

Inverse Game Theory for Stackelberg Games The Blessing of Bounded Rationality

Weiran Shen Renmin University of China

Jibang Wu
Joint work with: Jibang Wu Fei Fang Haifeng Xu University of Chicago Carnegie Mellon University University of Chicago

Motivation

 $\binom{m}{k}$

- Game theory
	- Given game setting, predict players' behaviors
- In reality
	- E-commerce platform

• Does not know customers' preferences, only observes their behaviors Security domain

• Does not know attackers' utility, only observes their responses

• Given equilibrium behaviors, what game parameters can induce such behaviors?

 $\binom{n}{k}$

Setting

- Inverse Stackelberg game
	- A leader: commits to a strategy
	- A follower: responds to leader
	- Notations:

 $U \in \mathbb{R}^{m \times n}$: leader's payoff $V \in \mathbb{R}^{m \times n}$: follower's payoff \bullet $x \in \Delta_m$: leader's strategy $\forall y \in \Delta_n$: follower's strategy

 $\binom{n}{k}$

- Inverse Stackelberg game
	- Leader can choose any mixed strategy x
	- Follower uses quantal response
		- Probability of choosing action j: $y_j =$ $\exp(\lambda x^T V_j$ $\sum_{k \in [n]} \exp(\lambda x^T V_k)$
			- Capture the follower's bounded rationality

Can the leader recover V by "querying" follower's response with x ?

Quantal Response vs Best Response

• Best response

 $\binom{m}{k}$

- Computing the optimal leader strategy is simple
- Recovering follower payoff is difficult
- Quantal response

– Computing the optimal leader strategy is difficult $\mathcal{H}/\mathsf{Recovery}$ ring follower payoff is easy

Identifiability Issue

• Quantal response

 \circledR

$$
y_j = \frac{\exp(\lambda x^T V_j)}{\sum_{j' \in [n]} \exp(\lambda x^T V_{j'})} = \frac{\exp(\lambda \sum_k x_k V_{kj})}{\sum_{j' \in [n]} \exp(\lambda \sum_k x_k V_{kj'})}
$$

- y_i stays the same if we replace V_{ki} with $V_{ki} + c_k$
- Row-wise translation leads to the same behavior!
- Logit distance

$$
\Phi(V,\tilde{V}) = \frac{1}{mn} \sum_{i \in [m]} \min_{Z} ||V_i - \tilde{V}_i - z||_1
$$

 $\Phi(V, \tilde{V}) = 0$: perfect recovery of V

Learning From Mixed Strategies

• Every query x returns a mixed strategy \hat{y}

Proposition (m strategies to success)

 $\left(\overline{\mathcal{H}}\right)$

V can be perfectly recovered with m linearly independent queries.

For any \tilde{V} , we can predict the response \tilde{v} of x Find a \tilde{V} to match \tilde{y} and y

Learning From Mixed Strategies

 \circledR

• Minimize the cross entropy between \tilde{y} and \tilde{y}

$$
\min -\sum_{t} \left[\sum_{j} y_{j}(t) \log \frac{\exp(\lambda x^{T}(t)\tilde{V}_{j})}{\sum_{j'} \exp(\lambda x^{T}(t)\tilde{V}_{j'})} \right]
$$
\n
$$
\min \sum_{t} \left[\log \left(\sum_{j} \exp(z_{j}(t)) \right) - y(t)z(t) \right]
$$
\n
$$
z(t) = \lambda x^{T}(t)\tilde{V}
$$
\nConvex!

- Every query x returns an action y sampled from the quantal response model
- First thought

 $\binom{n}{k}$

- MLE: given queries $x(t)$, what \tilde{V} leads to highest probability of observing $y(t)$?
	- Difficult to optimize
	- Difficult to bound error

• Idea

(W)

- Mixed strategy estimation: query x multiple times
- Payoff estimation: use estimated response \hat{y} to recover $|\tilde{V}|$
- Error bound

 $-$ Bound the error of \hat{v} with the number of queries \widetilde{H} \widetilde{B} Bound the recovered \widetilde{V} given the error of \widehat{y}

• Mixed strategy estimation error

Lemma

(m)

For any query x , Let y be the underlying quantal response. Denote by $\rho = \min$ $\displaystyle \lim_{i} y_i.$ With $\displaystyle O\left(\frac{\log(n/\delta)}{\rho \epsilon^2}\right)$ repeated queries of $x,$ the empirical distribution \hat{y} is a $(1 - \epsilon)$ -approximation of y with probability at least $1 - \delta$.

