End-to-end Reinforcement Learning for the Large-scale Traveling Salesman Problem

Yan Jin

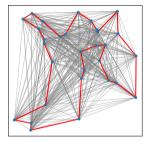
jinyan@hust.edu.cn Huazhong University of Science and Technology

- 1. Problem Description
- 2. Related Work
- 3. The Proposed Models
- 4. Conclusion and Future Work

ж.

TSP

- Given a set of cities and the distances between each pair of cities
- The objective is to find a shortest path that starts from a certain city, visits each city exactly once and returns to the start city



- NP-hard: O(n!)
- Popular: One of the most studied routing problems
- Challenging: Solve the instances with tens of thousands of cities in time sensitive scenarios, e.g. on-call routing, ride hailing service

• Exact solver: Concorde

- Integer Programming solver with cutting planes and branch-and-bound
- Widely regard as the fastest exact TSP solver
- Cannot handle large-scale TSP due to the memory and time limits

Heuristic solver: LKH3

- Iterative search with 2-Opt/3-Opt operators, apply a minimum spanning tree to estimate edge candidates
- Widely regarded as the best heuristic TSP solver
- Can handle large-scale TSP but time-consuming

Search based solvers:

- L2I
 - Select an improvement operator by a reinforcement learning based controller
 - Select a perturbation operator by a rule-based controller

Att-GCN+MCTS

- Best neural network solver for large-scale TSP, but time-consuming (up to 10,000 cities)
- Train a small-scale model by supervised learning
- Merge sub-heat maps to a complete heat map
- Monte carlo tree search with the guidance of heat map

Related Work - Neural Network Solvers

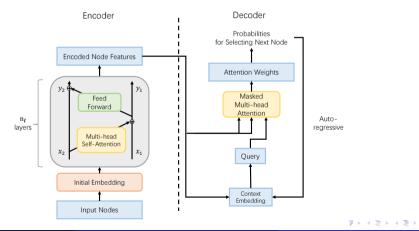
End-to-end solvers:

- Point network and two variants
 - First Neural network solver, encoder with RNN, auto-regressive decoder, supervised learning
 - Use reinforcement learning approaches, reward: tour length
- Attention models
 - AM model
 - A transformer encoder without positional encoding
 - Auto-regressive decoder (graph embedding and the embeddings with first and last nodes)
 - Reinforce algorithm with a rollout baseline
 - POMO model
 - Best constructive solver for small-scale TSP (≤ 100 cities)
 - Start from each node of one instance for decoder
 - A shared baseline for policy gradients
 - Multiple greedy trajectories for inference

3

An End-to-end Model - Pointerformer

- **Motivation**: Design a deep reinforcement learning model to attain high quality solutions of TSP (more than 100 cities) in seconds
- Architecture: Attention model consists of encoder and decoder



Yan Jin (HUST)

Reinforcement learning for the large-scale TSP

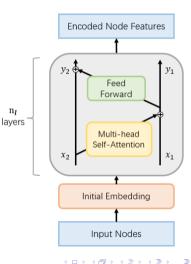
Nov. 26,2022

7/19

ъ

Encoder

- Input data: $[x, y, \theta]$
- Feature augmentation => get 24 features for each node
- Multi-Head Attention (MHA), Feed Forward (FF), residual connection, batch normalization
- Use reversible residual network, reduce memory complexity from max $(bld_{ff}, bn_h l^2) n_l$ to max $(bld_{ff}, bn_h l^2)$, n_l layers, n_h -head attention, d_{ff} -dimension feed forward, *b*: batch size, *l*: number of cities
- Maintain a pair of input and output embedding features (X_1, X_2) and $(Y_1, Y_2) \Rightarrow$ calculate derivations directly $X_2 = Y_2 FF(Y_1), X_1 = Y_1 MHA(X_2)$



Pointerformer - Decoder

• Auto-regressive decoder, one city at a time

• Enhanced context embedding as query: graph embedding $(h_g = \sum_{i=1}^{N} h_i^{enc})$, partial routing embedding $(h_{\tau} = \sum_{i=1}^{t-1} h_{\tau_i}^{enc})$, the last node embedding $h_{\pi_{t-1}}$ and the first node embedding h_{π_1}

$$q_t = rac{1}{N}(h_g + h_{ au}) + h_{\pi_{t-1}} + h_{\pi_1}$$

• A multi-pointer network: extend the single-pointer network to the multi-pointer network, but different from the existing multi-pointer network in the literature

$$\mathcal{PN} = rac{1}{H}\sum_{h=0}^{H}rac{(\mathbf{q}_{t}\mathcal{W}_{h}^{q})^{ au}(\mathbf{k}_{j}\mathcal{W}_{h}^{k})}{\sqrt{d_{k}}}, \textit{score}_{ij} = \mathcal{PN} - \textit{cost}(i,j)$$

