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P R I C I N G  A N D  I N V E N T O RY  C O N T RO L

• Coordination of pricing and inventory control: two fundamental problems 
in operations management

• Pricing: the task of balance revenue and demand
ü The higher the price, the higher the revenue but also lower the expected 

demand: E 𝑑! 𝑝! = 𝐷"(𝑝!)

• Inventory management: the question of re-ordering inventory stocks.
ü Need to balance ordering cost, holding cost and out-of-inventory cost (e.g., 

backlogging).



T H E  D E C I S I O N  P RO C E S S E S

• Step 1: inventory decisions.

Ordering cost = 𝑘×1 𝑦! > 𝑥! + 𝑐(𝑦! − 𝑥!)
fixed cost variable cost

At the beginning of time 𝑡,
inventory level is 𝑥!

Order-up-to level 𝑦! ≥ 𝑥!



T H E  D E C I S I O N  P RO C E S S E S

• Step 2: pricing decisions.

Price 𝑝!, leading to realized demand 𝑑!
The “additive” noisy demand model: 𝑑! = 𝐷" 𝑝! + 𝛽!

Order-up-to level 𝑦! ≥ 𝑥!

Remaining inventory: 𝑥!#$ = 𝑦! − 𝑑!
Sales revenue: 𝑝!(𝑦! − 𝑥!#$)

“Censored” demand setting: 
𝑥!#$ = max 0, 𝑦! − 𝑑!



T H E  D E C I S I O N  P RO C E S S E S

• Step 3: holding/backlogging/lost-sales cost

ü 𝑥!#$ > 0: holding cost
ü 𝑥!#$ < 0: backlogging/loss-of-good-will cost
ü We use ℎ(⋅) function to represent both costs.

Remaining inventory: 𝑥!#$ = 𝑦! − 𝑑!
“Censored” demand setting: 

𝑥!#$ = max 0, 𝑦! − 𝑑!



T H E  D E C I S I O N  P RO C E S S E S

• Summary of the decision process:
ü State: 𝑥!, the inventory level at the beginning of time 𝑡
ü Decisions: 𝑦! (the order-up-to level), 𝑝! (the price).
ü State transition – backlogged: 𝑥!#$ = 𝑦! − 𝑑! = 𝑦! − 𝐷" 𝑝! − 𝛽!
ü State transition – censored: 𝑥!#$ = max(0, 𝑦! − 𝑑!)

• Immediate reward:
ü Backlogging: 

−𝑘×1 𝑦! > 𝑥! − 𝑐 𝑦! − 𝑥! + 𝑝! 𝐷" 𝑝! + 𝛽! − ℎ(𝑦! − 𝐷" 𝑝! − 𝛽!)
ü Censored demand:
−𝑘×1 𝑦! > 𝑥! − 𝑐 𝑦! − 𝑥! + 𝑝!min(𝑦! , 𝐷" 𝑝! + 𝛽!) − ℎ(𝑦! − 𝐷" 𝑝! − 𝛽!)

Learning-while-Doing problem:
𝐷", 𝛽! ∼ 𝑃 are unknown



C O M PA R I S O N  W I T H  E X I S T I N G  R E S U LT S

𝒌 > 𝟎? Pricing model Censored 
demand?

Concavity? Regret

Yuan et al.’21 Yes N/A Yes Implied ?𝑂( 𝑇)

[1] Yes GLM No No B𝑶( 𝑻)

Huh & 
Rusmevichientong’ 09

No N/A Yes Implied 𝑂(log 𝑇)

Chen et al.’19 No Non-param. No Implied ?𝑂( 𝑇)

Chen et al.’21 No Non-param. Yes Assumed 𝑇
$
%#&($)

[2] No Non-param. Yes No B𝑶(𝑻
𝟑
𝟓)

✓ indicates optimal regret (up to poly-logarithmic terms)

✓

✓

✓

✓

✓

[1] Chen et al.’ 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
[2] Chen et al.’21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413


