Recent Advances in Coresets for Clustering Shaofeng Jiang

信 北京大学前沿计算研究中心

Center on Frontiers of Computing Studies, Peking University

Sublinear Algorithms

Computational challenge of big data: even linear time/space doesn't work!

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batte w plot and data collected for 2010-2021 by K. Rupr

Typical sublinear models: streaming, distributed computing, sublinear time

o(n) space o(n) communication o(n) query

Coreset: A Data Reduction Method For sublinear algorithm design

Features:

- Data/problem driven design of sublinear algorithms
- Existing (non-big-data) algorithms can be readily applied

A problem $\mathscr P$ defined on big data

Clustering

$D\subset \mathbb{R}^d$, find center set $C\subset \mathbb{R}^d$ s.t. $\mid C\mid \ \leq k$ k-median: dataset $D\subset \mathbb{R}^a$, find center set $C\subset \mathbb{R}^a$ s.t. $\mid C\mid\ \leq k$ to minimize $cost(D, C) := \sum dist(x, C)$ $x \in D$ dist(*x*, *C*) := min dist(*x*, *c*), dist = ℓ_2 *c*∈*C* dist² (*x*,*C*) Related problem: k-means, $cost(D, C) := \sum_{i=1}^{n}$ Notice the square*x*∈*D* $\mathsf{\tilde{X}}$ $C₁$ X $\mathsf{\tilde{X}}$ $^{\circ}$ c_3 $\overline{c_4}$ $\bm{\times}$ $\boldsymbol{\mathsf{x}}$

4

 \bullet

Performance measure: # of distinct elements |*S*|

 ϵ -Coreset is a weighted subset $S \subseteq D$ s.t. Why weighted? There can be infinitely many such *C*'s!

Coreset for Clustering

[Har-Peled-Mazumdar, STOC 04]

$\forall C \subset \mathbb{R}^d, |C| \leq k$ cost(*S*, *C*) $\in (1 \pm \epsilon) \cdot \text{cost}(D, C)$

Coreset -> Sublinear Algorithms Merge-and-reduce method

Given ϵ -coreset Alg. $\mathscr A$, one can turn $\mathscr A$ into sublinear algorithms, e.g., streaming/distributed/dynamic algorithms, in a black-box way!

• Key property — composable: coreset(X) ∪ coreset(Y) is a coreset(X ∪ Y)

Results Size independent of *n*

Most studied: vanilla k-clustering in

- Upper bound (for k-median): $O(\min\{k^{4/3}\epsilon^{-2}, k\epsilon^{-3}, k\epsilon^{-2}d\})$
- Lower bound: Ω(*kϵ*−²)

- Other metric space: doubling metrics, planar graphs etc.
-

 \mathbb{R}^d Obtaining tight degree of poly is still open

There's an even larger gap in the degree of poly

Extensions: size poly(*kϵ*−¹)

• Variants: fair clustering, capacitated clustering, clustering w/ outliers etc.

Natural Idea: Sampling

Uniform sampling? Doesn't work:

Needs to do non-uniform sampling

- Generic framework: sensitivity sampling
- More specific to clustering: hierarchical uniform sampling

Sensitivity Sampling Method

Warmup: Importance Sampling

Suppose
$$
a_1, ..., a_n > 0
$$

Want to estimate $\sum_i a_i$, but can access a_i only through random samples

Question: How well does uniform sampling work?

• Bad example: $a_1 = 1$, but for $i > 1$, $a_i = 0$

1,
$$
a_i = 0
$$

requires $\Omega(n)$ samples to see a_1 even once

Importance Sampling Algorithm

For some $0 < \lambda \leq 1$, suppose we have a distribution on ID $j \in [n]$ s.t.

 $\sigma_j := a_j / \sum a_i$ is called "importance score" ∑ *i ai*

Claim: Let $Z := a_j/p_j$. Then $E[Z] = \sum a_i$, $\overline{}$ **Unbiased**

Hence, aggregate $O(1/\epsilon^2)$ i.i.d. samples yields $(1+\epsilon)$ -approximation $O(1/\epsilon^2)$ i.i.d. samples yields $(1 + \epsilon)$

Proof

Let $W := \sum a_i$. Recall $p_j \geq \lambda \cdot a_j/W$, $Z := a_j/p_j$ *i* $[Z] = \sum_{i} p_i \cdot a_i / p_i = \sum_{i} a_i = W$ **Ö** *i i* (\widehat{Z}^2) ̂ $) = \sum p_i \cdot (a_i/p_i)$ *i* $2 = \sum a_i^2 / p_i \leq \lambda^{-1}$ *i W*∑ *i* $a_i = \lambda^{-1}W^2$ $Var(\hat{Z}) = \mathbb{E}[\hat{Z}^2] - \mathbb{E}^2[\hat{Z}] \leq O(\lambda^{-1})$. ̂ ̂ $\overline{}$ 2 [*Z*] $\overline{}$

Generalization: Sensitivity Sampling

Goal: draw a sample of D that approximates this sum for all C simutaneously Compare to importance samp.: sum of numbers vs sum of functions

Our case: for $x \in D$, let $f_x(C) := \text{dist}(x, C)$, then $\text{cost}(D, C) = \sum f_x(C)$ *x*∈*D*

Interpretation: sum of functions $\{f_x\}_{x \in D}$ on the same variable C

Exactly a coreset!

