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Sublinear Algorithms

Computational challenge of big data: even linear time/space doesn’t work!


Typical sublinear models: streaming, distributed computing, sublinear time
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Coreset: A Data Reduction Method
For sublinear algorithm design

Features:


• Data/problem driven design of sublinear algorithms


• Existing (non-big-data) algorithms can be readily applied
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A problem  defined on 
big data

𝒫 Coreset: Tiny proxy of 
dataset

Classic Alg. 𝒜
Sublinear/efficient algorithm Solve only on the tiny proxy

Algorithm driven design of sublinear 
algorithms



Clustering

k-median: dataset , find center set  s.t.  to minimize





Related problem: k-means, 

D ⊂ ℝd C ⊂ ℝd |C | ≤ k

cost(D, C) := ∑
x∈D

dist(x, C)

cost(D, C) := ∑
x∈D

dist2(x, C)
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, dist(x, C) := min
c∈C

dist(x, c) dist = ℓ2

Notice the square
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-Coreset is a weighted subset  s.t.





Why weighted?


Performance measure: # of distinct elements 

ϵ S ⊆ D

∀C ⊂ ℝd, |C | ≤ k cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)

|S |

Coreset for Clustering

⇒

There can be infinitely many such ’s!C

[Har-Peled-Mazumdar, STOC 04]



Coreset -> Sublinear Algorithms
Merge-and-reduce method

Given -coreset Alg. , one can turn  into sublinear algorithms, e.g., 
streaming/distributed/dynamic algorithms, in a black-box way!


• Key property — composable: coreset   coreset  is a coreset 


• Merge-and-reduce

ϵ 𝒜 𝒜

(X) ∪ (Y) (X ∪ Y)
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Leaf: buckets of data points

Internal: merge two coresets, compute coreset

The final coreset
Follows from definition: 

∀C ⊂ ℝd, |C | ≤ k cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)



Results
Size independent of n

Most studied: vanilla k-clustering in 


• Upper bound (for k-median): 


• Lower bound: 


Extensions: size 


• Other metric space: doubling metrics, planar graphs etc.


• Variants: fair clustering, capacitated clustering, clustering w/ outliers etc.

ℝd

O(min{k4/3ϵ−2, kϵ−3, kϵ−2d})

Ω(kϵ−2)

poly(kϵ−1)
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There’s an even larger gap in the degree of poly

Obtaining tight degree of poly is still open



Natural Idea: Sampling

Uniform sampling? Doesn’t work:


Needs to do non-uniform sampling


• Generic framework: sensitivity sampling


• More specific to clustering: hierarchical uniform sampling
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Sensitivity Sampling Method



Warmup: Importance Sampling

Suppose 


Want to estimate , but can access  only through random samples


Question: How well does uniform sampling work?


• Bad example: , but for , 

a1, …, an > 0

∑
i

ai ai

a1 = 1 i > 1 ai = 0
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requires  samples to see  even onceΩ(n) a1



Importance Sampling
Algorithm

For some , suppose we have a distribution on ID  s.t.





Claim: Let . Then , 


Hence, aggregate  i.i.d. samples yields -approximation

0 < λ ≤ 1 j ∈ [n]

pj ≥ λ ⋅ aj/∑
i

ai

̂Z := aj/pj 𝔼[ ̂Z] = ∑
i

ai Var[ ̂Z] ≤ O(λ−1) ⋅ 𝔼2[ ̂Z]

O(1/ϵ2) (1 + ϵ)
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 is called “importance score”σj := aj /∑
i

ai

Low variance!

Unbiased



Proof

Let . Recall , 





  


W := ∑
i

ai pj ≥ λ ⋅ aj/W ̂Z := aj/pj

𝔼[ ̂Z] = ∑
i

pi ⋅ ai/pi = ∑
i

ai = W

𝔼( ̂Z2) = ∑
i

pi ⋅ (ai/pi)2 = ∑
i

a2
i /pi ≤ λ−1W∑

i

ai = λ−1W2

Var( ̂Z) = 𝔼[ ̂Z2] − 𝔼2[ ̂Z] ≤ O(λ−1) ⋅ 𝔼2[ ̂Z]
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Generalization: Sensitivity Sampling

Our case: for , let , then 


Interpretation: sum of functions  on the same variable C


Goal: draw a sample of  that approximates this sum for all C simutaneously


Compare to importance samp.: sum of numbers vs sum of functions

x ∈ D fx(C) := dist(x, C) cost(D, C) = ∑
x∈D

fx(C)

{fx}x∈D

D
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Exactly a coreset!