PA RT  1  ( F I X E D  O R D E R I N G  C O S T S )

• Model primitives:
ü Backlogging obs: 𝑜! = 𝑑! = 𝐷" 𝑝! + 𝛽!
ü Fixed cost: 𝑘 > 0
ü V-shaped costs: ℎ ⋅ = ℎmax(0,⋅) − 𝑏 min(0,⋅)
ü Linear demand: 𝐷" 𝑝 = 𝜙 𝑝 , 𝜃 (can be extended to GLM)

[1] Chen et al.’ 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475

−𝑘×1 𝑦! > 𝑥! − 𝑐 𝑦! − 𝑥! + 𝑝! 𝐷" 𝑝! + 𝛽! − ℎ(𝑦! − 𝐷" 𝑝! − 𝛽!)

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475


F U L L - I N F O R M A T I O N  S O L U T I O N

• [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy is an 
𝑠, 𝑆, 𝒑 -policy
ü 𝑆: the order-up-to level
ü 𝑠: the inventory threshold below (or at) which ordering is initiated
ü 𝒑: a pricing functions that maps 𝑥! to 𝑝!

Price decision 𝑝! = 𝒑(𝑦!)

Inventory decision: 𝑦! ← 𝑆 if 𝑥! < 𝑠



F U L L - I N F O R M A T I O N  S O L U T I O N

• [Chen and Simchi-Levi 2004a, 2004b] In the long run, the optimal policy is an 
𝑠, 𝑆, 𝒑 -policy. Given (s,S), the optimal p can be computed using DP:

• Let 𝜙 𝑥, 𝑟 = sup
𝒑

E ∑!&$' 𝑟! − 𝑟 given initial inventory level x

• Recursion formula:

𝜙 𝑥; 𝑟 = &
sup
!

𝐻" 𝑥, 𝑝 − 𝑟 + E#[𝜙(𝑥 − 𝐷" 𝑝 − 𝛽; 𝑟)] , 𝑥 ≥ 𝑠

−𝑘, 𝑥 < 𝑠
ü Immediate	reward	𝐻" 𝑥, 𝑝 = −E+ ℎ 𝑥 − 𝐷" 𝑝 − 𝛽 + 𝑝 − 𝑐 𝐷"(𝑝)

• Binary search of 𝑟: maximum 𝑟 is the optimal per-period reward.

• Optimal p must satisfy 𝜙 𝑥, 𝑟 = 0, where r is the per-period reward of p



F U L L - I N F O R M A T I O N  S O L U T I O N

• [Chen and Simchi-Levi 2004a, 2004b] The optimal policy is an 𝑠, 𝑆, 𝒑 -policy

• Question: can we learn about the demand rate, and adopt near-optimal 
pricing + inventory control, at the same time?

ü Also known as the “Learning-While-Doing” question.

ü Has seen surging research interests in operations management recently.



E X I S T I N G  A P P RO A C H E S

• Explore-then-exploit: [Chen et al., 2019, 2020] and more
ü Completely separates learning and optimization.
ü Only successful with strong convexity/concavity structures; otherwise 

leading to sub-optimal 𝑂(𝑇%/-) regret.

• Stochastic gradient descent: [Yuan et al., 2021], [Ban, 2020], and more
ü Using (noisy) optimization methods to find good policies
ü Also require convexity/concavity structures.
ü Very difficult to handle infinite-dimensional objects, such as the price 

function 𝒑: 𝑠, 𝑆 → R#



J O I N T  L E A R N I N G  A N D  O P T I M I Z I N G

• Divide T periods into (variable-length) epochs

• Epochs start with order-up-to S and ends with 𝑥! < 𝑠
• Update (𝑠, 𝑆, 𝒑) at the end of each epoch

1., assuming 𝛽! ∼ 𝑃 is known.



