impacts the regret
• A larger 𝑟! leads to a smaller skipping gap but a larger FTRL error

• Optimal tradeoff achieved at 𝑟! = Θ(𝜂!/$𝑥!,L!
$/))
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E
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]

︸ ︷︷ ︸
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(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves
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(
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.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:
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(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
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.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
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∑

t=1

〈xt − y, µt − µ′
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]
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]
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]
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FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
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)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E
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FTRL error
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where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑
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〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves
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.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:
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[
T
∑

t=1

〈xt − y, µt − µ′
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where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑
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〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves
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ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:
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]
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where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O
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α−1

∑
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∆
− 3−α
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 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.

Skipping gap FTRL Error
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

Adaptive Best-of-Both-Worlds Algorithms for Heavy-Tailed MAB

5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]
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where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives
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5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
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+
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where
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(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =
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i=1 x
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i . Hence, each summand in part (A) becomes
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due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
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5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt
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∑
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x
1/α
t,i (8)
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1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
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]
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where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
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5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

By choice of 𝑟"
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
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t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑
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η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α
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1/α
t,i
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]
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By Tsallis Entropy
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

By Bregman divergence
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.

Skipping gap FTRL Error
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

+
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

By Tsallis Entropy
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

By Bregman divergence
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)

Stochastic case
Instance-dependent

𝑅1 ≤ 𝑂 log 𝑇
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.

4.2. Extending to Unknown α,σ Case: OptTINF

The two hyper-parameters σ,α in Algorithm 3 are just set
to the true heavy-tail parameters of the loss distributions
when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
3.1 and 3.6 hold, the following two statements are valid.

1. In adversarial cases, Algorithm 2 achieves

RT ≤ O
(

σαK
α−1
2 T

3−α
2 +

√
KT

)

.

2. In stochastically constrained adversarial environ-

ments with a unique optimal arm i∗ (Assumption 3.5),

it ensures

RT ≤ O



σ
2α

α−1

∑

i%=i∗

∆
− 3−α

α−1

i logT



 .

For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:

RT (y) = E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

+ E

[
T
∑

t=1

〈xt − y, µ′
t〉

]

= E

[
T
∑

t=1

〈xt − y, µt − µ′
t〉

]

︸ ︷︷ ︸

skipping gap

+E

[
T
∑

t=1

〈xt − y, $̂t〉

]

︸ ︷︷ ︸

FTRL error

(3)

where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Algorithm 1 Heavy-Tail Tsallis-INF (HTINF)

Input: Number of arms K , heavy-tail parameters α and σ
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: for t = 1, 2, · · · do
2: Calculate policy with learning rate η−1

t = σt1/α;

Pick the regularizer Ψ(x) = −α
∑K

i=1 x
1/α
i :

xt ← argmin
x∈#[K]

(

ηt

t−1
∑

s=1

〈$̂s, x〉+Ψ(x)

)

3: Sample new action it ∼ xt.

4: Calculate the skipping threshold rt ← Θαη
−1
t x

1/α
t,it

where Θα = min{1− 2−
α−1
2α−1 , (2− 2

α )
1

2−α }.
5: Play according to it and observe loss feedback $t,it .
6: if |$t,it | > rt then

7: $̂t ← 0.
8: else

9: Construct weighted importance sampling loss es-

timator $̂t,i ← "t,i
xt,i

[i = it], ∀i ∈ [K].
10: end if

11: end for

The O(log T ) instance-dependent bound in Theorem 4.1 is
due to a property similar to the self-bounding property of
1/2-Tsallis entropy (Zimmert & Seldin, 2019). For α < 2,
such properties of 1/α-Tsallis entropy do not automatically
hold, they are made possible by our novel skipping mecha-
nism with action-dependent threshold.
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when they are known before-hand. When the distributions’
heavy-tail parameters α,σ are both unknown to the agent,
we can prove that by directly running HTINF with algo-
rithm hyper-parameters α = 2 and σ = 1 (not necessarily
equal to the true α,σ values) “optimistically” as in Algo-
rithm 2, one can still achieve O(log T ) regret in stochastic
case and sub-linear regret in adversarial case.

Algorithm 2 Optimistic HTINF (OptTINF)

Input: Number of arms K
Output: Sequence of actions i1, i2, · · · , iT ∈ [K]

1: Run HTINF (Algorithm 1) with hyper-parametersα =
2 and σ=1.

The performance of Algorithm 2 is described below. As the
analysis is quite similar to that of Algorithm 1, we postpone

factors also appear in prior upper-bounds and lower-bounds on
heavy-tailed MAB, see e.g. (Bubeck et al., 2013) Theorem 1 and
Theorem 3.

the formal proof to Appendix B.

