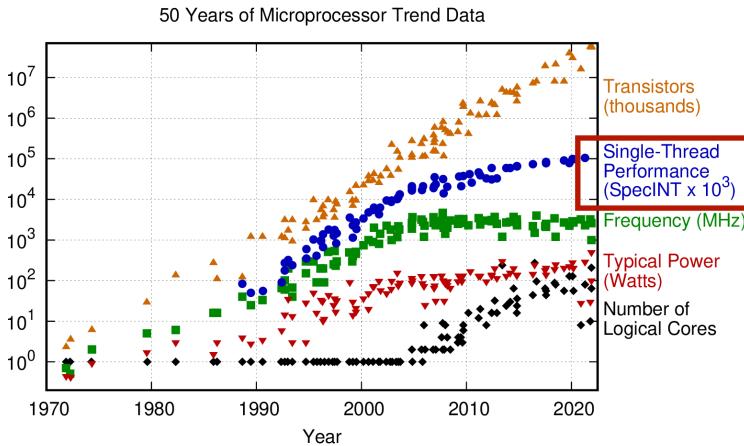
Recent Advances in Coresets for Clustering Shaofeng Jiang

国 北京大学前沿计算研究中心

Center on Frontiers of Computing Studies, Peking University

Sublinear Algorithms

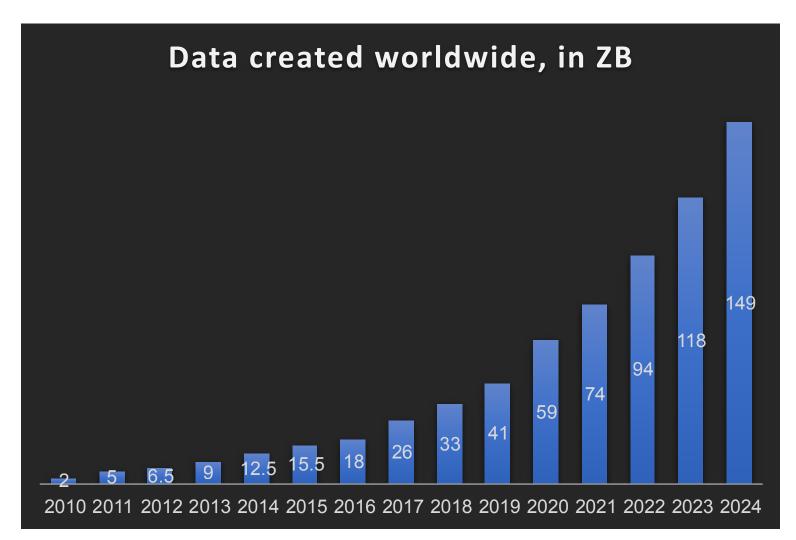
Computational challenge of big data: even linear time/space doesn't work!



Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond. and C. Batter w plot and data collected for 2010-2021 by K. Rupp