J O I N T  L E A R N I N G  A N D  O P T I M I Z I N G
1., assuming 𝛽! ∼ 𝑃 is known.

UCB for 𝐷" during epoch b:

F𝐷( 𝑝 = 𝜙 𝑝 , G𝜃( + Δ((𝑝)

OLS with LinUCB:
ü ̂𝜃( = argmin

)
∑'*! 𝑑' − 𝜙 𝑝' , 𝜃 + + 𝜃 +

+

ü Δ. 𝑝 = 𝐶 𝜙 𝑝 /Λ.0$𝜙 𝑝 , where Λ. = 𝐼 + ∑12!𝜙 𝑝1 𝜙 𝑝1 /

ü Satisfies �̅�( 𝑝 ≥ 𝐷" 𝑝 ≥ F𝐷( 𝑝 − 2Δ((𝑝)



J O I N T  L E A R N I N G  A N D  O P T I M I Z I N G
1., assuming 𝛽! ∼ 𝑃 is known.

UCB for 𝐷" during epoch b:

F𝐷( 𝑝 = 𝜙 𝑝 , G𝜃( + Δ((𝑝)

Use F𝐷((𝑝) to calculate the DP 𝜙(𝑥, 𝑟):

𝜙 𝑥; 𝑟 = &
sup
!

:𝐻( 𝑥, 𝑝 − 𝑟 + E#[𝜙(𝑥 − :𝐷$(𝑝) − 𝛽; 𝑟)] , 𝑥 ≥ 𝑠

−𝑘, 𝑥 < 𝑠
Estimated	immediate	reward	 ̅𝐻( 𝑝 = −E+ ℎ 𝑥 − �̅�. 𝑝 − 𝛽 + 𝑝 − 𝑐 �̅�.(𝑝)

Key technical challenge: prove that

𝐸,- Σ!∈/! �̅�( − 𝑟! ≤ 𝑂 1 ×𝐸,- Σ!∈/!Δ((𝑝!)



J O I N T  L E A R N I N G  A N D  O P T I M I Z I N G

• Objective: prove 𝐸 Σ!∈/! �̅�( − 𝑟! ≤ 𝑂 1 ×𝐸 Σ!∈/!Δ((𝑝!)

• Plan: unroll the trajectory under 𝐷" and F𝐷, and compare them. 

• Challenge:
ü 𝑥% − 𝑥%3 ≤ Δ(𝑥$)
ü |𝒑 𝑥% − 𝒑 𝑥%3 | unbounded
ü |𝑥- − 𝑥-3 | unbobunded

• Solution: stability of 𝜙(⋅; 𝑟, 𝐷)

1., assuming 𝛽! ∼ 𝑃 is known.

Inventory Level

Time

S

s

price: 𝒑(𝑥!)

𝐷" 𝒑 𝑥!

4𝐷 𝒑 𝑥!
𝑥! = 𝑆

price: 𝒑(𝑥#)
𝐷" 𝒑 𝑥#

price: 𝒑(𝑥#$ )
4𝐷 𝒑 𝑥#$

𝑥#

𝑥#$

𝑥%

𝑥%$



J O I N T  L E A R N I N G  A N D  O P T I M I Z I N G

• Objective: prove 𝐸 Σ!∈/! �̅�( − 𝑟! ≤ 𝑂 1 ×𝐸 Σ!∈/!Δ((𝑝!)

• For any pricing function 𝒑(⋅) and demand function D, define

ü Easy to verify that 𝜙 𝑥; 𝑟, 𝐷 = 𝜓(𝑥; 𝑟, 𝐷, 𝒑∗) where 𝒑∗ solves 𝜙

• Key stability lemma: for 𝒑 which solves 𝜙(⋅; �̅�, F𝐷),

ü Implies the objective, because 𝜓 𝑥; g𝑟, h𝐷, 𝒑 = 0 and 𝜓 𝑥; g𝑟, 𝐷", 𝒑 =
𝐸 ∑!∈6! 𝑟! − g𝑟

1., assuming 𝛽! ∼ 𝑃 is known.