Query interacts with all unvisited nodes, visited nodes are masked

$$u_{ij} = egin{cases} C \cdot anh\left(score_{ij}
ight) & ext{node } j ext{ is to be visited} \ -\infty & ext{Otherwise} \end{cases}$$

Compute output probability vector p with a softmax

Yan Jin (HUST)

ヘロト ヘアト ヘビト ヘビト

∃ 900

Pointerformer - Improvement on REINFORCE

- Apply and improve the REINFORCE algorithm for training
- Reduce the variance by subtracting the mean
- Divide by the variance so that each sample has the same variance to improve training speed

$$abla_{ heta} J(heta) pprox rac{1}{N} \sum_{i=1}^{N} \left(rac{R\left(au^{i}
ight) - \mu(olds)}{\sigma(olds)}
ight)
abla_{ heta} \log p_{ heta} \left(au^{i} \mid oldsymbol{s}
ight)$$

where
$$\mu(s) = \frac{1}{N} \sum_{j=1}^{N} R(\tau^{j})$$
; $\sigma(s) = \frac{1}{N} \sum_{j=1}^{N} (R(\tau^{j}) - \mu(s))^{2}$

化口水 化塑料 化医水化医水

3

Pointerformer - Experiments

Method	TSP_random20			TSP_random50		TSP_random100		TSP_random200			TSP_random500				
	Len	Gap(%)	Time	Len	Gap(%)	Time	Len	Gap(%)	Time	Len	Gap(%)	Time	Len	Gap(%)	Time
OPT	3.83			5.69			7.76			10.72			16.55		
AM	3.83	0.06	5.22s	5.72	0.49	12.76m	7.94	23.20	32.72m	-	-	-	-	-	-
POMO	3.83	0.00	36.86s	5.69	0.02	1.15m	7.77	0.16	2.17m	-	-	-	-	-	-
AM+LCP	3.84	0.00	30.00m	5.70	0.02	6.89h	7.81	0.54	11.94h	-	-	-	-	-	-
DRL+2opt	3.83	0.00	3.33h	5.70	0.12	4.62m	7.82	0.78	6.57h	-	-	-	-	-	-
Att-GCN+MCTS	3.83	0.00	1.6m	5.69	0.01	7.90m	7.76	0.04	15m	10.81	0.88	2.5m	16.97	2.54	5.9m
Pointerformer	3.83	0.00	5.82s	5.69	0.02	11.63s	7.77	0.16	52.34s	10.79	0.68	5.54s	17.14	3.56	59.35s

E: End-to-end DRL; S: Search-based DRL.

Method	TSPLIB1~100			TSPLIB101~500			TSP501~1002		
	Len	Gap(%)	Time	Len	Gap(%)	Time	Len	Gap(%)	Time
OPT	19454.17			40842.43			62427.71		
AM	22283.67	15.36	0.23s	72137.93	78.18	0.86s	140664.29	139.02	5.79s
POMO	19628.67	1.20	1.41s	<u>43652.77</u>	6.99	1.55s	82162.29	26.93	3.49s
DRL+2opt	19916.50	2.43	15.20m	46651.40	13.85	27.92m	82797.71	42.57	1.24h
Pointerformer(Model100)	<u>19728.50</u>	1.33	0.20s	42963.20	5.43	0.46s	<u>75081.43</u>	18.65	5.14s
Pointerformer(Model200)	20135.00	2.91	0.20s	43810.67	8.37	0.46s	73915.57	18.20	5.14s

- Can scale to TSP instances with up to 500 nodes
- Comparable results as search-based DRL, but in shorter time
- Well generalize to practical instances with varied distributions without re-training.

Yan Jin (HUST)

Reinforcement learning for the large-scale TSP

A Hierarchical Reinforcement Learning Model (H-TSP)

- Motivation: Design a deep reinforcement learning model to solve larger TSP (up to tens of thousands of cities) in several minutes
- Architecture: Following the divide-and-conquer approach, upper-level and lower-level models are responsible for generating sub-problems and solving sub-problems