o(n) space

Typical sublinear models: streaming, distributed computing, sublinear time

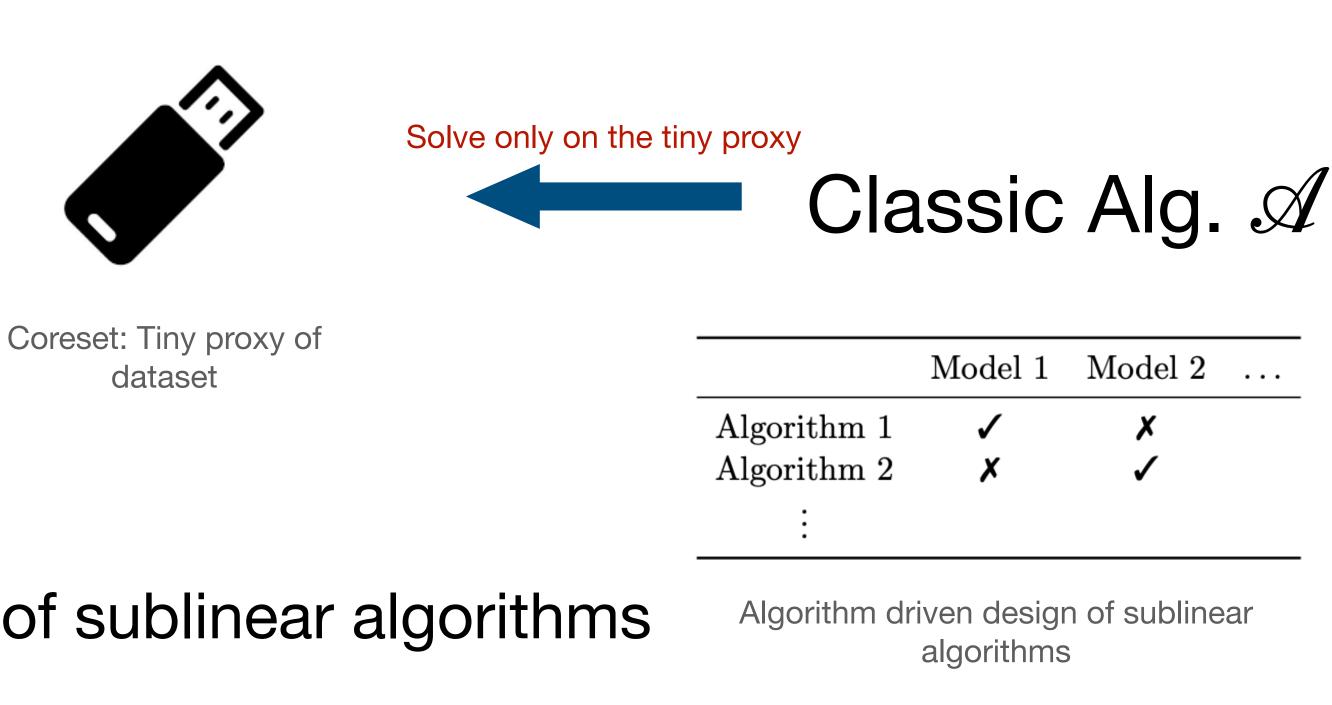


o(n) communication

o(n) query

Coreset: A Data Reduction Method For sublinear algorithm design

Sublinear/efficient algorithm



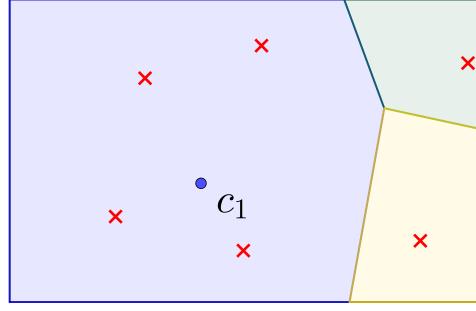
A problem \mathscr{P} defined on big data

Features:

- Data/problem driven design of sublinear algorithms
- Existing (non-big-data) algorithms can be readily applied

Clustering

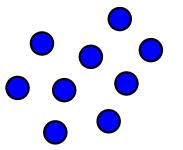
k-median: dataset $D \subset \mathbb{R}^d$, find center set $C \subset \mathbb{R}^d$ s.t. $|C| \leq k$ to minimize $cost(D, C) := \sum dist(x, C)$ $x \in D$ dist(x, C) := min dist(x, c), dist = ℓ_2 Related problem: k-means, $cost(D, C) := \sum dist^2(x, C)$ Notice the square $x \in D$ × C_1 X X • C3 c_4 X ×



4

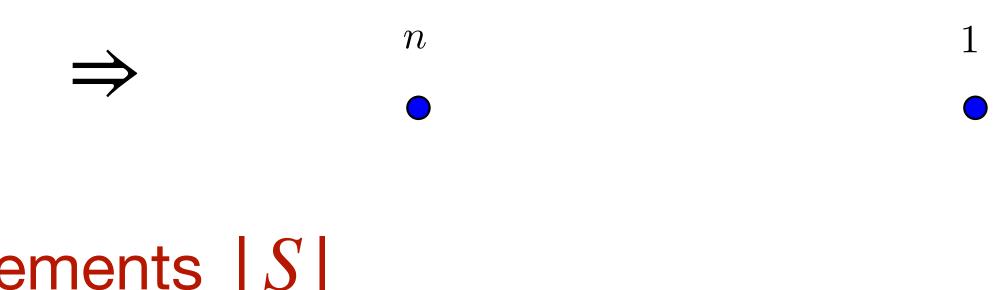
Coreset for Clustering

 ϵ -Coreset is a weighted subset $S \subseteq D$ s.t. [Har-Peled-Mazumdar, STOC 04] There can be infinitely many such C's! Why weighted?



Performance measure: # of distinct elements | S |

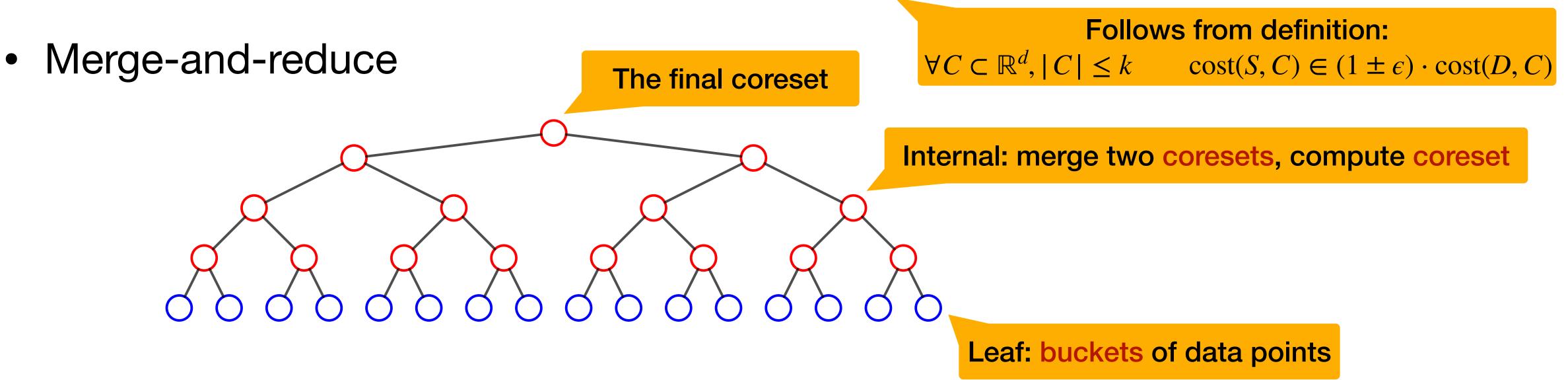
$\forall C \subset \mathbb{R}^d, |C| \le k \qquad \operatorname{cost}(S, C) \in (1 \pm \epsilon) \cdot \operatorname{cost}(D, C)$



