

Inverse Game Theory for Stackelberg Games The Blessing of Bounded Rationality

Weiran Shen Renmin University of China

Joint work with:

Jibang WuFei FangHaifeng XuUniversity of ChicagoCarnegie Mellon UniversityUniversity of Chicago

(77)

- Game theory
 - Given game setting, predict players' behaviors
- In reality
 - E-commerce platform
 - Does not know customers' preferences, only observes their behaviors Security domain
 - Does not know attackers' utility, only observes their responses

Given equilibrium behaviors, what game parameters can induce such behaviors?

Inverse Game Theory

Setting

- Inverse Stackelberg game
 - A leader: commits to a strategy
 - A follower: responds to leader
 - Notations:
 - U∈ ℝ^{m×n}: leader's payoff
 V∈ ℝ^{m×n}: follower's payoff
 x ∈ Δ_m: leader's strategy
 y ∈ Δ_n: follower's strategy

- Inverse Stackelberg game
 - Leader can choose any mixed strategy x
 - Follower uses quantal response
 - Probability of choosing action j: $y_j = \frac{\exp(\lambda x^T V_j)}{\sum_{k \in [n]} \exp(\lambda x^T V_k)}$
 - Capture the follower's bounded rationality

Can the leader recover *V* by "querying" follower's response with *x*?

Quantal Response vs Best Response

• Best response

- Computing the optimal leader strategy is simple
- Recovering follower payoff is difficult
- Quantal response

Computing the optimal leader strategy is difficult
 Recovering follower payoff is easy

Identifiability Issue

Quantal response

$$y_j = \frac{\exp(\lambda x^T V_j)}{\sum_{j' \in [n]} \exp(\lambda x^T V_{j'})} = \frac{\exp(\lambda \sum_k x_k V_{kj})}{\sum_{j' \in [n]} \exp(\lambda \sum_k x_k V_{kj'})}$$

- y_i stays the same if we replace V_{kj} with $V_{kj} + c_k$
- Row-wise translation leads to the same behavior!
- Logit distance

$$\Phi(V, \tilde{V}) = \frac{1}{mn} \sum_{i \in [m]} \min_{z} \left\| V_i - \tilde{V}_i - z \right\|_1$$

 $\Phi(V, \tilde{V}) = 0$: perfect recovery of V

Learning From Mixed Strategies

Every query x returns a mixed strategy y

Proposition (*m* strategies to success)

V can be perfectly recovered with m linearly independent queries.

• For any \tilde{V} , we can predict the response \tilde{y} of x- Find a \tilde{V} to match \tilde{y} and y

Learning From Mixed Strategies

(77)

• Minimize the cross entropy between \tilde{y} and y

$$\min -\sum_{t} \left[\sum_{j} y_{j}(t) \log \frac{\exp(\lambda x^{T}(t)\tilde{V}_{j})}{\sum_{j'} \exp(\lambda x^{T}(t)\tilde{V}_{j'})} \right]$$
$$\min \sum_{t} \left[\log\left(\sum_{j} \exp\left(z_{j}(t)\right)\right) - y(t)z(t) \right]$$
$$S.t.$$
$$z(t) = \lambda x^{T}(t)\tilde{V}$$
Convex!

- Every query x returns an action y sampled from the quantal response model
- First thought

- MLE: given queries x(t), what \tilde{V} leads to highest probability of observing y(t)?
 - Difficult to optimize
 - Difficult to bound error

• Idea

- Mixed strategy estimation: query x multiple times
- Payoff estimation: use estimated response \hat{y} to recover \tilde{V}
- Error bound

- Bound the error of \hat{y} with the number of queries - Bound the recovered \tilde{V} given the error of \hat{y}

Mixed strategy estimation error

Lemma

1

For any query x, Let y be the underlying quantal response. Denote by $\rho = \min_{i} y_{i}$. With $O\left(\frac{\log(n/\delta)}{\rho\epsilon^{2}}\right)$ repeated queries of x, the empirical distribution \hat{y} is a $(1 - \epsilon)$ -approximation of y with probability at least $1 - \delta$.

• Proof

(77)

- Let $X_k = I$ (response of query k is action i), $\forall 1 \le k \le \frac{3 \log(2n/\delta)}{y_i \epsilon^2}$

- Let
$$X = \sum_{k \in [N]} X_k$$
. Then $\mu = \mathbb{E}[X] = \frac{3 \log(2n/\delta)}{y_i \epsilon^2} y_i = \frac{3 \log(2n/\delta)}{\epsilon^2}$

Chernoff multiplicative bound:

$$\Pr\{|X - \mu| > \epsilon\mu\} \le 2 \exp\left(-\epsilon^2 \frac{3 \log\left(\frac{2n}{\delta}\right)}{3\epsilon^2}\right) = \frac{\delta}{n}$$

Relative error larger than ϵ

• Proof

- Using union bound, with probability at least $1 - \delta$, $\frac{\hat{y}_i}{y_i} \in$

$$\left[1-\epsilon,1+\epsilon\right] \subset \left[1-\epsilon,\frac{1}{1-\epsilon}\right], \forall i \in [n]$$

• Payoff recovery error

Lemma

There exists an algorithm that can recover *V* within the logit distance $\Phi(V, \tilde{V}) = O(\epsilon/\lambda)$ from *m* queries of $(1 - \epsilon)$ -multiplicative approximation of the follower's mixed strategies.

- Proof
 - Let $\tilde{y}(t)$ be the estimated mixed strategy of the *t*-th query

- Let
$$\beta_{jt} = \frac{\tilde{y}_j(t)}{y_j(t)} \in \left[1 - \epsilon, \frac{1}{1 - \epsilon}\right]$$

$$\min \sum_{t} \left[\log \left(\sum_{j} \exp \left(z_{j}(t) \right) \right) - \tilde{y}(t) z(t) \right]$$

s.t.
$$z(t) = \lambda x^{T}(t) \tilde{V}$$

• Proof

- Solution satisfies:

$$\tilde{V} = V + \frac{1}{\lambda} (X^{-1})^T \log \beta + c$$

$$X = [x(t)]_{t \in [m]}$$
Element-wise log Row-wise translation

• Proof

- Solution satisfies:

$$\Phi(V, \tilde{V}) = \frac{1}{mn} \sum_{i \in [m]} \min_{z} \left\| V_{i} - \tilde{V}_{i} - z \right\|_{1}$$

$$\leq \frac{1}{mn} \left\| \frac{1}{\lambda} (X^{-1})^{T} \log \beta \right\|_{1}$$

$$= \frac{1}{mn} \left\| \frac{1}{\lambda} (X^{-1})^{T} \right\|_{1} mnO(\epsilon) \qquad \beta_{jt} \in \left[1 - \epsilon, \frac{1}{1 - \epsilon} \right]$$

$$= O\left(\frac{\epsilon}{\lambda}\right) \qquad \text{Choose } X \text{ to be the identity matrix}$$

• Leader utility bound

Theorem (informal)

Under certain technical conditions, we can construct an nearly optimal leader strategy for any \tilde{V} with $\Phi(V, \tilde{V}) = O(\epsilon/mn)$

Summary & Future Work

• Summary

- Inverse Stackelberg game
- V can be recovered using m follower mixed strategies
- Sample complexity of learning V
- Future work
 - More general settings
 - Other bounded rationality model
 - Choose queries in a smarter way

Weiran Shen Renmin University of China

Thanks!

Q&A

shenweiran@ruc.edu.cn