Online Facility Location with Predictions Shaofeng Jiang Peking University

Joint work with Erzhi Liu, You Lyu, Zhihao Tang, Yubo Zhang

Algorithm Design with Predictions

Traditional algorithm design: focus on worst-case

- Strong guarantee, but often too pessimistic to be useful in practice
- ML techniques:
	- Data-driven, can leverage the structure of data, performs well in practice

Goal: design algorithms with a learned predictor to go beyond worst-case

Can We Trust The Predictor?

Unfortunately, perfectly-robust ML predictor is unlikely to exist

Adversarial example attack: small but structured noise

 $+.007 \times$

"panda" 57.7% confidence

Utilizing Untrusted Predictions: LV Framework (Lykouris-Vassilvitskii, JACM' 21)

Premises:

• Access to an untrusted predictor with error $η$ (under certain measure)

Consistency:

Robustness:

• if $η \rightarrow ∞$ then algorithm still has worst-case guarantee

Algorithm does NOT know *η* in advance!

This requirement may bypass certain lower bounds

• if $η \rightarrow 0$ then algorithm (nearly) achieves optimal

Simple Example: Binary Search

Initial guess: *h* Iterative-doubling from *h O*(log|*h* − *i**|) $\textsf{Error } \eta = |h - i^*|$

Worst-case binary search *O*(log *n*)

Facility Location

- Fundamental problem in OR and CS Input: metric space (V,d) , demand points $X = (x_1,...,x_n) \subseteq V$ Classical setting:
	-

where f_i is the facility assigned to x_i

Opening cost

∑

f∈*F*

• Find a set of open facilities $F \subseteq V$ (each with opening cost $w(f)$) s.t. Connection cost *w*(*f*) + ∑ *xi* ∈*X* $d(x_i, f_i)$

Online Setting

Input: metric space (V,d) , demand points $X=(x_1,...,x_n)\subseteq V$ Online: when x_i arrives, algorithm must irrevocably assign x_i to an open facility • The next x_{i+1} is only revealed after x_i is assigned Competitive ratio: max *X* [ALG(*X*)] $\frac{1}{\text{OPT}(X)} \geq 1$

-
-
-

Worst-case relative performance

The Prediction Model

Error measure:

Results: Nearly-tight Bounds

 $O(\log n)$ even when η_{∞} is large; Matches an UB by Meyerson (FOCS' 01)

This generalizes an $\tilde{\Omega}(\log(n))$ worst-case lower bound by Fotakis (Algorithmica, 2008)

Related error measure: η_1 := $\sum d(f)$ 1≤*i*≤*n*

 $\Omega(\log (n\eta_{\infty}/\mathrm{OPT}))$ -competitive (with $\mathrm{OPT} = O(1)$), even when $\eta_1 = O(1)$. $(\log(n\eta_{\infty}/\text{OPT}))$ -competitive (with $\text{OPT} = O(1)$), even when $\eta_1 = O(1)$

Lower bound: For every $\eta_{\infty} \in (0,1]$, any randomized online algorithm is ˜

Results: Experiments

Greedy predictor

• Use 30% dataset as the training set, and compute OPT from it • When online demand arrive, generate prediction from current OPT • Update OPT, as OPT on the dataset union the new request

Error (η_{∞}) vs ratio for Twitter dataset Performance when using the greedy predictor

Simulated predictor

Baselines: Follow-Prediction; Meyerson is an *O*(log *n*)-competitive worst-case algo.

Strategy of Algorithm Design

$\eta = 0$ and $\eta \rightarrow \infty$ are two extremes

• Corresponding algorithms: always-trust-predictor vs worst-case algorithm

Strategy: start with worst-case algorithm, then extend it to use the prediction Worst-case algorithm: *O*(log *n*)-competitive by Meyerson (FOCS' 01)

$$
x_i \ (F := F \cup \{x_i\})
$$

On average, $O(1) \cdot \text{OPT}$ cost before opening facility at some y in the inner ring