 \bigcirc

Coreset -> Sublinear Algorithms Merge-and-reduce method

Given ϵ -coreset Alg. \mathscr{A} , one can turn \mathscr{A} into sublinear algorithms, e.g., streaming/distributed/dynamic algorithms, in a black-box way!



• Key property — composable: coreset(X) \cup coreset(Y) is a coreset(X \cup Y)

Results Size independent of *n*

Most studied: vanilla k-clustering in \mathbb{R}^d

- Upper bound (for k-median): $O(\min\{k^{4/3}e^{-2}, ke^{-3}, ke^{-2}d\})$
- Lower bound: $\Omega(k\epsilon^{-2})$

Extensions: size $poly(ke^{-1})$

- Other metric space: doubling metrics, planar graphs etc.

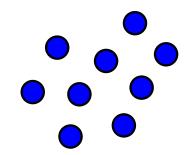
Obtaining tight degree of poly is still open

There's an even larger gap in the degree of poly

• Variants: fair clustering, capacitated clustering, clustering w/ outliers etc.

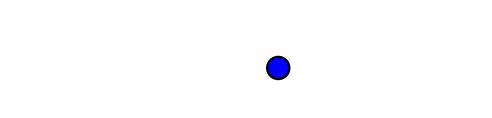
Natural Idea: Sampling

Uniform sampling? Doesn't work:



Needs to do non-uniform sampling

- Generic framework: sensitivity sampling
- More specific to clustering: hierarchical uniform sampling



Sensitivity Sampling Method

Warmup: Importance Sampling

Suppose
$$a_1, ..., a_n > 0$$

Want to estimate $\sum_i a_i$, but can acce

Question: How well does uniform sampling work?

• Bad example: $a_1 = 1$, but for i > i > i

ess a_i only through random samples

1,
$$a_i = 0$$

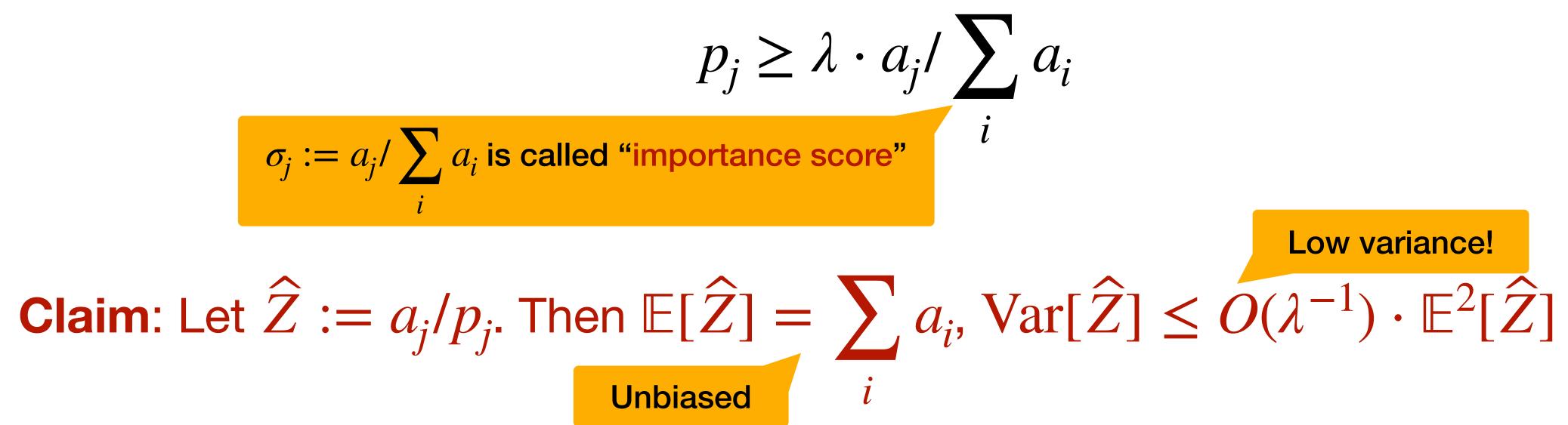
requires $\Omega(n)$ samples to see a_1 even once

Importance Sampling Algorithm

For some $0 < \lambda \leq 1$, suppose we have a distribution on ID $j \in [n]$ s.t.