𝜓 𝑥; 𝑟, 𝐷, 𝒑 = j𝐻 𝑥, 𝒑 𝑥 ; 𝐷 − 𝑟 + 𝐸+ 𝜓(𝑥 − 𝐷(𝒑 𝑥 − 𝛽; 𝑟, 𝐷, 𝒑) , 𝑥 ≥ 𝑠
−𝑘, 𝑥 < 𝑠

𝜓 𝑥; 𝑟, F𝐷, 𝒑 − 𝜓 𝑥; 𝑟, 𝐷, 𝒑 ≤ 𝑂 1 ×E7 W
!&$

'

Δ 𝒑 𝑥!



E S T I M A T I O N  O F  N O I S E  D I S T R I B U T I O N

• Use the empirical distribution to estimate 𝛽! ∼ 𝑃
• Two technical challenges:

ü Error propagation: estimation quality of P also depends on estimation 
quality of 𝐷"

ü Data correlation: the 𝛽! ! samples are actually not independent and 
identically distributed.



E S T I M A T I O N  O F  N O I S E  D I S T R I B U T I O N

• Error propagation: estimation quality of P also depends on estimation 
quality of 𝐷"
ü How to obtain samples of noises? l𝛽! = 𝑑! − 𝜙 𝑝! , l𝜃!
ü The quality of l𝛽! depends on the quality of l𝜃!
ü The estimation is not accurate on all prices

• Solution. Only use those periods with accurate demand predictions.

F𝐷 𝑝 − 𝐷"(𝑝) ≤ 2Δ 𝑝 ≤ 2𝐶 𝜙 𝑝 8Λ9$𝜙(𝑝)

Z𝐸*( = 𝑡 ∈ 𝐵$ ∪⋯∪ 𝐵(9$: Δ( ! 𝑝! ≤ 𝜅/ 𝑏



E S T I M A T I O N  O F  N O I S E  D I S T R I B U T I O N

• Data correlation: the 𝛽! ! samples are actually not independent and 
identically distributed.
ü 𝛽! depends on the (𝑠, 𝑆, 𝑝) policy used during that time period
ü The (𝑠, 𝑆, 𝑝) policy further depends on noises from previous periods.

• Solution. Uniform concentration via Wasserstein’s distance:

ü For any function f that is L-Lipschitz continuous, 

𝑊$ 𝑃, G𝑃 = inf
:∈;(<, ><)

e 𝑥 − 𝑦 d𝜉(𝑥, 𝑦)

𝐸< 𝑓 𝑥 − 𝐸 >< 𝑓 𝑥 ≤ 𝑊$(𝑃, G𝑃)



N U M E R I C A L  R E S U LT S

• Summary: Z𝑂( 𝑇) regret, which is optimal

• Numerical results: compare with Explore-Then-Commit baseline:

D0(p) = 18� 15p, h(x) = 0.05max{x, 0}�min{x, 0}, k = 10
<latexit sha1_base64="BSf7o+wEXYUD2ONaUMKPaR2mUeE=">AAACHnicdVDLSgMxFM34tr6qLt0Ei1ChHTLVoptCURcuK9gqdErJpGkbmmSGJCMtQ7/Ejb/ixoUigiv9G9OH4PPA5R7OuZfkniDiTBuE3p2Z2bn5hcWl5dTK6tr6Rnpzq6bDWBFaJSEP1XWANeVM0qphhtPrSFEsAk6vgt7pyL+6oUqzUF6aQUQbAnckazOCjZWa6eJZE2Wj/ZJ3nPeKUQ52s/39EnJR0Re47yf9HPKHeV8wOeU52Ct5qJnOILeARoC/ieeOO8qAKSrN9KvfCkksqDSEY63rHopMI8HKMMLpMOXHmkaY9HCH1i2VWFDdSMbnDeGeVVqwHSpb0sCx+nUjwULrgQjspMCmq396I/Evrx6b9nEjYTKKDZVk8lA75tCEcJQVbDFFieEDSzBRzP4Vki5WmBibaMqG8Hkp/J/UCq534BYuDjPlk2kcS2AH7IIs8MARKINzUAFVQMAtuAeP4Mm5cx6cZ+dlMjrjTHe2wTc4bx9HHZ5N</latexit>