Sensitivity Sampling

Sensitivity σ_{χ} : analogue to importance score

Claim:

Given $p_{_X} \geq \lambda \cdot \sigma_{_X}$, sample $x \in D$ w.p. $p_{_X}$, set its weight $w(x) := 1/p_{_X}$ Then $\forall C$, $\mathbb{E}[f_x(C)] = \text{cost}(D, C)$ and $\text{Var}[f_x(C)] \leq O(\lambda^{-1})$

For $x \in D$, $\sigma_x := \sup$ *C*⊂ℝ*^d* ,|*C*|≤*k f ^x*(*C*) cost(*D*,*C*)

The contribution of x over any possible center set (i.e., parameter of f_{χ})

Sensitivity Sampling

- But C is infinitely many, even in 1D and $k = 1$ (i.e., 1-median on real line)!
- We need "clever" discretization: Sauer-Shelah-like, via VC-dimension

$Pr[cost(S, C) \in (1 \pm \epsilon) \cdot cost(D, C)] \ge 1 - \delta$

To make it a coreset, one still needs a union bound on all *C*

VC/Shattering Dimension

Consider metric space ℳ(*V*, dist)

For $x \in V$, define a metric ball $B(x, r) := \{y \in V : dist(x, y) \le r\}$

Shattering dimension, denoted as $\text{sdim}(\mathcal{M})$:

• Smallest integer t, s.t. for every $H \subseteq V$ with $|H| \geq 2$

In 1D, a ball is an interval; m points can form $O(m^2)$ intervals, so $t=2$

For \mathbb{R}^d , one can show that sdim is $O(d)$

Conclusion: Coresets via Sensitivity Samp.

Sensitivity sampling: Given $p_x \geq \lambda \cdot \sigma_x$

Sample $x \in D$ w.p. p_x , set its weight by $w(x) := 1/p_x$

Theorem: $poly(\epsilon^{-1} \cdot \sum \sigma_{r} \cdot \text{sdim})$ i.i.d. sensitivity samples is ϵ -coreset w.h.p. $\operatorname{poly}(\epsilon^{-1}$. ∑ *x* σ_x · sdim) i.i.d. sensitivity samples is ϵ For k-clustering, total sensitivity is *O*(*k*) **[Varadarajan-Xiao, FSTTCS 12] [Feldman-Langberg, STOC 11]**

Corollary: $O(kde^{-2})$ i.i.d. sensitivity samples is ϵ -coreset for k-median in $O(k d \epsilon^{-2})$ i.i.d. sensitivity samples is ϵ -coreset for k-median in \mathbb{R}^d

There's an efficient way to compute such

p $_{x}$'s with $\lambda = \Omega(1)$

[Feldman-Langberg, STOC 11]

Other Metrics

For clustering: given metric $\mathscr{M}(V,\text{dist})$, we allow dataset $D \subseteq V$, center set $C \subseteq V$

- Doubling metrics **[Huang-J-Li-Wu, FOCS 18]**
- The shortest-path metric of graphs
	- planar/excluded-minor
	- bounded treewidth
- Polygonal curves under Fréchet distance

For metrics other than \mathbb{R}^d , $\operatorname{poly}(k\epsilon^{-1})$ size coreset exists if sdim is bounded \mathbb{R}^d , poly $(k\epsilon^{-1})$ size coreset exists if s \dim

[Bousquet-Thomassé, Discret. Math. 15] [Braverman-J-Krauthgamer-Wu, SODA 21]

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Baker-Braverman-Huang-J-Krauthgamer-Wu, ICML 20]

How to Remove Dependence on *d* **for** ℝ **?** *d* **Simple approach: iterative size reduction**

Informal argument:

-
- Iteratively running this, we have n
- See [Braverman-**J**-Krauthgamer-Wu, SODA 21]

$$
n \to \log n \to \log \log n \ldots
$$

Need a terminal embedding version of JL [Narayanan-Nelson, STOC 19]

Run for log* *n* times, error can accumulate

To avoid $\log^* n$ in error bound, one needs to set ϵ carefully in each iteration