 $\sigma_j := a_j / \sum a_i$ is called "importance score" *i*

Unbiased Hence, aggregate $O(1/\epsilon^2)$ i.i.d. samples yields $(1 + \epsilon)$ -approximation



Proof

Let $W := \sum a_i$. Recall $p_j \ge \lambda \cdot a_j / W$, $\widehat{Z} := a_j / p_j$ $\mathbb{E}[\hat{Z}] = \sum p_i \cdot a_i / p_i = \sum a_i = W$ $\mathbb{E}(\widehat{Z}^{2}) = \sum p_{i} \cdot (a_{i}/p_{i})^{2} = \sum a_{i}^{2}/p_{i} \leq \lambda^{-1}W \sum a_{i} = \lambda^{-1}W^{2}$ $\operatorname{Var}(\widehat{Z}) = \mathbb{E}[\widehat{Z}^2] - \mathbb{E}^2[\widehat{Z}] \le O(\lambda^{-1}) \cdot \mathbb{E}^2[\widehat{Z}]$

Generalization: Sensitivity Sampling

Our case: for $x \in D$, let $f_x(C) := \text{dist}(x, C)$, then $\text{cost}(D, C) = \sum_{x \in D} f_x(C)$

Interpretation: sum of functions $\{f_x\}_{x\in D}$ on the same variable C

Goal: draw a sample of D that approximates this sum for all C simutaneously Compare to importance samp.: sum of numbers vs sum of functions

Exactly a coreset!

Sensitivity Sampling

Sensitivity σ_{r} : analogue to importance score

For $x \in D$, $\sigma_x := \sup_{C \subset \mathbb{R}^d, |C| \le k} \frac{f_x(C)}{\operatorname{cost}(D, C)}$

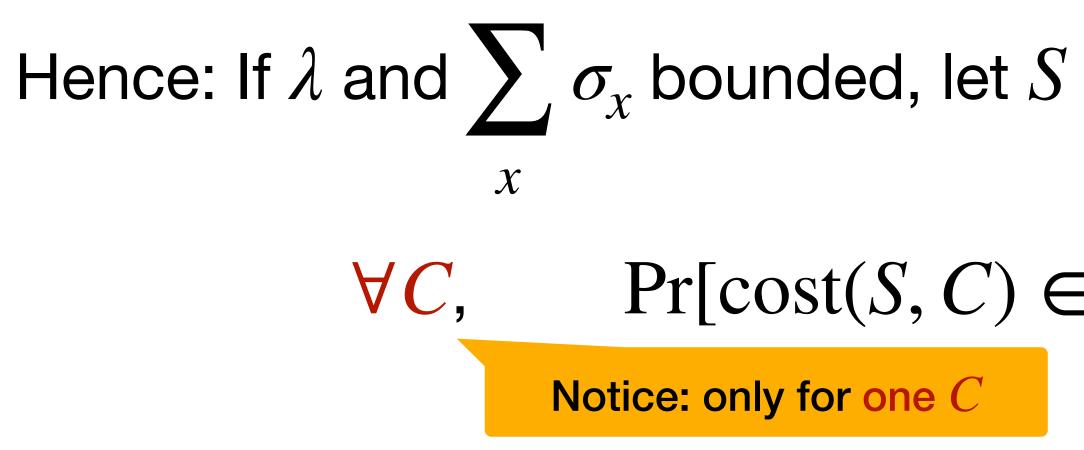
Claim:

Given $p_x \ge \lambda \cdot \sigma_x$, sample $x \in D$ w.p. p_x , set its weight $w(x) := 1/p_x$

The contribution of *x* over any possible center set (i.e., parameter of f_{y})

 $\sum \sigma_x$ is called "total sensitivity"

Sensitivity Sampling



To make it a coreset, one still needs a union bound on all C

Hence: If λ and $\sum \sigma_x$ bounded, let *S* be $O(\epsilon^{-2} \log 1/\delta)$ i.i.d. samples, then

$\Pr[\operatorname{cost}(S, C) \in (1 \pm \epsilon) \cdot \operatorname{cost}(D, C)] \ge 1 - \delta$

• But C is infinitely many, even in 1D and k = 1 (i.e., 1-median on real line)!