Theorem 4.2 (Performance of OptTINF). If Assumptions
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it ensures
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For both cases, σ and α in the regret bounds refer to the
true heavy-tail parameters of the loss distributions.

Theorem 4.2 claims that when facing an instance with un-

known 1 < α < 2, Algorithm 2 still guarantees O(T
3−α

2 )
“no-regret” performance and O(logT ) instance-dependent
regret upper-bound for stochastic instances.

5. Regret Analysis of HTINF

In this section, we sketch the analysis of Algorithm 1. By
definition, we need to bound

RT (y) !
T
∑

t=1

E [〈xt − y, µt〉] (y ∈ *[K]) (2)

for the one-hot vector y ! ei∗ . For any t ∈ [T ], i ∈ [K],
let µ′

t,i ! E[$t,i [|$t,i| ≤ rt] | Ft−1, it = i]. For a given y,
we decompose RT (y) into two parts:
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t〉

]
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]
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where the last step is due to E[$̂t | Ft−1] = µ′
t. We call the

first part the skipping gap, and the second, the FTRL error.

In the following sections, we will show that both
parts can be controlled and transformed into expres-
sions similar to the bounds with self-bounding properties
in (Zimmert & Seldin, 2019), guaranteeing best-of-both-
worlds style regret upper-bounds. Therefore, the design of
HTINF and our new analysis generalizes the self-bounding
property of (Zimmert & Seldin, 2019) from 1/2-Tsallis en-
tropy regularizer to general α-Tsallis entropy regularizers
where 1/2 ≤ α < 1.
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Now consider not having 𝜎, 𝛼
Skipping gap FTRL Error = Part A + Part B
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5.1. To Control the Skipping Gap

To control the skipping gap part, notice that for all t ∈
[T ], i ∈ [K], we can bound

µt,i − µ′
t,i = E [|!t,i| [|!t,i| > rt] | Ft−1, it = i]

≤ E
[

|!t,i|αr1−α
t | Ft−1, it = i

]

≤ σαr1−α
t = Θ1−α

α σt
1/α−1x

1/α−1
t,i

where Θα is a factor in rt and only dependent on α, as
defined in Line 4 of Algorithm 1. Moreover, by Assump-
tion 3.6, µt,i∗ − µ′

t,i∗ ≥ 0 a.s. Summing over i and t gives

T
∑

t=1

〈xt − ei∗ , µt − µ′
t〉 ≤ Θ1−α

α σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i

≤ 5σ
T
∑

t=1

∑

i#=i∗

t
1/α−1x

1/α
t,i (4)

≤ 10σ(T + 1)
1/αK1−1/α. (5)

5.2. To Control the FTRL Error

For the FTRL error part, we follow the regular analysis for
FTRL algorithms. Note that our skipping mechanism is
equivalent to plugging in !̂t = 0 for all skipped time step
t in a FTRL framework for MAB algorithms. Therefore,
due to the definition that E[!̂t] = µ′

t, we can leverage most
standard techniques on regret analysis of a FTRL algorithm
and obtain following lemma.

Lemma 5.1 (FTRL Regret Decomposition).
T∑

t=1

〈xt − y, !̂t〉 ≤
T∑

t=1

(η−1
t − η−1

t−1) (Ψ(y)−Ψ(xt))

︸ ︷︷ ︸

Part (A)

+
T
∑

t=1

η−1
t DΨ(xt, zt)

︸ ︷︷ ︸

Part (B)

where

zt ! ∇Ψ∗
(

∇Ψ(xt)− ηt [|!t,it | ≤ rt](!̂t − !t,it1)
)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
drifting the loss vectors (Wei & Luo, 2018) !̂′t ! !̂t−!t,it1.

Intuitively, one can see that feeding !̂′t into a FTRL frame-

work will produce exactly the same action sequence as !̂t.

We then divide this upper-bound in Lemma 5.1 into two
parts, parts (A) and (B), and analyze them separately.

5.2.1. BOUND FOR PART (A)

As y is an one-hot vector, we have Ψ(y) = −α for Ψ(x) =

−α
∑K

i=1 x
1/α
i . Hence, each summand in part (A) becomes

(

η−1
t − η−1

t−1

)

(

−α+ α
K
∑

i=1

x
1/α
i

)

≤ 2σ
1

α
t
1/α−1 · α

∑

i#=i∗

x
1/α
t,i

due to the concavity of t1/α (Lemma E.6) and the fact that
xt,i ≤ 1. This further implies

(A) ≤
T
∑

t=1

2σt
1/α−1

∑

i#=i∗

x
1/α
t,i (6)

≤ 4σ(T + 1)
1/αK1−1/α. (7)

5.2.2. BOUND FOR PART (B)

We can bound the expectation of each summand in part (B)
as the following lemma states.