C O M PA R I S O N  W I T H  E X I S T I N G  R E S U LT S

𝒌 > 𝟎? Pricing model Censored 
demand?

Concavity? Regret

Yuan et al.’21 Yes N/A Yes Implied ?𝑂( 𝑇)

[1] Yes GLM No No B𝑶( 𝑻)

Huh & 
Rusmevichientong’ 09

No N/A Yes Implied 𝑂(log 𝑇)

Chen et al.’19 No Non-param. No Implied ?𝑂( 𝑇)

Chen et al.’21 No Non-param. Yes Assumed 𝑇
$
%#&($)

[2] No Non-param. Yes No B𝑶(𝑻
𝟑
𝟓)

✓ indicates optimal regret (up to poly-logarithmic terms)

✓

✓

✓

✓

✓

[1] Chen et al.’ 20, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
[2] Chen et al.’21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632475
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413


PA RT  2  ( C E N S O R E D  D E M A N D S )

• Model primitives:
ü Censored demands: 𝑜! = min{𝑦! , 𝑑!} = min{𝑦! , 𝐷" 𝑝! + 𝛽!}
ü No fixed cost: 𝑘 = 0
ü V-shaped costs: ℎ ⋅ = ℎmax(0,⋅) − 𝑏 min(0,⋅)
ü Nonparametric demand: 𝐷" 𝑝 is strictly monotonically decreasing and 

twice continuously differentiable

[2] Chen et al.’21, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413

−𝑘×1 𝑦! > 𝑥! − 𝑐 𝑦! − 𝑥! + 𝑝!min{𝑦!, 𝐷" 𝑝! + 𝛽!} − ℎ(𝑦! − 𝐷" 𝑝! − 𝛽!)

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3750413


F U L L - I N F O R M A T I O N  S O L U T I O N

• [Sobel 1981] In the long run, the optimal policy is stationary and myopic
ü Define 𝑟 𝑝 = 𝑝 − 𝑐 𝐷(𝑝) and 

ü Value of the optimal policy ≤ 𝑇×max
7,9

𝑄(𝑝, 𝑦)

ü Static policy committing to 𝑝∗, 𝑦∗ = argmax
7,9

𝑄(𝑝, 𝑦) has 𝑂( 𝑇) regret.

𝑄 𝑝, 𝑦 ≔ 𝑟 𝑝 − 𝑏 + 𝑝 𝐸 𝐷" 𝑝 + 𝛽 − 𝑦 # − ℎ𝐸 𝑦 − 𝐷" 𝑝 − 𝛽 #

Learning-while-Doing problem:
𝐷", 𝛽! ∼ 𝑃 are unknown



H I G H - L E V E L  I D E A

• Fix p, finding 𝑦∗ 𝑝 = argmax
@

𝑄(𝑝, 𝑦) is easy:

ü 𝑄(𝑝,⋅) is concave in y, and 𝐸 𝜕9𝑄 𝑝, 𝑦 = 𝑏 + 𝑝 𝟏 𝑑 ≥ 𝑦 − ℎ𝟏 𝑑 < 𝑦
ü Can use either SGD [Huh & Rusmevichientong’ 09] or bisection search.

• Discretize into 𝑇".+ prices and run Multi-Armed bandit
ü Strong smoothness of 𝑄(⋅,⋅) implies an ?𝑂(𝑇".;) regret

• Where’s the catch?