• We need "clever" discretization: Sauer-Shelah-like, via VC-dimension

VC/Shattering Dimension

Consider metric space $\mathcal{M}(V, \text{dist})$

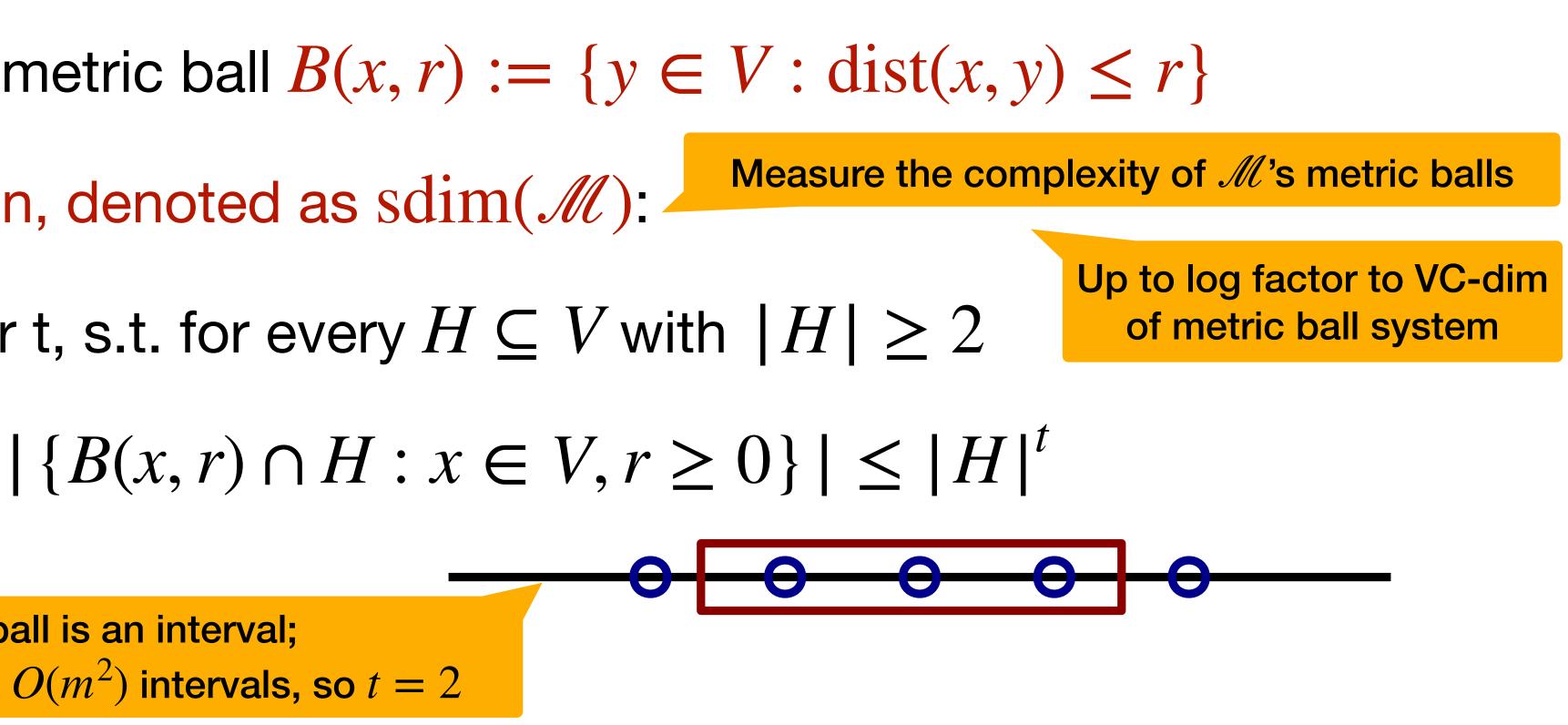
For $x \in V$, define a metric ball $B(x, r) := \{y \in V : dist(x, y) \leq r\}$

Shattering dimension, denoted as sdim(*M*):

• Smallest integer t, s.t. for every $H \subseteq V$ with $|H| \ge 2$

In 1D, a ball is an interval; *m* points can form $O(m^2)$ intervals, so t = 2

For \mathbb{R}^d , one can show that sdim is O(d)



Conclusion: Coresets via Sensitivity Samp.

Sensitivity sampling: Given $p_x \ge \lambda \cdot \sigma_x$

Sample $x \in D$ w.p. p_x , set its weight by $w(x) := 1/p_x$

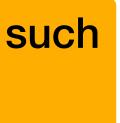
Theorem: $poly(e^{-1} \cdot \sum \sigma_x \cdot sdim)$ i.i.d. sensitivity samples is e-coreset w.h.p. [Feldman-Langberg, STOC 11] For k-clustering, total sensitivity is O(k)[Varadarajan-Xiao, FSTTCS 12]

Corollary: $O(kde^{-2})$ i.i.d. sensitivity samples is ϵ -coreset for k-median in \mathbb{R}^d

There's an efficient way to compute such

 p_x 's with $\lambda = \Omega(1)$

[Feldman-Langberg, STOC 11]



Other Metrics

For clustering: given metric $\mathcal{M}(V, \text{dist})$, we allow dataset $D \subseteq V$, center set $C \subseteq V$

For metrics other than \mathbb{R}^d , poly($k\epsilon^{-1}$) size coreset exists if sdim is bounded

- Doubling metrics [Huang-J-Li-Wu, FOCS 18]
- The shortest-path metric of graphs
 - planar/excluded-minor [Bousquet-Thomassé, Discret. Math. 15] [Braverman-J-Krauthgamer-Wu, SODA 21]
 - bounded treewidth [Baker-Braverman-Huang-J-Krauthgamer-Wu, ICML 20]
- Polygonal curves under Fréchet distance

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

How to Remove Dependence on d for \mathbb{R}^d ? Simple approach: iterative size reduction

