Online Facility Location with Predictions Shaofeng Jiang Peking University

Joint work with Erzhi Liu, You Lyu, Zhihao Tang, Yubo Zhang

Agorithm Design with Predictions

Traditional algorithm design: focus on worst-case

- Strong guarantee, but often too pessimistic to be useful in practice
- ML techniques:
 - Data-driven, can leverage the structure of data, performs well in practice

Goal: design algorithms with a learned predictor to go beyond worst-case

Can We Trust The Predictor?

Adversarial example attack: small but structured noise

+ .007 \times

"panda" 57.7% confidence

Unfortunately, perfectly-robust ML predictor is unlikely to exist

Utilizing Untrusted Predictions: LV Framework (Lykouris-Vassilvitskii, JACM' 21)

Premises:

• Access to an untrusted predictor with error η (under certain measure)

Consistency:

This requirement may bypass certain lower bounds

• if $\eta \rightarrow 0$ then algorithm (nearly) achieves optimal

Robustness:

• if $\eta \to \infty$ then algorithm still has worst-case guarantee

Algorithm does NOT know η in advance!

Simple Example: Binary Search

Worst-case binary search $O(\log n)$

Initial guess: hIterative-doubling from h $O(\log | h - i^* |)$ Error $\eta = |h - i^*|$

Facility Location

- Fundamental problem in OR and CS Input: metric space (V, d), demand points $X = (x_1, \dots, x_n) \subseteq V$ Classical setting:

where f_i is the facility assigned to x_i

• Find a set of open facilities $F \subseteq V$ (each with opening cost w(f)) s.t. **Opening cost** $\sum_{f \in F} w(f) + \sum_{x_i \in X} d(x_i, f_i)$ **Connection cost**

Online Setting

Input: metric space (V, d), demand points $X = (x_1, \dots, x_n) \subseteq V$ • The next x_{i+1} is only revealed after x_i is assigned Competitive ratio: $\max_{X} \frac{\mathbb{E}[ALG(X)]}{OPT(X)} \ge 1$

- Online: when x_i arrives, algorithm must irrevocably assign x_i to an open facility

Worst-case relative performance

The Prediction Model

Error measure:

Results: Nearly-tight Bounds

 $O(\log n)$ even when η_{∞} is large; Matches an UB by Meyerson (FOCS' 01)

Upper bound: There is an $O\left(\min\left\{\log n, \log(n\eta_{\infty}/\text{OPT})\right\}\right)$

Related error measure: $\eta_1 := \sum d(f_i^{\text{pred}}, f_i^{\text{opt}})$ $1 \leq i \leq n$

Lower bound: For every $\eta_{\infty} \in (0,1]$, any randomized online algorithm is

This generalizes an $\Omega(\log(n))$ worst-case lower bound by Fotakis (Algorithmica, 2008)

 $\overline{\Omega(\log(n\eta_{\infty}/\text{OPT}))}$ -competitive (with OPT = O(1)), even when $\eta_1 = O(1)$.

Results: Experiments

Baselines: Follow-Prediction; Meyerson is an $O(\log n)$ -competitive worst-case algo.

Simulated predictor

Error (η_{∞}) vs ratio for Twitter dataset

Greedy predictor

• Use 30% dataset as the training set, and compute OPT from it When online demand arrive, generate prediction from current OPT • Update OPT, as OPT on the dataset union the new request

dataset	Meyerson	Follow-Predict	Ours
Twitter	1.70	1.69	1.57
Adult	1.55	1.57	1.49
US-PG	1.47	1.47	1.43
Non-Uni	5.66	5.7	2.93

Performance when using the greedy predictor

Strategy of Algorithm Design

$\eta = 0$ and $\eta \rightarrow \infty$ are two extremes

Strategy: start with worst-case algorithm, then extend it to use the prediction Worst-case algorithm: $O(\log n)$ -competitive by Meyerson (FOCS' 01)

Corresponding algorithms: always-trust-predictor vs worst-case algorithm

Neverson's Algorithm

- For simplicity, consider the uniform opening cost $w(f) = w, \forall f \in V$ Initialize open facilities $F := \emptyset$ When x_i arrives:
 - Let $\delta := d(x_i, F)$ be the min-dist to the open facilities F
 - With prob. δ/w , open a facility at
 - Assign x_i to the nearest facility in F

Conclusion: ratio = O(# of rings)

Demand points x on or outside the f ring: $d(x, f) = O(1) \cdot d(x, f^*)$, so O(1) to OPT

Expected cost of x_i is $\leq \delta/w \cdot w + \delta \leq 2d(x_i, F)$

$$\mathbf{x}_i \ (F := F \cup \{x_i\})$$

On average, $O(1) \cdot OPT$ cost before opening facility at some y in the inner ring

 $f \in F$

OPT/n

 $\in OPT$

Key Property

algorithm is $O(\log(n\eta/OPT))$ -competitive, where

In other words, every facility opened in OPT has $f \in F$ within dist η

(Follows from last slide: # of rings = $log(\eta/(OPT/n)) = log(n\eta/OPT)$)

- Suppose the initial open facilities F satisfies $d(F, OPT) \leq \eta$ then Meyerson's
 - $d(F, \text{OPT}) := \min_{f \in F, f' \in \text{OPT}} d(f, f')$

Simple Algorithm for Uniform Case

at some x_i , also open a facility at x_i 's prediction f_i^{pred}

Why it works?

- Let C_i^* be the (offline) optimal facility that x_i is assigned to
- Prediction error guarantee: $d(f_i^{\text{pred}}, f_i^{\text{opt}}) \leq \eta_{\infty}$
- Hence, the very first facilities F we open satisfies $d(F, OPT) \leq \eta_{\infty}$

The cost is $O(1) \cdot OPT$ before this F is open

- Algorithm: Run Meyerson's, and whenever Meyerson's decide to open a facility
 - In the worst-case: only O(1) more costly than Meyerson's, which implies $O(\log n)$ worst-case ratio

Implies the main bound: $O(\log(n\eta_{\infty})/\text{OPT})$

Difficulties in Non-uniform Case

Non-uniform case: w(f) can be arbitrary

Meyerson's can handle the non-uniform case (with slight modifications)

"Whenever Meyerson's opens facility x_i , also open facility at f_i^{pred} ,"

• Doesn't work: $w(f_i^{\text{pred}})$ can be very large (and $w(f_i^{\text{opt}})$ can even be 0!)

Challenge: η_{∞} measures connection cost, but say nothing on the opening cost

New Steps for Non-uniform Case

If one knows $w(f_i^{opt})$, then the nearest facility f' to f_i^{pred} with $w(f') \leq w(f_i^{opt})$ satisfies $d(f', f_i^{\text{opt}}) \leq \eta_{\infty}$

Hence, we need to "guess" $W(f_i^{opt})$

- Set budget b, open f' closest to f
- Double budget b every time a new facility is opened

Use cost $O(1) \cdot OPT$ to ope

Don't be too aggressive always bounded by Meyerson

$$\sum_{i}^{i} \operatorname{s.t.} w(f') \le b \text{ w.p. } \operatorname{cost}^{\operatorname{Mey}}(x_i)/w(f')$$

$$n f'$$
 such that $w(f') \le O(w(f_i^{opt}))$

Many Results, Many to Be Done

Online algorithms (competitive ratio)

Caching, scheduling, online learning, online primal-dual

Data structures (space/time)

• ℓ_p -sampling, heavy hitters, bloom filter

Efficient algorithms for data analysis (running time)

- Clustering, nearest neighbor, low-rank approximation
- ... Many to be done

Thanks