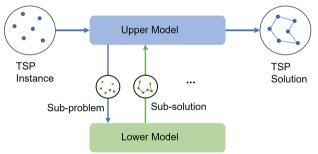


Figure: The hierarchical architecture

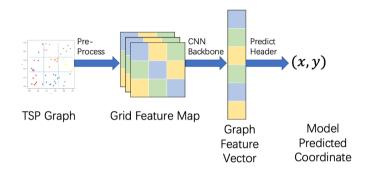
Yan Jin	(HUST)
---------	--------

Reinforcement learning for the large-scale TSP

Nov. 26,2022

• • = • • = •

Upper-level Model: A Gird-based Encoder

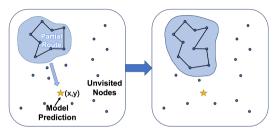


- Input data (B, N, D) : B instances with N nodes and D features
- Discretize evenly the 2D space of each instance into H × W grids
- Form a pseudo-image by high-dimension project, max pooling, zero padding
- Apply a convolutional neural network on the pseudo-image to generate embeddings
- Use an actor-critic architecture to predict a coordinate

Nov. 26,2022

• • • • • • • • • • •

Upper-level Model - Sub-problem Generation

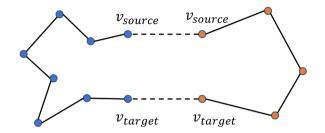


- Select unvisited nodes in a local neighborhood:
 - Set start point as the node closest to predicted coordinate
 - Breadth-first search on the simplified k-NN graph
 - Select a set of unvisited nodes according to BFS

- Select visited nodes to refine current partial route:
 - Set start point as the node closest to predicted coordinate
 - Expand to both directions on the route with equal nodes
 - Generate a set of visited nodes, and set the two endpoints

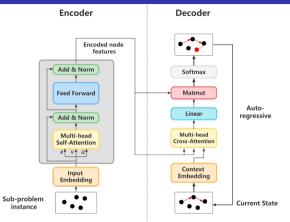
-

H-TSP - Sub-problem Generation and Merging



- Sub-problem generation (open-loop TSP with fixed endpoints): Start from source node, visit all other nodes exactly once and end in target node => solved by lower-level model
- Sub-solution merging: Two open-loop TSPs can be easily merged to a close-loop path

H-TSP: Lower-level Model



- Solve small-scale open-loop TSPs with prescribed starting and ending cities
- Transformer based Encoder, auto-regressive Decoder
- Construct the symmetry property of open-loop TSPs and take the advantage of average tour length of each graph as baseline

Yan Jin (HUST)

Reinforcement learning for the large-scale TSP

H-TSP - Experiments

	Random	1000		Random2000			
Algorithm	Length	Gap (%)	Time (s)	Length	Gap (%)	Time (s)	
Concorde	23.12	0.00	487.89	32.48	0.00	7949.97	
LKH-3	23.16	0.17	22.01	32.64	0.49	79.75	
OR-Tools	24.23	4.82	104.34	34.04	4.82	532.14	
POMO	30.52	32.01	4.28	46.49	43.15	35.89	
DRL-2opt	37.90	63.93	55.56	115.59	255.92	827.43	
Att-GCN +MCTS	23.86	3.22	5.85	33.42	2.91	200.28	
H-TSP	24.65	6.62	0.33	34.88	7.39	0.72	

	Randon	ד5000		Random10000			
Algorithm	Length	Gap (%)	Time (s)	Length	Gap (%)	Time (s)	
LKH-3	51.36	0.00	561.74	72.45	0.00	4746.59	
OR-Tools	53.35	3.86	5368.24	74.95	3.44	21358.66	
POMO	80.79	57.29	575.63	OOM	OOM	OOM	
DRL-2opt	754.91	1369.76	2308.48	2860.86	3848.66	6073.43	
Att-GCN +MCTS	52.83	2.86	377.47	74.93	3.42	395.85	
H-TSP	55.01	7.10	1.66	77.75	7.32	3.32	

- Solution quality: achieve comparable results to the SOTA methods
- Efficiency: outperform all baselines and reduce the time consumption up to two orders of magnitude
- Have potential in real- world scenarios that require solving large-scale TSP in a short time even real-time

3

Conclusion

- Propose effective models based on deep reinforcement learning
- Take advantage of inference efficiency of end-to-end models
- Will be useful for time-sensitive practical applications
- Have potentials to be extended to other large-scale optimization problems

Future directions

- Find an effective mechanism to replace self-attention
- Handle the large-scale TSP challenges such as the World TSP with 1,904,711-cities
- Can tackle various TSP-type problems, VRP-type problems and other optimization problems

= nan

Thank you ! Q & A

References:

- Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, Jiang Bian. Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem. Accepted by AAAI 2023.
- Xuanhao Pan, <u>Yan Jin*</u>, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, Jiang Bian. H-TSP: Hierarchically Solving the Large-Scale Travelling Salesman Problem. Accepted by AAAI 2023.

э.