Informal argument:

Need a terminal embedding version of JL [Narayanan-Nelson, STOC 19]

- Iteratively running this, we have n
- See [Braverman-J-Krauthgamer-Wu, SODA 21]

* Note: first dimension-independent results were obtained in [Sohler-Woodruff, FOCS 18; Feldman-Schmidt-Sohler, SICOMP 20]

• First do JL: reduce to $d = \log n$, leading to a coreset of size $O(\log n)$

$$n \to \log n \to \log \log n \dots$$

Run for $\log^* n$ times, error can accumulate

To avoid $\log^* n$ in error bound, one needs to set ϵ carefully in each iteration

Good and Bad of Sensitivity Sampling

Suitable for various problems (non-exhaustive examples):

- Projective clustering/missing value
- Gaussian mixture model
- Logistic regression
- Decision tree [Jubran-Shayda-Newman-Feldman, NeurIPS 21]

What's not so good:

Not effective to deal with constraints; sub-optimal size

[Feldman-Schmidt-Sohler, SICOMP 20; **Braverman-J-Krauthgamer-Wu, NeurIPS 21**]

[Lucic-Faulkner-Krause-Feldman, JMLR 17]

[Munteanu-Schwiegelshohn-Sohler-Woodruff, NeurIPS 18]

For example capacity constraints

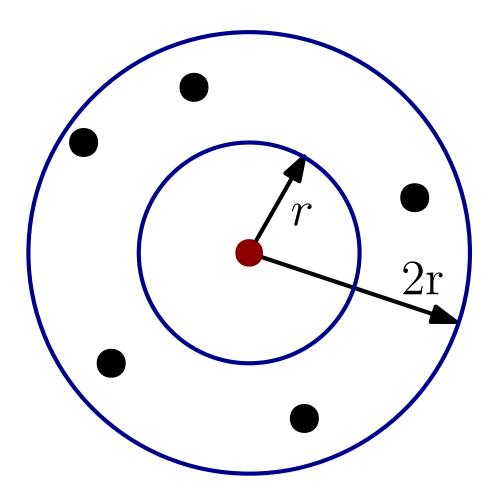
More structured sampling can do better

Hierarchical Uniform Sampling Method

Hierarchical Uniform Sampling [Chen, SICOMP 09]

A more geometric way to construct coreset $\operatorname{ring}(c, r, 2r) := B(c, 2r) \setminus B(c, r)$ First, consider ring dataset $R \subseteq ring(c, r, 2r)$ Intuition: points in the ring have similar "importance scores"

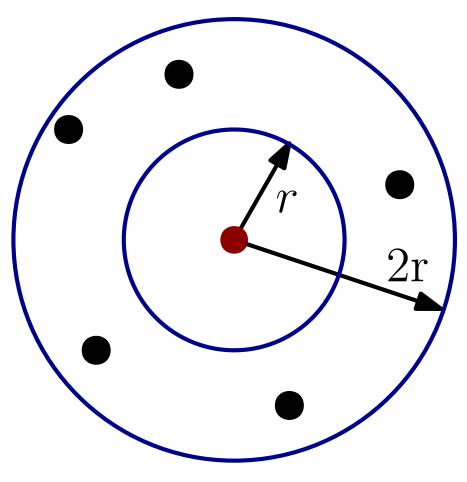
So uniform sampling should work



Uniform Sampling on Ring Dataset

- Draw *m* uniform samples $S \subseteq R$, set $w(x) := n_R/m$ for $x \in S$ Unbiased: $\mathbb{E}[\operatorname{cost}(S, C)] = \operatorname{cost}(R, C)$
- Hoeffding inequality implies w.h.p., $|\operatorname{cost}(S, C) \operatorname{cost}(D, C)| \leq \epsilon n_R \cdot r$
 - Bounded terms: $\forall x, y \in D$, $dist(x, C) - dist(y, C) \le dist(x, y) \le O(r)$