* Note: first dimension-independent results were obtained in **[Sohler-Woodruff, FOCS 18; Feldman-Schmidt-Sohler, SICOMP 20]**

• First do JL: reduce to $d = \log n$, leading to a coreset of size $O(\log n)$

Good and Bad of Sensitivity Sampling

Suitable for various problems (non-exhaustive examples):

- Projective clustering/missing value
- Gaussian mixture model
- Logistic regression
- Decision tree **[Jubran-Shayda-Newman-Feldman, NeurIPS 21]**

What's not so good:

• Not effective to deal with constraints; sub-optimal size

[Munteanu-Schwiegelshohn-Sohler-Woodruff, NeurIPS 18]

[Feldman-Schmidt-Sohler, SICOMP 20; Braverman-J-Krauthgamer-Wu, NeurIPS 21]

[Lucic-Faulkner-Krause-Feldman, JMLR 17]

For example capacity constraints

More structured sampling can do better

Hierarchical Uniform Sampling Method

- A more geometric way to construct coreset First, consider ring dataset $R \subseteq \text{ring}(c, r, 2r)$ Intuition: points in the ring have similar "importance scores"
- So uniform sampling should work

 $ring(c, r, 2r) := B(c, 2r) \setminus B(c, r)$

Hierarchical Uniform Sampling [Chen, SICOMP 09]

Uniform Sampling on Ring Dataset

- Draw *m* uniform samples $S \subseteq R$, set $w(x) := n_R/m$ for $x \in S$ Unbiased: $\mathbb{E}[\text{cost}(S, C)] = \text{cost}(R, C)$
- Hoeffding inequality implies w.h.p., $|\text{cost}(S, C) \text{cost}(D, C)| \leq \epsilon n_R \cdot r$
	- Bounded terms: ∀*x*, *y* ∈ *D*, $dist(x, C) - dist(y, C) \leq dist(x, y) \leq O(r)$

 n_R is the number of points in R

Is the Addive Error $\epsilon n_R r$ Good? **Charging** *ϵnRr* **to OPT, via ring decomposition**

Find optimal center set $C^* = \{c_1^*,...,c_k^*\}$ Partition/clustering the dataset D w.r.t. C^* For each cluster C_i^* , partition into rings of radius For each ring R of radius r: j_i^* , partition into rings of radius $r=2^{i}$

- Each $x \in R$ contributes $O(r)$ to OPT
- In total contribute $O(n_R r)$ since the ring has n_R points

Further development

Naive decomposition may introduce $O(\log n)$ rings

- Lead to state-of-the-art coreset size
- Also extends to constrained clustering
	- Fair clustering, capacitated clustering etc.

• Clustering with outliers

which translates to *O*(log *n*)-size coreset

Improved way: group several rings together, and create only $\log 1/\epsilon$ rings

[Braverman-Cohen-Addad-J-Krauthgamer-Schwiegelshohn-Toftrup-Wu, FOCS 22]

[Huang-J-Lou-Wu, ICLR 23]

[Cohen-Addad-Saulpic-Schwiegelshohn, STOC 21; Cohen-Addad-Larsen-Saulpic-Schwiegelshohn, STOC 22; Cohen-Addad-Larsen-Saulpic-Schwiegelshohn-Sheikh-Omar, NeurIPS 22]

Some Experiment Results

Coresets for clustering with outliers

• Based on hierarchical uniform sampling; works better than SS in practice

 $n = 50000, d = 6$ $n = 40000, d = 10$ $n = 20000000, d = 2$ $n = 20000000, d = 68$

[Huang-J-Lou-Wu, ICLR 23]

We also observe similar results in many other coreset papers

sampling

Speed up Approximation Algorithms

Table 2: Running time and costs for LL and LS with/without coresets. T_X and T_S are the running time without/with the coreset, respectively. Similarly, cost and cost' are the clustering costs without/with the coreset. T_C is coreset construction time. This entire experiment is repeated 10 times and the average is reported.

We also observe similar results in many other coreset papers

Conclusion

Importance sampling

Hierarchical uniform sampling

- Simpler, better suited (but very specific) to clustering
- Can handle constrained clustering

• Wider applicability, but may not be the end-game solution for clustering

Future Directions

Coresets for clustering: tight bounds, i.e., tight degree of poly of ϵ, k **Beyond coreset**/what's coreset cannot do for clustering:

- Size lower bound of $\Omega(k)$ for coreset $-$ Severe limitation when k is large!
- Streaming and MPC algorithms that have $o(k)$ space usage?

Beyond clustering:

• Coreset/sampling x other tasks in ML?

-
-

A popular distributed computing model motivated by MapReduce

Thanks!