Meyerson's Algorithm

- When x_i arrives: For simplicity, consider the uniform opening cost $w(f) = w, \forall f \in V$ Initialize open facilities *F* := ∅ Expected cost of x_i is $\leq \delta/w \cdot w + \delta \leq 2d(x_i, F)$
	- Let $\delta := d(x_i, F)$ be the min-dist to the open facilities F
	- With prob. δ/w , open a facility at x_i ($F := F \cup \{x_i\}$)
	- Assign x_i to the nearest facility in F

Conclusion: ratio = O (# of rings)

Demand points x on or outside the f ring: $d(x,f) = O(1) \cdot d(x,f^*)$, so O(1) to OPT

OPT/*n*

 $f \in OPT$

2*i*

f ∈ *F*

x

y

Key Property

algorithm is $O(\log (nη/OPT))$ -competitive, where *d*(*F*, OPT) := min

In other words, every facility opened in OPT has $f \in F$ within dist η

(Follows from last slide: # of rings = $\log(\eta/(\mathrm{OPT}/n)) = \log(n\eta/\mathrm{OPT}))$

- $\textsf{Suppose the initial open facilities}\,F\,\text{satisfies}\,d(F,\text{OPT})\leq \eta\,\text{then}\,\text{Meyerson's}\,,$
	- *f*∈*F*,*f*′∈OPT *d*(*f*, *f*′)
	-
	-

Why it works?

- Let c_i^* be the (offline) optimal facility that x_i is assigned to
- Prediction error guarantee: *d*(*f* f_i^{opt} , f_i^{opt}) $\leq \eta_{\infty}$
- Hence, the very first facilities F we open satisfies $d(F, \mathrm{OPT}) \leq \eta_{\infty}$

The cost is $O(1) \cdot \text{OPT}$ before this F is open Implies the main bound:

- Algorithm: Run Meyerson's, and whenever Meyerson's decide to open a facility pred *i*
	- In the worst-case: only $O(1)$ more costly than Meyerson's, \mid which implies $O(\log n)$ worst-case ratio

Simple Algorithm for Uniform Case

at some x_i , also open a facility at x_i 's prediction f

O(log(*nη*∞)/OPT)

Difficulties in Non-uniform Case

Non-uniform case: $w(f)$ can be arbitrary

• Meyerson's can handle the non-uniform case (with slight modifications)

"Whenever Meyerson's opens facility $x_{i\cdot}$ also open facility at $f^{\text{pred}, \prime}_{i}$

• Doesn't work: $w(f_i^{\text{pred}})$ can be very large (and $w(f_i^{\text{opt}})$ can even be 0!) $p^{\text{pred}}(i)$ can be very large (and $w(f^{\text{opt}}_{i})$

Challenge: measures connection cost, but say nothing on the opening cost *η*∞

pred *i*

Hence, we need to "guess" $W(f_i^{\text{opt}})$ *ⁱ*)

- Set budget b , open f' closest to f_i^{pred} s.t. $w(f') \leq b$ w.p.
- Double budget *b* every time a new facility is opened

 $$

$$
P_i^{\text{pred}} \text{ s.t. } w(f') \le b \text{ w.p. } \text{cost}^{\text{Mey}}(x_i) / w(f')
$$

New Steps for Non-uniform Case

If one knows $w(f_i^{opp})$, then the nearest facility f' to f_i^{pred} with satisfies $d(f', f^{\textrm{opt}}_{i})$ $W(f_i^{\text{opt}})$ $f^{\mathrm{(opt)}}_i$, then the nearest facility f' to f \sum_{i}^{pred} with $w(f') \leq w(f_i^{opt})$ $\binom{op}{i} \leq \eta_{\infty}$

> Don't be too aggressive always bounded by Meyerson

$$
\inf' \text{such that } w(f') \le O(w(f^{opt}_i))
$$

Many Results, Many to Be Done

Online algorithms (competitive ratio)

• Caching, scheduling, online learning, online primal-dual

Data structures (space/time)

• ℓ_p -sampling, heavy hitters, bloom filter

Efficient algorithms for data analysis (running time)

- Clustering, nearest neighbor, low-rank approximation
- … Many to be done

Thanks!