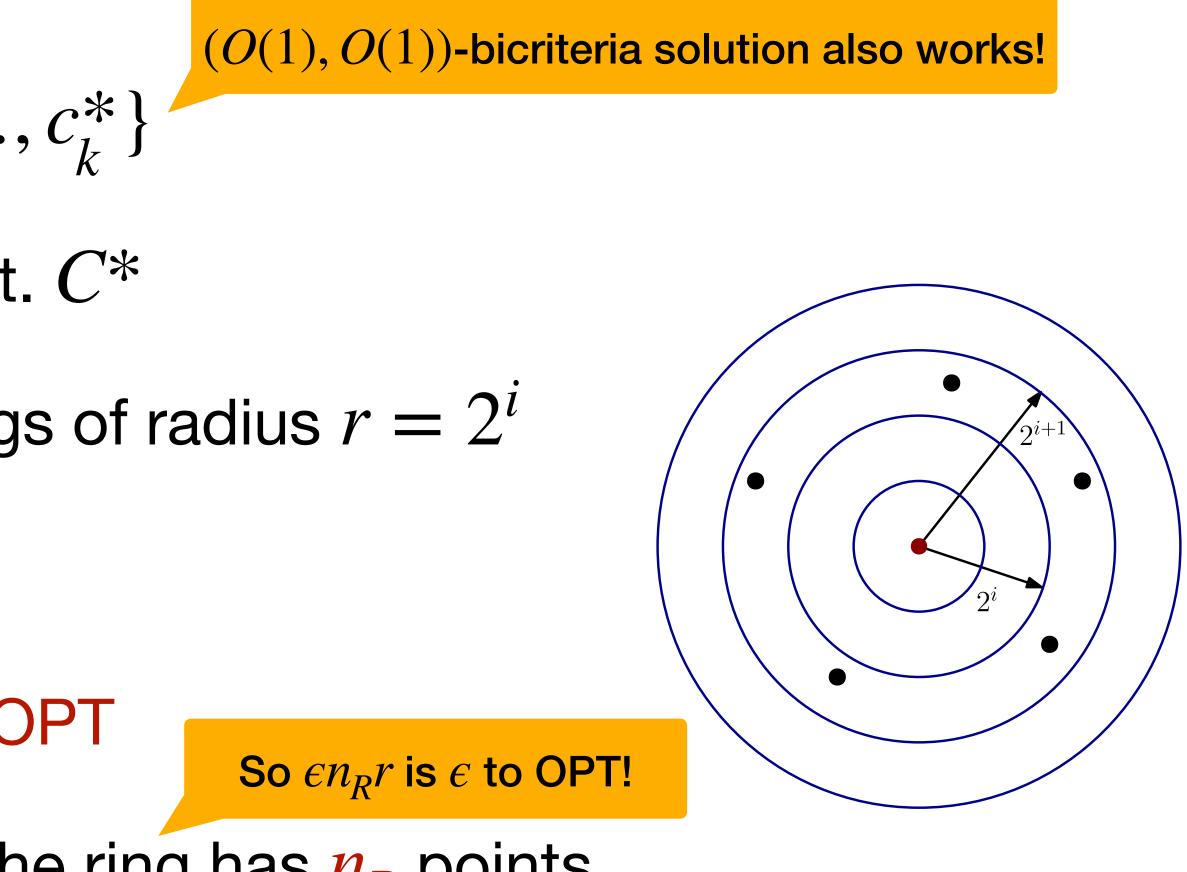
 n_R is the number of points in R



Is the Addive Error $\epsilon n_R r$ Good? Charging $\epsilon n_R r$ to OPT, via ring decomposition

Find optimal center set $C^* = \{c_1^*, ..., c_k^*\}$ Partition/clustering the dataset D w.r.t. C^* For each cluster C_i^* , partition into rings of radius $r = 2^i$ For each ring R of radius r:

- Each $x \in R$ contributes O(r) to OPT
- In total contribute $O(n_R r)$ since the ring has n_R points



Further development

Naive decomposition may introduce $O(\log n)$ rings

Improved way: group several rings together, and create only $\log 1/\epsilon$ rings

- Lead to state-of-the-art coreset size
- Also extends to constrained clustering
 - Fair clustering, capacitated clustering etc.

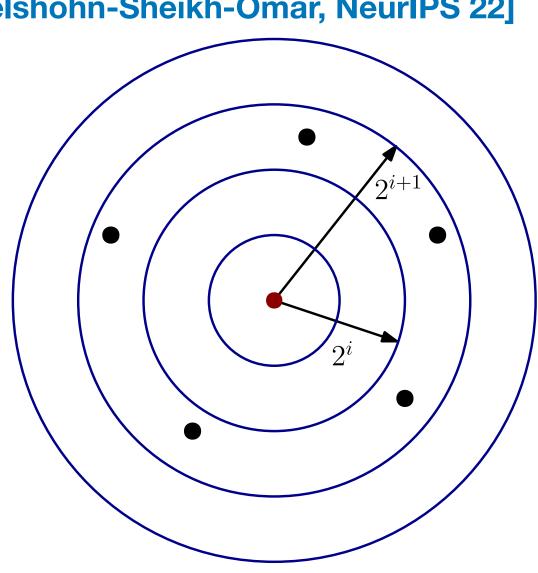
[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

Clustering with outliers

[Huang-J-Lou-Wu, ICLR 23]

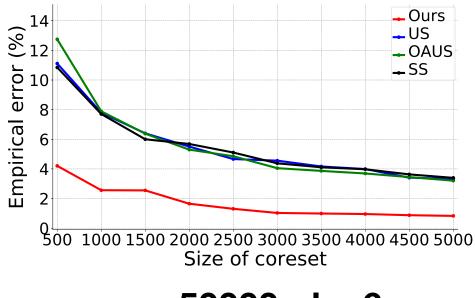
which translates to $O(\log n)$ -size coreset

[Cohen-Addad-Saulpic-Schwiegelshohn, STOC 21; Cohen-Addad-Larsen-Saulpic-Schwiegelshohn, STOC 22; Cohen-Addad-Larsen-Saulpic-Schwiegelshohn-Sheikh-Omar, NeurIPS 22]