Sensitivity Sampling

Sensitivity : analogue to importance score


For , 


Claim:


Given , sample  w.p. , set its weight 


Then ,  and 

σx

x ∈ D σx := sup
C⊂ℝd,|C|≤k

fx(C)
cost(D, C)

px ≥ λ ⋅ σx x ∈ D px w(x) := 1/px

∀C 𝔼[ fx(C)] = cost(D, C) Var[ fx(C)] ≤ O(λ−1 ∑
x

σx) ⋅ 𝔼2[ fx(C)]
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The contribution of  over any possible center set 
(i.e., parameter of )

x
fx

 is called “total sensitivity”∑
x

σx



Sensitivity Sampling

Hence: If  and  bounded, let  be  i.i.d. samples, then


, 


To make it a coreset, one still needs a union bound on all 


• But  is infinitely many, even in 1D and  (i.e., 1-median on real line)!


• We need “clever” discretization: Sauer-Shelah-like, via VC-dimension

λ ∑
x

σx S O(ϵ−2 log 1/δ)

∀C Pr[cost(S, C) ∈ (1 ± ϵ) ⋅ cost(D, C)] ≥ 1 − δ

C

C k = 1
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Notice: only for one C



VC/Shattering Dimension

Consider metric space 


For , define a metric ball 


Shattering dimension, denoted as :


• Smallest integer t, s.t. for every  with 


ℳ(V, dist)

x ∈ V B(x, r) := {y ∈ V : dist(x, y) ≤ r}

sdim(ℳ)

H ⊆ V |H | ≥ 2

|{B(x, r) ∩ H : x ∈ V, r ≥ 0} | ≤ |H |t
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In 1D, a ball is an interval; 
 points can form  intervals, so m O(m2) t = 2

For , one can show that sdim is ℝd O(d)

Measure the complexity of ’s metric ballsℳ

Up to log factor to VC-dim 
of metric ball system



Conclusion: Coresets via Sensitivity Samp.

Theorem:  i.i.d. sensitivity samples is -coreset w.h.p.


Corollary:  i.i.d. sensitivity samples is -coreset for k-median in 

poly(ϵ−1 ⋅ ∑
x

σx ⋅ sdim) ϵ

O(kdϵ−2) ϵ ℝd
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Sensitivity sampling: Given 


Sample  w.p. , set its weight by 

px ≥ λ ⋅ σx

x ∈ D px w(x) := 1/px

There’s an efficient way to compute such 
’s with px λ = Ω(1)

For k-clustering, total sensitivity is  
[Varadarajan-Xiao, FSTTCS 12]

O(k)
[Feldman-Langberg, STOC 11]

[Feldman-Langberg, STOC 11]



Other Metrics

For metrics other than ,  size coreset exists if  is bounded


• Doubling metrics


• The shortest-path metric of graphs


• planar/excluded-minor


• bounded treewidth


• Polygonal curves under Fréchet distance

ℝd poly(kϵ−1) sdim
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For clustering: given metric , we allow 
dataset , center set 

ℳ(V, dist)
D ⊆ V C ⊆ V

[Bousquet-Thomassé, Discret. Math. 15] [Braverman-J-Krauthgamer-Wu, SODA 21]

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Baker-Braverman-Huang-J-Krauthgamer-Wu, ICML 20]

[Huang-J-Li-Wu, FOCS 18]



How to Remove Dependence on  for ?d ℝd

Simple approach: iterative size reduction

Informal argument:


• First do JL: reduce to , leading to a coreset of size 


• Iteratively running this, we have 


• See [Braverman-J-Krauthgamer-Wu, SODA 21]

d = log n O(log n)

n → log n → log log n…
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Need a terminal embedding version of JL [Narayanan-Nelson, STOC 19]