𝑄 𝑝, 𝑦
= 𝐸 𝑝 − 𝑐 min 𝑦, 𝐷" 𝑝 + 𝛽 − ℎ𝐸 𝑦 − 𝐷" 𝑝 − 𝛽 #

− 𝑏𝐸[ 𝐷" 𝑝 + 𝛽 − 𝑦 #]



C O M PA R I S O N  O F  O R A C L E S

Pricing? Inventory 
replenishment?

0th-order 
oracle?

1st-order 
oracle?

Huh et al.’09 No Yes No Yes

Wang et al.’10 Yes No Yes No

This paper Yes Yes No No

Let 𝑟(𝑎) be the expected immediate reward with action 𝑎:
ü 0th-order oracle: 𝐸 𝑠|𝑎 = 𝑟(𝑎)
ü 1st-order oracle: 𝐸 𝑠 𝑎 = 𝑟′(𝑎)



PA I RW I S E  C O M PA R I S O N  O R A C L E

• Let 𝐺 𝑝 = max
@

𝑄(𝑝, 𝑦)

• For 𝑝 < 𝑝′, let 𝑦∗ 𝑝 , 𝑦∗(𝑝B) be the 𝑦’s that maximize 𝑄, which are easy 
to obtain as explained in the previous slides.

• Can we estimate “pairwise comparison” objective 𝐺 𝑝B − 𝐺(𝑝), using 
censored demands?



M A B  W I T H  PA I RW I S E  C O M PA R I S O N

• For any 𝑝, 𝑝′, we can estimate Δ 𝑝, 𝑝B = 𝐺 𝑝B − 𝐺(𝑝) with error 
decaying at ∼ 1/ 𝑛, where 𝑛 is the # of samples involved

• How to use this “pairwise comparison” oracle to do MAB?

• Solution. Tournament + elimination



* L OW E R  B O U N D

• How to prove lower bounds for noise distributions 𝑃 that are
ü Bounded a.s. with pdf ≥ 𝑐" > 0 uniformly;
ü Do not change with actions.

• The classical arguments based on KL-divergence doesn’t work
ü Supports of observables shift with different actions.
ü The KL-divergence would be infinity!

• Solution. Generalized square Hellinger’s distance (s=2: std Hellinger)

ü Behaves “like” KL with 𝑠 → +∞ in MAB type environments

𝐻C+ 𝑃, 𝑄 ≔ 1 −e
9D

#D
𝑝 𝑥 $9$C𝑞 𝑥

$
Cd𝑥

𝐻C+ 𝑃", 𝑃E ≤ 𝐸" 𝑇E
$9$C𝑇

$
C×sup

F
𝐻C+(𝑃" ⋅ 𝑝 , 𝑃E ⋅ 𝑝 )



N U M E R I C A L  R E S U LT S

• Summary: Z𝑂(𝑇".G) regret, which 
is optimal

• Numerical results: comparison 
with an Explore-Then-Commit 
(ETC) baseline



F U T U R E  D I R E C T I O N S

• Open question 1. Fixed ordering cost + censored demand

ü The parametric case is already difficult. Censored generalized linear 
models.

ü How do we estimate the noise distribution is also a challenge. Unlikely the 
algorithm/analysis in the no-fixed-cost setting can be applied, because the 
optimal solution is not myopic and there is no easy characterization of the p
function.



F U T U R E  D I R E C T I O N S

• Open question 2. Multiplicative demand noises.

ü Parametric setting with fixed ordering costs: (𝑠, 𝑆, 𝒑) still optimal 
asymptotically, but difficult to reproduce 𝜓(𝑥; 𝑟, 𝐷, 𝒑) stability analysis.

ü Nonparametric setting with censored costs: difficult to reproduce the 
pairwise comparison estimator. The observables are not shifts of the 
same distributions any more.

𝑑! = 𝛼!𝐷" 𝑝! + 𝛽!, 𝐸 𝛼! = 1, 𝐸 𝛽! = 0



Thank you! Questions?
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