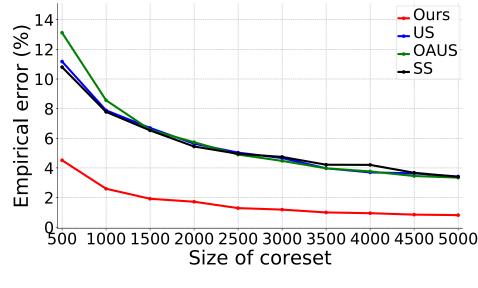


Some Experiment Results

Coresets for clustering with outliers



n = 50000, d = 6

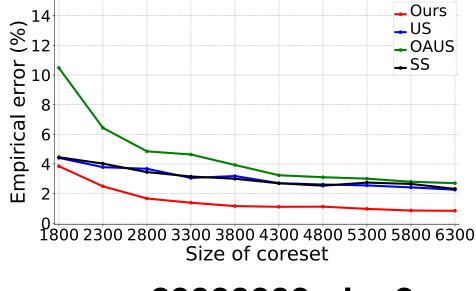


n = 40000, d = 10

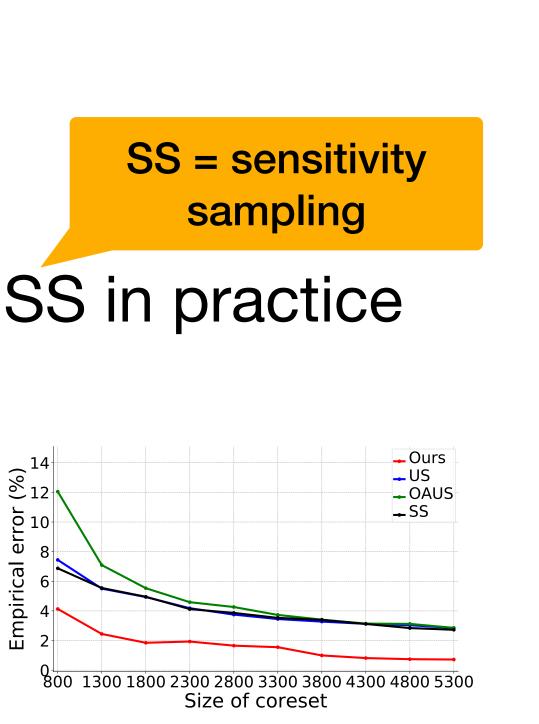
[Huang-J-Lou-Wu, ICLR 23]

sampling

• Based on hierarchical uniform sampling; works better than SS in practice



n = 2000000, d = 2



n = 2000000, d = 68

We also observe similar results in many other coreset papers

Speed up Approximation Algorithms

Table 2: Running time and costs for LL and LS with/without coresets. T_X and T_S are the running time without/with the coreset, respectively. Similarly, cost and cost' are the clustering costs without/with the coreset. T_C is coreset construction time. This entire experiment is repeated 10 times and the average is reported.

dataset	algorithm	$\cos t$	cost'	T_C (s)	T_S (s)	T_X (s)
Adult	LL LS	$3.790 imes 10^{13} \\ 1.100 imes 10^9$	$3.922 imes 10^{13} \\ 1.107 imes 10^9$	$\begin{array}{c} 0.4657 \\ 0.5300 \end{array}$	$\begin{array}{c} 0.06385\\ 1.147\end{array}$	$\begin{array}{c} 16.51 \\ 204.8 \end{array}$
Bank	LL LS	4.444×10^{8} 4.717×10^{6}	4.652×10^{8} 4.721×10^{6}	$0.4399 \\ 0.4953$	$0.05900 \\ 1.220$	$\begin{array}{c} 11.40\\ 186.6\end{array}$
Twitter	LL LS	$3.218 imes 10^7 \\ 1.476 imes 10^6$	$3.236 imes 10^7 \\ 1.451 imes 10^6$	$0.9493 \\ 1.064$	$0.08289 \\ 2.135$	$\begin{array}{c} 11.27\\ 460.2 \end{array}$
Census1990	LL LS	1.189×10^{7} 1.165×10^{6}	1.208×10^{7} 1.163×10^{6}	$3.673 \\ 4.079$	$\begin{array}{c} 0.4809 \\ 24.83 \end{array}$	$\begin{array}{c} 40.54 \\ 2405 \end{array}$

We also observe similar results in many other coreset papers

Conclusion

Importance sampling

Hierarchical uniform sampling

- Simpler, better suited (but very specific) to clustering
- Can handle constrained clustering

• Wider applicability, but may not be the end-game solution for clustering

Future Directions

Coresets for clustering: tight bounds, i.e., tight degree of poly of ϵ , k **Beyond coreset**/what's coreset cannot do for clustering:

- Size lower bound of $\Omega(k)$ for coreset Severe limitation when k is large!
- Streaming and MPC algorithms that have o(k) space usage?

A popular distributed computing model motivated by MapReduce

Beyond clustering:

Coreset/sampling x other tasks in ML?

Thanks!