Lemma 5.2. Algorithm 1 ensures

E[η−1
t DΨ(xt, zt) | Ft−1] ≤ 8σt

1/α−1
∑

i#=i∗

x
1/α
t,i (8)

≤ 8σt
1/α−1K1−1/α. (9)

5.3. Combining All Parts

In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that

RT ≤ E

[ T
∑

t=1

∑

i#=i∗

15σ

(
1

t

)1−1/α

x
1/α
t,i

︸ ︷︷ ︸

!st,i

]

. (10)
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where Θα is a factor in rt and only dependent on α, as
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equivalent to plugging in !̂t = 0 for all skipped time step
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due to the definition that E[!̂t] = µ′
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)

.

In Lemma 5.1, zt is an intermediate action probability-like
measure vector (which does not necessarily sum up to 1)
during the FTRL algorithm. Here we leverage a trick of
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Intuitively, one can see that feeding !̂′t into a FTRL frame-
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)
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xt,i ≤ 1. This further implies
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x
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t,i (8)
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In order to derive the claimed regret upper-bounds in The-
orem 4.1, it suffices to plug in the bounds for the terms in
Eq. (3) and Lemma 5.1.

Adversarial Case (Statement 1 in Theorem 4.1): To ob-
tain an instance-independent bound for the expected total
pseudo-regret RT , we can plug inequalities (5), (7) and (9)
into Eq. (3) to obtain

RT ≤ 30σK1−1/α(T + 1)
1/α.

Stochastically Constrained Adversarial Case (State-

ment 2 in Theorem 4.1): To obtain an instance-
dependent bound for RT , we leverage the arm-pulling
probability {xt} dependent bounds (6) and (8) for the
FTRL part of RT . After plugging them together with (4)
into (3), we see that
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1

t
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+
Part B Part A

AdaTINF Idea: adjust the tradeoff between Part A vs Skipping + Part B
at runtime

Decreasing in skipping 
threshold  

Increasing in skipping 
threshold  
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t+1t

1. Pull arm 𝑎 with 
prob. 𝑥",$ at 𝑡

2. Receive 𝑙",%!, form 4𝑙",$ with importance 
sampling and skipping:  

4𝑙",$ ≔ 𝕀 𝐴" = 𝑎, 𝑙",%! ≤ 𝑟" 𝑙",%!/𝑥",%!
If total Part A is smaller, double threshold 𝑟"

3. Form 𝑥"&' with FTRL: 

𝑥"&' = arg min
(∈*[#]

𝜂"&' C
+,'

"

4𝑙+ , 𝑥 + Ψ(𝑥)

where Ψ 𝑥 ≔ −2∑-,'. 𝑥-
'/3 (1/2-Tsallis entropy)

AdaTINF Idea: Using doubling trick to tune learning rate and skipping 
threshold

Part B and Skipping gap
vs

Upper bound of Part A

If total Part A is smaller, double threshold 𝑟"
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Theorem (Informal) AdaTINF achieves the following for 
the adversarial environment:

𝑅( ≤ 𝑂 𝜎𝐾)*
)
+𝑇

)
+

Remarks
• Minimax optimal: Matches the lower bound (Bubeck et al 2013)
• Prior concentration methods heavily rely on knowing 𝛼
• Achieving instance-dependent optimality and BoBW are still open
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Three novel algorithms for heavy-tailed MAB

• Heavy-Tail Tsallis-INF (HTINF) – known 𝜎, 𝛼

• First to achieve best-of-both-worlds for heavy-tailed MAB

• Applicable to unknown 𝜎, 𝛼 case (OptTINF): 𝑂(log𝑇) for

stochastic and 𝑂(𝐾
"#$
% 𝑇

&#"
% ) for adversarial

• Adaptive Tsallis-INF (AdaTINF) – zero knowledge

• Optimal 𝑂 𝜎𝐾$/
$
"𝑇

$
" regret for adversarial

Reference: J. Huang, Y. Dai, L. Huang, “Adaptive Best-of-Both-Worlds
Algorithm for Heavy-Tailed Multi-Armed Bandits,” ICML 2022.
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More info: https://people.iiis.tsinghua.edu.cn/~huang