Run for  times, error can accumulatelog* n

To avoid  in error bound, one needs to  
set  carefully in each iteration

log* n
ϵ

* Note: first dimension-independent results were obtained in [Sohler-Woodruff, FOCS 18; Feldman-Schmidt-Sohler, SICOMP 20] 



Good and Bad of Sensitivity Sampling

Suitable for various problems (non-exhaustive examples):


• Projective clustering/missing value


• Gaussian mixture model


• Logistic regression 


• Decision tree


What’s not so good:


• Not effective to deal with constraints; sub-optimal size
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[Munteanu-Schwiegelshohn-Sohler-Woodruff, NeurIPS 18]

[Feldman-Schmidt-Sohler, SICOMP 20;  
Braverman-J-Krauthgamer-Wu, NeurIPS 21]

[Lucic-Faulkner-Krause-Feldman, JMLR 17]

[Jubran-Shayda-Newman-Feldman, NeurIPS 21]

For example capacity constraints

More structured sampling can do better



Hierarchical Uniform Sampling 
Method
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A more geometric way to construct coreset


First, consider ring dataset 


Intuition: points in the ring have similar “importance scores”


• So uniform sampling should work

R ⊆ ring(c, r,2r)

Hierarchical Uniform Sampling
[Chen, SICOMP 09]

ring(c, r,2r) := B(c,2r)∖B(c, r)



Uniform Sampling on Ring Dataset

Draw  uniform samples , set  for 


Unbiased: 


Hoeffding inequality implies w.h.p.,

m S ⊆ R w(x) := nR/m x ∈ S

𝔼[cost(S, C)] = cost(R, C)

|cost(S, C) − cost(D, C) | ≤ ϵnR ⋅ r
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Bounded terms: , ∀x, y ∈ D
dist(x, C) − dist(y, C) ≤ dist(x, y) ≤ O(r)

 is the number of points in nR R



Is the Addive Error  Good?ϵnRr
Charging  to OPT, via ring decompositionϵnRr

Find optimal center set 


Partition/clustering the dataset  w.r.t. 


For each cluster , partition into rings of radius 


For each ring  of radius :


• Each  contributes  to OPT


• In total contribute  since the ring has  points

C* = {c*1 , …, c*k }

D C*

C*i r = 2i

R r

x ∈ R O(r)

O(nRr) nR
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-bicriteria solution also works!(O(1), O(1))

So  is  to OPT!ϵnRr ϵ



Further development

Naive decomposition may introduce  rings


Improved way: group several rings together, and create only  rings


• Lead to state-of-the-art coreset size


• Also extends to constrained clustering


• Fair clustering, capacitated clustering etc.


• Clustering with outliers

O(log n)

log 1/ϵ
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which translates to -size coresetO(log n)

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Huang-J-Lou-Wu, ICLR 23]

[Cohen-Addad-Saulpic-Schwiegelshohn, STOC 21; 
Cohen-Addad-Larsen-Saulpic-Schwiegelshohn, STOC 22;  
Cohen-Addad-Larsen-Saulpic-Schwiegelshohn-Sheikh-Omar, NeurIPS 22]



Some Experiment Results

Coresets for clustering with outliers


• Based on hierarchical uniform sampling; works better than SS in practice
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n = 50000, d = 6 n = 40000, d = 10 n = 20000000, d = 2 n = 2000000, d = 68

[Huang-J-Lou-Wu, ICLR 23]

We also observe similar results in many other coreset papers

SS = sensitivity 
sampling



Speed up Approximation Algorithms
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We also observe similar results in many other coreset papers



Conclusion

Importance sampling


• Wider applicability, but may not be the end-game solution for clustering


Hierarchical uniform sampling


• Simpler, better suited (but very specific) to clustering


• Can handle constrained clustering
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Future Directions

Coresets for clustering: tight bounds, i.e., tight degree of poly of 


Beyond coreset/what’s coreset cannot do for clustering:


• Size lower bound of  for coreset — Severe limitation when  is large!


• Streaming and MPC algorithms that have  space usage?


Beyond clustering:


• Coreset/sampling x other tasks in ML?

ϵ, k

Ω(k) k

o(k)
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A popular distributed computing model motivated by MapReduce



Thanks!