• Proof

0

– Let $X_k = I$ (response of query k is action i), $\forall 1 \leq k \leq \frac{3 \log(2n/\delta)}{n/\epsilon^2}$ $\mathcal{Y}_i \epsilon^2$

- Let
$$
X = \sum_{k \in [N]} X_k
$$
. Then $\mu = E[X] = \frac{3 \log(2n/\delta)}{y_i \epsilon^2} y_i = \frac{3 \log(2n/\delta)}{\epsilon^2}$

– Chernoff multiplicative bound:

$$
\left| \frac{\Pr\{|X - \mu| > \epsilon\mu\}}{\epsilon} \right| \le 2 \exp\left(-\epsilon^2 \frac{3 \log\left(\frac{2n}{\delta}\right)}{3\epsilon^2}\right) = \frac{\delta}{n}
$$

Relative error larger than ϵ

• Proof

 $\binom{n}{k}$

– Using union bound, with probability at least $1 - \beta$, β $\widetilde{\mathcal{Y}}_t$ \mathcal{Y}_t

∈

$$
\left[1-\epsilon, 1+\epsilon\right]\subset \left[1-\epsilon, \frac{1}{1-\epsilon}\right], \forall i\in [n]
$$

• Payoff recovery error

Lemma

 $\left(\overline{\mathcal{H}}\right)$

There exists an algorithm that can recover V within the logit distance $\Phi(V, \tilde{V}) = O(\epsilon/\lambda)$ from *m* queries of $(1 - \epsilon)$ -multiplicative approximation of the follower's mixed strategies.

• Proof

 \circledR

– Let $\tilde{y}(t)$ be the estimated mixed strategy of the $t₁$ th query

- Let
$$
\beta_{jt} = \frac{\tilde{y}_j(t)}{y_j(t)} \in \left[1 - \epsilon, \frac{1}{1 - \epsilon}\right]
$$

$$
= \frac{\text{Still solve:}}{\text{min } \sum_{t} \left[\log \left(\sum_{j} \exp(z_{j}(t)) \right) - \tilde{y}(t) z(t) \right]}
$$

$$
z(t) = \lambda x^{T}(t) \tilde{V}
$$

• Proof

 $\binom{n}{2}$

– Solution satisfies:

$$
\tilde{V} = V + \frac{1}{\lambda} (\overline{X})^{-1} \frac{T \log \beta + C}{C}
$$
\n
$$
\tilde{X} = [x(t)]_{t \in [m]}
$$
\nElement-wise log Row-wise translation

• Proof

 $\binom{n}{k}$

– Solution satisfies:

 $\Phi(V,\tilde{V}) =$ 1 $\frac{1}{mn}$ \sum $i \in [m]$ min \overline{z} $V_i - \tilde{V}_i - z \big\rVert_1$ ≤ 1 \overline{mn} 1 $\frac{1}{\lambda}(X^{-1})^T \log \beta \Big\|_1$ = $\overline{1}$ $\eta\hspace{-0.1cm}\eta\hspace{-0.1cm}n$ 1 $\frac{1}{\lambda}(X^{-1})^T \Big\|_1$ $mnO(\epsilon$ \leq 0 ϵ λ $\beta_{jt} \in \left[1 - \epsilon, \frac{1}{1}\right]$ Choose X to be the identity matrix

 $1 - \epsilon$

• Leader utility bound

 $\left(\overline{\mathcal{H}}\right)$

Theorem (informal)

Under certain technical conditions, we can construct an nearly optimal leader strategy for any \tilde{V} with $\Phi(V, \tilde{V}) = O(\epsilon / mn)$

Summary & Future Work

• Summary

 \circledR

- Inverse Stackelberg game
- V can be recovered using m follower mixed strategies
- $-$ Sample complexity of learning V
- Future work
	- More general settings
	- Other bounded rationality model
		- Choose queries in a smarter way

Weiran Shen Renmin University of China

Thanks!

Q & A

shenweiran@ruc.edu.cn